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WEIGHTED ESTIMATES OF THE UNILATERAL POTENTIALS
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Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. We consider weighted unilateral ball potentials with radial quasi-monotone weights, as

well as unilateral potentials related to the half-space Rn
+, with quasi-monotone weights depending on

xn > 0. We give the sufficient and, in some cases, necessary conditions for the Lp → Lq-boundedness
of these potentials.

For some subclasses of quasi-monotone weights, we prove a pointwise estimate of the weighted

potentials via the non-weighted potential and the weighted Hardy operator, which may be used for
an arbitrary Banach function space with the lattice property.

1. Introduction

We study weighted estimates for the so-called unilateral potentials, called also one-sided potentials.
There are known two versions of the unilateral potentials. One is known as “ball potentials” and
defined as

Bα
+f (x) =

∫
|y|<|x|

(|x|2 − |y|2)α

|x− y|n
f (y) dy, α > 0, (1.1)

and

Bα
−f (x) =

∫
|y|>|x|

(|y|2 − |x|2)α

|x− y|n
f (y) dy, α > 0. (1.2)

They were introduced in [12, 13], see also [15] and [16]. The main objective of the study in [12–15]
and [16] was to obtain the inversion to the operators Bα

+ and Bα
− and, consequently, to the Riesz

potential, due to the factorization formula provided below (see (1.6)). Ball potentials were also
studied in [7], where for the potentials Bα

+ and Bα
− with respect to an arbitrary measure there were

found the necessary and sufficient conditions for the boundedness and compactness from Lp to Lq,
1 < p < ∞, 0 < q < ∞, in the case α > n

p . We also refer to [23], where some remarks on the ball

potentials in variable exponent Lebesgue spaces may be found.
Another version is related to the half-space and defined by

Iα±f(x) =

∫
Rn

+

yαn
|y|n

f(x∓ y)dy, x ∈ Rn, (1.3)

where Rn
+ = {x ∈ Rn : xn > 0}. In [14], the operators, inverse to Iα±, were constructed. The operators

(1.3) probably first appeared in [1]. Note that Iα+I
α
− coincides with the Riesz potential operator I2α

up to a constant factor.
We consider slightly modified ball potentials in a weighted form:

Bα
+,wf(x) =

w(|x|)
|x|α

∫
|y|<|x|

(|x|2 − |y|2)α

w(|y|)|x− y|n
f (y) dy (1.4)
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and

Bα
−,wf (x) = w(|x|)

∫
|y|>|x|

(|y|2 − |x|2)α

w(|y|) |x− y|n
f (y)

|y|α
dy, (1.5)

and we write Bα
± := Bα

±,w

∣∣∣
w≡1

. Note that

Bα
+Bα

− = C(n, α)I2α, (1.6)

where I2α is the Riesz potential operator and C(n, α) is a certain constant (see [15]).
We also study certain weighted versions of the unilateral potentials related to the half-space.
Since the potentials (1.4) and (1.5) are dominated by the corresponding weighted Riesz potentials

(cf., (2.1)), the weighted ball potentials (1.4) and (1.5) are bounded, e.g., from Lp(Rn) to Lq(Rn),
1
q = 1

p − α
n , 1 < p < n

α , if the weight serves for the Riesz potential, i.e., is, for example, governed

by the known results due to B. Muckenhoupt and R. Wheeden (see [8] and [9]). However, the class
of weights admissible for such a boundedness of the ball potentials is larger due to the unilateral
nature of these potentials. A complete characterization of weights for ball potentials in the general
case seems to be an open problem. In the case of radial weights, we provide the conditions on weights
for the boundedness of the ball potentials from Lp to Lq, 1

q = 1
p − α

n . The Lp → Lp-boundedness

with power weights, as a consequence of the Stein–Weiss theorem [22] for the Riesz potentials, was
observed in [15].

We use radial quasi-monotone weights and Matushewska–Orlicz indices of such weights, in partic-
ular, we use the classes V+ and V− introduced in [17], which are the subclasses of quasi-monotone
weights (see Lemma 2.6). In the case of quasi-monotone weights, when the Matushewska–Orlicz
indices of the weights at the origin and infinity coincide with each other, we provide the sufficient
conditions in terms of the upper (lover) Matushewska–Orlicz index and the necessary conditions in
terms of a lower (upper) index for the operator Bα

+,w (Bα
−,w, respectively,) (see Theorem 3.5).

For the weights w ∈ V± we prove a pointwise estimate of Bα
±,w via Bα

± and weighted Hardy operators,
under the corresponding sign (see Theorem 3.1). This enables us to conclude that the boundedness of
the Riesz potential Iα and the weighted Hardy operator Hα

±,w imply the boundedness of Bα
±,w within

the frameworks of arbitrary function spaces on Rn, with the lattice property for the target space (see
Corollary 3.2).

In the case of the weight with indices at the origin and infinity, not necessarily coinciding, we give
the sufficient conditions for the Lp → Lq-boundedness (see Theorem 3.6).

We also obtain similar results for some versions of the unilateral potentials related to the half-space
(see Section 4).

2. Preliminaries

2.1. On the unilateral ball potentials. For the ball potentials (1.4) and (1.5) with f(x) ≥ 0,
x ∈ Rn, we have

Bα
±,wf(x) ≤ 2αIαw(f)(x), (2.1)

where

Iαwf(x) = w(|x|)
∫
Rn

f(y)

w(|y|)
dy

|x− y|n−α
.

Proposition 2.1 ([22]). Let w(t) = tγ , t ∈ R+. The operator Iαw is bounded from Lp(Rn) to Lq(Rn),
1 < p < n

α ,
1
q = 1

p − α
n , if and only if α− n

p < γ < n
p′ .

Lemma 2.2. Let 1 < p < n
α ,

1
q = 1

p − α
n and w(t) = tγ , t ∈ R+. Then

γ <
n

p′
⇔ Bα

+,w : Lp(Rn) → Lq(Rn) (2.2)

and

γ > α− n

p
⇔ Bα

−,w : Lp(Rn) → Lq(Rn). (2.3)
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Proof. For the sufficiency part ⇒ it suffices to apply Proposition 2.1 and take into account that
|x|γ
|y|γ ≤ 1 for γ ≤ 0, when |y| ≤ |x| and for γ ≥ 0 when |y| ≥ |x|.

For the necessity, note that the conditions γ < n
p′ and γ > α − n

p are just necessary for the

convergence of integrals defining Bα
+,w and Bα

−,w, respectively, for all f ∈ Lp(Rn). □

Our goal is to obtain an extension of statements (2.2) and (2.3) to the general case of non-power
weights.

2.2. Classes of weights. We consider radial weights w, which serve as a weight only at the origin
and infinity. More precisely, we suppose that

0 < inf
δ<t<N

w(t) ≤ sup
δ<t<N

w(t) < ∞, (2.4)

for all δ,N ∈ (0,∞).

Definition 2.3. A function w, satisfying condition (2.4), is called quasi-monotone, if there exist

a0, b0 ∈ R such that w(t)
ta0

is almost increasing (a.i.) and w(t)
tb0

is almost decreasing (a.d.) near the

origin and there exist a∞, b∞ ∈ R such that w(t)
ta∞ is a.i. and ω(t)

tb∞
is a.d. at infinity.

We need some subclasses of quasi-monotone functions.

Definition 2.4. By U+ we denote the class of functions w, satisfying condition (2.4), such that w is

increasing and there exists b > 0 such that w(t)
tb

is decreasing.
By U− we denote the class of functions w, satisfying condition (2.4), such that w is decreasing and

there exists a < 0 such that w(t)
ta is increasing.

We use the classes V± of radial weights introduced in [17]. Below, we follow the notation and
definitions as in [19].

Definition 2.5. By V± we denote the classes of functions, satisfying condition (2.4) defined by

V+ :
|w(t)− w(τ)|

|t− τ |
≤ C+

w(t+)

t+
, (2.5)

V− :
|w(t)− w(τ)|

|t− τ |
≤ C−

w(t−)

t+
, (2.6)

where t, τ ∈ (0,∞), t ̸= τ , and t+ = max{t, τ}, t− = min{t, τ}.

It is easy to check that
tγ ∈ V+ ⇔ γ ≥ 0 and tγ ∈ V− ⇔ γ ≤ 0.

The following properties of the classes V±:

w ∈ V+ ⇔ 1

w
∈ V−, w ∈ V+ ⇔ wγ ∈ V+ and w ∈ V− ⇔ wγ ∈ V−

hold for any γ > 0 and

u ∈ V+, v ∈ V+ ⇒ uv ∈ V+ and u ∈ V−, v ∈ V− ⇒ uv ∈ V−.

The following lemmas provide a modification of Lemmas 2.10 and 2.11 in [17].

Lemma 2.6. If w ∈ V+, then
1+) w is a.i.

and

2+)
w(t)

tC+
is decreasing ⇔ w′(t) ≤ C+

w(t)

t
;

if w ∈ V−, then
1−) w is a.d.

and

2−) t
C−w(t) is increasing ⇔ −C−

w(t)

t
≤ w′(t) ≤ 0,

where C± are the constants from (2.5)–(2.6).
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Proof. Let w ∈ V+ and 0 < τ < t < ∞. By (2.5) we have: w(τ) ≤ w(t) + |w(t) − w(τ)| ≤
w(t) + C+

t−τ
t w(t) ≤ (1 + C+)w(t), i.e., w is a.i.

In view of (2.4), the function w is Lipschitzian at any interval (δ,N) and, consequently, has the
derivative a.e. on R+. Passing to the limit in (2.5) as τ → t, we get

w′(t) ≤ C+
w(t)

t
.

Hence t−C+w′(t)− C+t
−C+−1w(t) ≤ 0, i.e., t−C+w(t) is decreasing.

The proof of the properties 1−) and 2−) for w ∈ V− is similar. □

From Lemma 2.6, it follows that the functions w ∈ V− ∪ V+ are quasi-monotone.
Note that the conditions of Lemma 2.6, necessary for w to be in V±, are very close to the sufficient

conditions of the next

Lemma 2.7. Let w satisfy condition (2.4).
1. If w is increasing, then

w ∈ V+ ⇔ w′(t) ≤ ν
w(t)

t
a.e. (2.7)

for some ν > 0.
2. If v is decreasing, then

w ∈ V− ⇔ w′(t) ≥ −ν
w(t)

t
a.e. (2.8)

for some ν > 0.

Proof. Let 0 < τ < t < ∞. For 1 we have to prove that

tw′(t) ≤ νw(t) ⇔ w(t)− w(τ)

t− τ
≤ c

w(t)

t
. (2.9)

We have

tw′(t) ≤ νw(t) ⇔ tνw′(t)− νtν−1w(t)

t2ν
≤ 0 ⇔ w(t)

tν
is decreasing

⇔ w(t)

tν
≤ w(τ)

τν
⇔ w(τ)

w(t)
≥ τν

tν
⇔ 1− w(τ)

w(t)
≤ 1− τν

tν
⇔ w(t)− w(τ)

w(t)
≤ tν − τν

tν
.

To arrive at (2.9), it remains to note that

c1
t− τ

t
≤ tν − τν

tν
≤ c2

t− τ

t
, ν > 0.

The proof of the equivalence in 2 is similar. □

Corollary 2.8. U+ ⊂ V+ and U− ⊂ V−.

A verification of conditions (2.5)–(2.6) for w ∈ V± is essential in a sense only near the origin and
infinity, as is shown in the next

Lemma 2.9. Let (2.4) hold. If w satisfies condition (2.5) ( (2.6), respectively,) in the intervals (0, δ0)
and (N0,∞) for some δ0, N0 ∈ R+, and w is Lipschitzian on [δ0, N0], then w ∈ V+ (V−, respectively).

Proof. Consider the case of V+. Let 0 < τ < t < ∞. In view of the validity of (2.5) on (0, δ0) and
(N0,∞), it suffices to treat the cases: 1) τ < δ0, δ0 < t < N0; 2) δ0 < t < N0, t > N0; 3) τ < δ0,
t > N0; 4) τ, t ∈ (δ0, N0). The case 4) is obvious in view on (2.4) and the Lipschitz condition. The
arguments for the cases 1)– 3) are straightforward. □

The following corollary is derived from Lemmas 2.7 and 2.9.

Corollary 2.10. The function

f0(t) =

{
tβ0

[
ln

(
e
t

)]γ0
, 0 < t < 1;

tβ∞ [ln (et)]
γ∞ , t > 0
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belongs to the class V+ or V−, if one of the following condition holds under the corresponding choice
of the sign ±:

±β0 > 0, ±β∞ > 0 and γ0, γ∞ ∈ R;
β0 = 0, ±β∞ > 0 and ± γ0 > 0, γ∞ ∈ R;
±β0 > 0, β∞ = 0 and γ0 ∈ R, ±γ∞ > 0;

β0 = β∞ = 0 and ± γ0 > 0, ±γ∞ > 0.

2.3. On Lp → Lq-boundedness of multidimensional Hardy operators. We use the Hardy
operators

Hα
+,wf(x) = |x|α−nw(|x|)

∫
|y|<|x|

f(y)dy

w(|y|)

and

Hα
−,wf(x) = w(|x|)

∫
|y|>|x|

f(y)dy

|y|n−αw(|y|)

with radial weights.
The one-dimensional versions of the operators Hα

+,w and Hα
−,w are considered in the classic way:

H+f(x) =

x∫
0

f(t)dt and H−f(x) =

∞∫
x

f(t)dt, x ∈ R+.

Recall the definition of the classes of pairs of weights, appropriate for the Lp → Lq-boundedness of
one-dimensional Hardy operators (see [5, p. 6–7]):

B+
p,q =

{
(u, v) : sup

r∈R+

( ∞∫
r

u(t)dt

) 1
q
( r∫

0

v(t)1−p′
dt

) 1
p′

< ∞
}
, (2.10)

B−
p,q =

{
(u, v) : sup

r∈R+

( r∫
0

u(t)dt

) 1
q
( ∞∫

r

v(t)1−p′
dt

) 1
p′

< ∞
}
. (2.11)

The following proposition is derived from Corollary 3.3 in [21] after some recalculation.

Proposition 2.11. Let 1 < p < ∞, 0 < α < n
p ,

1
q = 1

p − α
n . The operators Hα

+,w and Hα
−,w are

bounded from Lp(Rn) to Lq(Rn), if

(tn−1+(α−n)qw(t)q, t(n−1)(1−p)w(t)p) ∈ B+
p,q (2.12)

and

(tn−1w(t)q, t−p(n+α−1)−1w(t)p) ∈ B−
p,q, (2.13)

respectively.

Let

m0(w), M0(w), m∞(w) and M∞(w) (2.14)

be the Matuszewska–Orlicz indices [6] of w (see their definition and properties in Appendix
(Section 5)).

Theorem 2.12. Let u, v : R+ → R+ be quasi-monotone functions such that

sup
r>0

r
1
q+

1
p′
u(r)

1
q

v(r)
1
p

< ∞. (2.15)

Then the conditions

max{M0(u),M∞(u)} < −1 and max{M0(v),M∞(v)} < p− 1 (2.16)
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imply the inclusion (u, v) ∈ B+
p,q, and the conditions

min{m0(u),m∞(u)} > −1 and min{m0(v),m∞(v)} > p− 1 (2.17)

yield the inclusion (u, v) ∈ B−
p,q.

Proof. The quasi-monotonicity of the functions u and v allows us to use the properties (5.12)–(5.15)
of such functions under the corresponding conditions on the indices, which enable us to dominate the
integrals involved in (2.10) and (2.11). Thus

∞∫
r

u(t)dt ≤ Cru(r),

if max{M0(tu(t)),M∞(tu(t))} < 0, i.e., max{M0(u),M∞(u)} < −1 by the properties (5.7) and (5.8).
Similarly,

r∫
0

v(t)1−p′
dt ≤ Crv(r)1−p′

,

if min{m0(tv(t)
1−p′

),m∞(tv(t)1−p′
)} = 1 − (p′ − 1)max{M0(v),M∞(v)} > 0, where the properties

(5.9)–(5.11) have been used.
As a result, we arrive at the statement of the theorem for the class B+

p,q.

The arguments for the case of B−
p,q are similar. □

3. Estimates for Weighted Unilateral Ball Potentials

3.1. Pointwise estimates.

Theorem 3.1. Let α > 0 and f(x) ≥ 0. Then

Bα
+,wf(x) ≤ c1Bα

+f(x) + c2H
α
+,wf(x), (3.1)

if either w is a.d. or w ∈ V+, and

Bα
−,wf(x) ≤ c1Bα

−f(x) + c2H
α
−,wf(x), (3.2)

if either w is a.i. or w ∈ V−, where c1 > 0 and c2 > 0 do not depend on x and f .

Proof. If w is a.d., inequality (3.1) is trivial. Let w ∈ V+. We have

Bα
+,wf(x) =

1

|x|α

∫
|y|<|x|

(|x|2 − |y|2)α

|x− y|n
f (y) dy

+
1

|x|α

∫
|y|<|x|

w(|x|)− w(|y|)
w(|y|)|x− y|n

(
|x|2 − |y|2

)α

f (y) dy

≤ Bα
+f(x) +

C+

|x|

∫
|y|<|x|

w(|x|)
w(|y|)

|x− y|α+1−nf(y)dy. (3.3)

If α ≥ n − 1, then |x − y|α+1−n ≤ 2α+1−n|x|α+1−n, and in this case we already have to estimate
the last term in (3.3) by Hα

+,wf .

Let α < n− 1. Denote the last term in (3.3) by Bα,1
+,wf . The operator

Bα,1
+ f(x) = Bα,1

+,wf
∣∣∣
w≡1

=
1

|x|

∫
|y|<|x|

f(y)dy

|x− y|n−α−1

is dominated by Bα
+f . Therefore

Bα
+,wf(x) ≤ c1Bα

+f(x) +
1

|x|

∫
|y|<|x|

w(|x|)− w(|y|)
w(|y|)

f(y)dy

|x− y|n−α−1
.
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Applying (2.5) in the last term above, we obtain

Bα
+,wf(x) ≤ c1Bα

+f(x) +
c

|x|2

∫
|y|<|x|

w(|x|)
w(|y|)

f(y)dy

|x− y|n−α−2
.

Repeating this procedure in total N times, where N is the least integer, not less than n−α, we arrive
at (3.1).

The proof of estimate (3.2) is similar. □

Corollary 3.2. Let w ∈ V− ∪V+ and X and Y be the function spaces on Rn and Y satisfy the lattice
property. Let Iα be bounded from X to Y . Then the operator Bα

+,w (Bα
−,w, respectively) is bounded

from X to Y , if the Hardy operator Hα
+,w (Hα

−,w, respectively) is bounded from X to Y.

3.2. Weighted norm estimates.

Theorem 3.3. Let 1 < p < ∞, 0 < α < n
p and 1

q = 1
p −

α
n . If either w is a.d. on R+, or w ∈ V+ and

satisfies condition (2.12), then
∥Bα

+,wf∥Lq(Rn) ≤ c∥f∥Lp(Rn).

If either w is a.i. on R+, or w ∈ V− and satisfies the condition (2.13), then

∥Bα
−,wf∥Lq(Rn) ≤ c∥f∥Lp(Rn).

Proof. The statements of the theorem follow from Theorem 3.1 and Proposition 2.11, taking into

account that w(|x|)
w(|y|) ≤ C for |y| < |x|, if w is a.d., and w(|x|)

w(|y|) ≤ C for |y| > |x|, if w is a.i. □

Below, we provide more explicit conditions for the weighted Lp → Lq-boundedness of the potentials
Bα
±,w, formulated in terms of the Matuszewska–Orlicz indices of the weight. To this end, we first shed

some light on these indices of functions in the classes V±.

Theorem 3.4. Indices (2.14) lie in the interval [0, C+] if w ∈ V+, and in the interval [−C−, 0] if
w ∈ V−, where C± are the constants from (2.5)–(2.6).

Proof. Let w ∈ V+. Then by Properties 1+) and 2+) of Lemma 2.6 and (5.3)–(5.5), we have

m0(w) ≥ 0, m∞(w) ≥ 0

and
M0(w) ≤ C+, M∞(w) ≤ C+.

The arguments for w ∈ V− are similar. □

Returning to the operators Bα
±,w, we first consider the case, where the indices at the origin and

infinity coincide with each other:

m0(w) = m∞(w) =: m(w) and M0(w) = M∞(w) =: M(w). (3.4)

In this case, we even do not need the pointwise estimates (3.1)–(3.2) and, consequently, the requirement
for the weight w to be in the class V+ or V−.

Theorem 3.5. Let 1 < p < ∞, 0 < α < n
p ,

1
q = 1

p − α
n and w be a quasi-monotone function on R+.

The condition M(w) < n
p′ is sufficient and the condition m(w) ≤ n

p′ is necessary for the boundedness

of the operator Bα
+,w from Lp(Rn) to Lq(Rn). The condition m(w) > α − n

p is sufficient and the

condition M(w) ≥ α− n
p is necessary for such a boundedness of the operator Bα

−,w.

Proof. From (5.3)–(5.6), it follows that

C1

(
|x|
|y|

)m(w)−ε

≤ w(|x|)
w(|y|)

≤ C2

(
|x|
|y|

)M(w)+ε

, (3.5)

where ε > 0 may be chosen arbitrarily small and Ci = Ci(ε), i = 1, 2. Consequently, for f(x) ≥ 0, we
have

C1Bα
+,wf(x)

∣∣∣
w(|x|)=|x|m(w)−ε

≤ Bα
+,wf(x) ≤ C2Bα

+,wf(x)
∣∣∣
w(|x|)=|x|M(w)+ε

. (3.6)
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By Lemma 2.2, the operator Bα
+,w

∣∣∣
w(|x|)=|x|M(w)+ε

is bounded from Lp(Rn) into Lq(Rn) if

M(w) + ε < n
p′ . Since ε may be chosen arbitrarily small, this proves the sufficient condition for

the operator Bα
+,w.

In view of (3.6), the boundedness of Bα
+,w

∣∣∣
w(|x|)=|x|m(w)−ε

is necessary for that of Bα
+,w. This implies

that the operator Bα
+,w

∣∣∣
w(|x|)=|x|m(w)−ε

is at least well defined on the whole space Lp(Rn). This is only

possible if f(y)
|y|m(w)−ε ∈ L1

loc(Rn) for all f ∈ Lp. Hence 1
|y|m(w)−ε ∈ Lp′

loc(Rn), i.e., m(w)− ε < n
p′ for all

ε > 0, which completes the proof for the operator Bα
+,w.

The arguments for the operator Bα
−,w are similar. □

In the next theorem, for the case of indices, different in general, at the origin and infinity, we use
the classes V± of weights.

Theorem 3.6. Let p, q and α be as in Theorem 3.5.
If either w is a.d., or w ∈ V+ and max{M0(w),M∞(w)} < n

p′ , then the operator Bα
+,w is bounded

from Lp(Rn) into Lq(Rn).
If either w is a.i., or w ∈ V− and min{m0(w),m∞(w)} > α− n

p , then the operator Bα
−,w is bounded

from Lp(Rn) into Lq(Rn).

Proof. For the operator Bα
+,w, we have to check that (u, v) ∈ B+

p,q, where u(r) = rn−1+(α−n)qw(r)q

and v(r) = r(n−1)(1−p)w(r)p, according to Theorem 3.3. To this end, we use Theorem 2.12. Condition
(2.15) holds, since

r
1
q+

1
p′
u(r)

1
q

v(r)
1
p

≡ 1.

The sufficiency of the conditions max{M0(w),M∞(w)} < n
p′ is derived from (2.16) by means of

properties (5.7)–(5.11).
In the same way, the operator Bα

−,w may be considered. □

4. Estimates for Weighted Unilateral Potentials Related to the Half-space

We consider the weighted unilateral potentials for the half-space in the following modified form:

Iα0+,wf(x) = w(xn)

∫
y∈Rn:0<yn<xn

(xn − yn)
α

w(yn)|x− y|n
f(y)dy, x ∈ Rn

+ (4.1)

and

Iα−,wf(x) = w(xn)

∫
y∈Rn:yn>xn

(yn − xn)
α

w(yn)|x− y|n
f(y)dy, x ∈ Rn

+. (4.2)

4.1. Pointwice estimates of potentials (4.1) and (4.2) via one-dimensional Riemann–Liouville
fractional integrals.

Theorem 4.1. Let 0 < α < n and f(x) ≥ 0, x ∈ Rn
+ and let w be a weight on R+. Then

Iα0+,wf(x) ≤ w(xn)

xn∫
0

g(x′, t)dt

w(t)(xn − t)1−
α
n
, xn > 0 (4.3)

and

Iα−,wf(x) ≤ w(xn)

∞∫
xn

g(x′, t)dt

w(t)(t− xn)1−
α
n
, xn > 0, (4.4)

where

g(x′, t) =

∫
Rn−1

f(y′, t)dy′

|x′ − y′|n−1−β
, x′ = (x1, x2, . . . , xn−1)
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is the Riesz potential of f(·, t) over Rn−1 of order β = n−1
n α.

Proof. We use the so-called du-Plessis trick (see [10] or [20, p. 588]) of separation of coordinates, but
modify it as follows. By the inequality a+ b ≥ aλb1−λ for a ≥ 0, b ≥ 0, λ ∈ [0, 1], we have

|x− y|n = (|x′ − y′|2 + |xn − yn|2)
n
2 ≥ |xn − yn|(1−λ)n|x′ − y′|λn,

where λ ∈ (0, 1) will be chosen below. Consequently,

Iα0+,wf(x) ≤
xn∫
0

(xn − yn)
α−(1−λ)n

w(yn)
dyn

∫
Rn−1

f(y′, yn)dy
′

|x′ − y′|nλ
.

Now, we choose λ so that

α− (1− λ)n =
α

n
− 1,

which yields

λn =
(n− 1)(n− α)

n
= n− 1− β

and proves (4.3). The proof for (4.4) is the same. □

Thus the potentials Iα0+,wf and Iα−,wf are dominated by the one-dimensional fractional integrals.
Recall that the following classical resalt is known (see [2] and [20, Theorem 5.4]).

Proposition 4.2. Let 1 < p < 1
α . Then the operators

x∫
0

(x
t

)γ φ(t)dt

(x− t)1−α
and

∞∫
x

(x
t

)γ φ(t)dt

(t− x)1−α
, x ∈ R+

are bounded from Lp(R+) to Lq(R+),
1
q = 1

p − α, if and only if γ < 1
p′ and γ > α− 1

p , respectively.

4.2. The case, where the indices at the origin and infinity coincide with each other.

Theorem 4.3. Let 1 < p < n
α ,

1
q = 1

p − α
n and w be a quasi-monotone function on R+, for which

(3.4) holds. The conditions M(w) < 1
p′ and m(w) > α

n − 1
p are sufficient for the Lp(Rn

+) → Lq(Rn
+)-

boundedness of the operators Iα0+,w and Iα−,w, respectively.

Proof. Denote h(x′, t) := Iα0+,wf(x). Applying the Lq(Rn−1)-norm with respect to x′, by Minkowski’s
inequality, we obtain

∥h(·, xn)∥Lq(Rn−1) ≤ Cw(xn)

xn∫
0

∥f(·, t)∥Lp(Rn−1)dt

w(t)(xn − t)1−
α
n

,

where we took into account that g(x′, t) is the Riesz potential of f(·, t) over Rn−1, and applied Sobolev’s

theorem with the exponent 1
q = 1

p − β
n−1 = 1

p − α
n . By property (3.5), we then have

∥h(·, xn)∥Lq(Rn−1) ≤ C

xn∫
0

(xn

t

)M(w)+ε ∥f(·, t)∥Lp(Rn−1)

(xn − t)1−
α
n

dt.

It remains to apply Proposition 4.2. □

4.3. The case of not necessarily coinciding indices.

Theorem 4.4. Let 1 < p < n
α ,

1
q = 1

p − α
n .

If either w is a.d., or w ∈ V+ and max{M0(w),M∞(w)} < 1
p′ , then the operator Iα0+,w is bounded

from Lp(Rn
+) into Lq(Rn

+).

If either w is a.i., or w ∈ V− and min{m0(w),m∞(w)} > α
n − 1

p , then the operator Iα−,w is bounded

from Lp(Rn
+) into Lq(Rn

+).
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Proof. By Theorem 4.1, it suffices to prove the boundedness of the operators on the right-hand side
of (4.3) and (4.4). Consider the operator Iα0+,w and assume that w ∈ V+ and f ≥ 0. Then

xn∫
0

w(xn)

w(t)
(xn − t)

α
n−1g(x′, t)dt

≤
xn∫
0

(xn − t)
α
n−1g(x′, t)dt+ C+x

α
n−1
n

xn∫
0

w(xn)

w(t)
g(x′, t)dt.

We arrived at the non-weighted fractional Riemann–Liouville operator and the weighted Hardy oper-
ator, after which the proof follows the same lines as in Theorem 3.6. □

5. Appendix: on Matuszewska–Orlicz Indices

We follow the presentation of the properties of Matuszewska–Orlicz indices in [3], [4, Section 2.2.2],
[11, Appendix], [18, Appendix], [19, Appendix].

The Matuszewska–Orlicz indices are defined as follows:

m0(ω) = sup
0<t<1

ln
(
lim
h→0

ω(ht)
ω(h)

)
ln t

, M0(ω) = sup
t>1

ln
(
lim
h→0

ω(ht)
ω(h)

)
ln t

, (5.1)

m∞ (ω) = sup
t>1

ln
(
lim
h→∞

ω(ht)
ω(h)

)
ln t

, M∞ (ω) = inf
t>1

ln
(
lim
h→∞

ω(ht)
ω(h)

)
ln t

. (5.2)

It is known that

m0(w) = sup{λ ∈ R :
w(t)

tλ
is a.i. on (0, 1)}, (5.3)

M0(w) = inf{λ ∈ R :
w(t)

tλ
is a.d. on (0, 1)}, (5.4)

m∞(w) = sup{λ ∈ R :
w(t)

tλ
is a.i. on (1,∞)}, (5.5)

M∞(w) = inf{λ ∈ R :
w(t)

tλ
is a.d. on (1,∞)}, (5.6)

so, the quasi-monotone functions have the following finite indices:

−∞ < m0(w) ≤ M0(w) < +∞ and −∞ < m∞(w) ≤ M∞(w) < +∞.

The following properties hold:

m0(t
αw(t)) = α+m0(w), M0(t

αw(t)) = α+M0(w), α ∈ R, (5.7)

m∞(tαw(t)) = α+m∞(w), M∞(tαw(t)) = α+M∞(w), α ∈ R, (5.8)

m0(w
α) = αm0(w), M0(w

α) = αM0(w), α ≥ 0, (5.9)

m∞(wα) = αm∞(w), M∞(wα) = αM∞(w), α ≥ 0, (5.10)

m0

( 1

w

)
= −M0(w), m∞

( 1

w

)
= −M∞(w), (5.11)

r∫
0

w(t)

t
dt ≤ Cw(r) for 0 < r < 1, if m0(w) > 0, (5.12)

∞∫
r

w(t)

t
dt ≤ Cw(r) for 0 < r < 1, if M0(w) < 0 and M∞(w) < 0, (5.13)
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r∫
0

w(t)

t
dt ≤ Cw(r) for r > 1, if m0(w) > 0 and m∞(w) > 0 (5.14)

and
∞∫
r

w(t)

t
dt ≤ Cw(r) for r > 1, if M∞(w) < 0. (5.15)
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