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SECOND-ORDER HARDY-TYPE INEQUALITY AND ITS APPLICATIONS

RYSKUL OINAROV1∗ AND AIGERIM KALYBAY2

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. In this paper, we characterize a new second-order Hardy-type inequality and find a
two-sided estimate for its least constant. As applications of this new inequality, we study oscil-

latory properties of a fourth-order differential equation and spectral properties of a corresponding
differential operator.

1. Introduction

Let I = (0,∞) and 1 < p, q < ∞. Let r, v and u be positive functions. Moreover, we assume

that r is continuously differentiable and v, u, r−1 and v1−p′
are locally summable on the interval I,

where p′ = p
p−1 . Let C∞

0 (I) be the set of finitely supported functions infinitely differentiable on the

interval I. Suppose that ∥g∥p,v =
( ∞∫

0

v(t)|g(t)|pdt
) 1

p

is the norm of the Lebesgue space Lp,v(I).

The second-order Hardy inequality has the following form:( ∞∫
0

u(t)|f(t)|qdt
) 1

q

≤ C

( ∞∫
0

v(t)|f ′′(t)|pdt
) 1

p

, f ∈ C∞
0 (I). (1.1)

For functions f such that the right-hand side of (1.1) is finite, i.e., ∥f ′′∥p,v < ∞, we assume that
lim
t→0+

f(t) = f(0), lim
t→0+

f ′(t) = f ′(0), lim
t→∞

f(t) = f(∞) and lim
t→∞

f ′(t) = f ′(∞) if these limits are

finite. Depending on the way of posing boundary conditions f(0) = 0, f ′(0) = 0, f(∞) = 0 and
f ′(∞) = 0 at the endpoints of the interval I, the inequality (1.1) was investigated in many papers
(see, e.g., [3,7,8,10,12–14,16,17] and the references given therein). Concerning the current knowledge
of higher-order Hardy-type inequalities we refer to [9, Chapter 4].

We introduce the differential operations D2
rf(t) =

d
dtr(t)

df(t)
dt and D1

rf(t) = r(t)df(t)dt and consider
the following generalization of the second-order Hardy inequality( ∞∫

0

u(t)|f(t)|qdt
) 1

q

≤ C

( ∞∫
0

v(t)|D2
rf(t)|pdt

) 1
p

, f ∈ C∞
0 (I), (1.2)

with different combinations of boundary conditions f(0) = 0, D1
rf(0) = 0, f(∞) = 0 andD1

rf(∞) = 0,
where lim

t→0+
f(t) = f(0), lim

t→0+
D1

rf(t) = D1
rf(0), lim

t→∞
f(t) = f(∞) and lim

t→∞
D1

rf(t) = D1
rf(∞) if these

limits are finite. It is obvious that in the case r = 1 the inequality (1.2) turns to the inequality (1.1).
The introduction of an additional weight function can help to handle some singularities that can

not be handled by the existing weight functions. Thus, from the works [11] and [15] it follows that, in
general, for any v providing ∥f ′′∥p,v < ∞, there does not exist exactly one limit at infinity lim

t→∞
f(t).

At the same time, according to [5], we can find v and r providing ∥D2
rf∥p,v < ∞, which guarantee

the existence of exactly one condition at infinity lim
t→∞

f(t) = f(∞). Similarly, for any v, which gives
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that ∥f ′′∥p,v < ∞, there does not exist exactly one finite limit at zero lim
t→0+

f ′(t). However, we can

find v and r giving ∥D2
rf∥p,v < ∞, which guarantee the existence of exactly one finite limit at zero

lim
t→0+

D1
rf(t) = D1

rf(0).

The inequalities (1.1) and (1.2) can be investigated in the case when number of boundary conditions
is exactly two. This case is called the “standard” case because the inequalities (1.1) and (1.2) are
of the second order. In this paper, we consider a more interesting for applications case with three
boundary conditions, which is called the “overdetermined” case.

LetW 2
p,v(r, I) be a set of functions f : I → R, having generalized derivatives together with functions

D1
rf(t) on the interval I, with the finite norm

∥f∥W 2
p,v(r,I)

= ∥D2
rf∥p,v + |D1

rf(1)|+ |f(1)|. (1.3)

By the conditions on v and r, we have that C∞
0 (I) ⊂ W 2

p,v(r). Denote by W̊ 2
p,v(r, I) the closure of the

set C∞
0 (I) with respect to the norm (1.3). Then the inequality (1.2) is equivalent to the inequality

( ∞∫
0

u(t)|f(t)|qdt
) 1

q

≤ C

( ∞∫
0

v(t)|D2
rf(t)|pdt

) 1
p

, f ∈ W̊ 2
p,v(r, I), (1.4)

in addition, the least constants in (1.2) and (1.4) coincide.
Summing up, in this paper we study the inequality (1.4) in the following four cases:

W̊ 2
p,v(r, I) ={f ∈ W 2

p,v(r, I) : D
1
rf(0) = f(∞) = D1

rf(∞) = 0}, (1.5)

W̊ 2
p,v(r, I) ={f ∈ W 2

p,v(r, I) : f(0) = D1
rf(0) = D1

rf(∞) = 0}, (1.6)

W̊ 2
p,v(r, I) ={f ∈ W 2

p,v(r, I) : f(0) = f(∞) = D1
rf(∞) = 0}, (1.7)

W̊ 2
p,v(r, I) ={f ∈ W 2

p,v(r, I) : f(0) = D1
rf(0) = f(∞) = 0}. (1.8)

Note that, in view of the results from [11] and [15], in the case r = 1 it is impossible to study the
inequality (1.4) for the cases (1.5) and (1.8) since there do not exist exactly one finite limit at zero
lim
t→0+

D1
rf(t) = lim

t→0+
f ′(t) = f ′(0) and exactly one finite limit at infinity lim

t→∞
f(t) = f(∞), respectively.

In the paper, we prove that for each of the “overdetermined” cases (1.5)–(1.8), there are five
characterizations for the fulfillment of the inequality (1.4). These main results are stated in Theorems
2.1, 3.1, 4.1 and 5.1. The crucial part of our main results is the fact that for all four cases the least
constant of the inequality (1.4) is estimated by only two of the obtained characterizations. As an
application, the estimates of the least constant of (1.4) are used for establishing the strong oscillation
and strong non-oscillation of the differential equation

D2
r

(
v(t)D2

ry(t)
)
− λu(t)y(t) = 0, t ∈ I, λ > 0, (1.9)

which, when expanded, has the form of the differential equation with intermediate derivatives

r(vry′′)′′ + r(vr′y′)′′ + r′(vry′′)′ + r′(vr′y′)′ − λuy = 0, t ∈ I.

Let us remind that two distinct points t1 and t2 of the interval I are called conjugate with respect to the
equation (1.9), if there exists its solution y such that y(t1) = y2(t2) = 0 and D1

ry(t1) = D1
ry(t2) = 0.

The equation (1.9) is called oscillatory at infinity (resp. at zero), if for any T ∈ I there exist conjugate
points with respect to the equation (1.9) to the right (resp. left) of T . Otherwise, the equation (1.9)
is called non-oscillatory at infinity (resp. at zero). The equation (1.9) is said to be strong oscillatory
(resp. non-oscillatory) at zero or at infinity if it is oscillatory (resp. non-oscillatory) for every λ > 0 at
zero or at infinity, respectively. In order to establish the oscillatory properties of the equation (1.9),
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we consider the following inequalities:

λ

T∫
0

u(t)|f(t)|2dt ≤ λCT

T∫
0

v(t)|D2
rf(t)|2dt, f ∈ W̊ 2

2,v(r, (0, T )), (1.10)

λ

∞∫
T

u(t)|f(t)|2dt ≤ λCT

∞∫
T

v(t)|D2
rf(t)|2dt, f ∈ W̊ 2

2,v(r, (T,∞)). (1.11)

The main results concerning the strong oscillation and strong non-oscillation of the equation (1.9) (see
Theorems 2.2, 3.2, 4.2 and 5.2) follow as corollaries from the estimates of the least constant of (1.4)
and the following statement:

Lemma 1.1. Let 0 < T < ∞. Let CT be the least constant in (1.10) (resp. (1.11)).
(i) The equation (1.9) is strong non-oscillatory at zero (resp. at infinity) if and only if lim

T→0+
CT = 0

(resp. lim
T→∞

CT = 0).

(ii) The equation (1.9) is strong oscillatory at zero (resp. at infinity) if and only if CT = ∞ (resp.
CT = ∞) for any T > 0.

Lemma 1.1, based on the inequalities (1.10) and (1.11), clearly shows why it is interesting to consider
the “overdetermined” cases for the inequality (1.4). Obviously, for any v and r, we already have two
boundary conditions at one endpoint T of each intervals (0, T ) and (T,∞). Thus, the inequality (1.10)
is a partial case of the inequality (1.4) in the cases (1.5) and (1.7) when there is one extra condition
at zero for the interval (0, T ), and the inequality (1.11) is a partial case of the inequality (1.4) in the
cases (1.6) and (1.8) when there is one extra condition at infinity for the interval (T,∞).

We obtain one more application by considering the following operator

Ly(t) =
1

u(t)
D2

r

(
v(t)D2

ry(t)
)

(1.12)

in the space L2,u(I) with inner product (f, g)2,u =
∞∫
0

f(t)g(t)u(t)dt. Let the minimal differential

operator Lmin be generated by the differential expression (1.12), i.e., Lmin is an operator with the
domain D(Lmin) = C∞

0 (I). It is known that all self-adjoint extensions of the minimal operator have
the same spectrum (see [2]).

In this paper, we focus our attention to the boundedness below and discreteness of the operator L.
The problem of finding the conditions under which any self-adjoint extension L of the operator Lmin

has a spectrum, which is discrete and bounded below is one of the most important problems in the
theory of singular differential operators since these properties guarantee that the singular operator
behaves like a regular one (see [4]).

The relationship between the oscillatory properties of the equation (1.9) and the spectral properties
of the operator L is explained in the following statement:

Lemma 1.2 (see [2]). The operator L is bounded below and has a discrete spectrum if and only if the
equation (1.9) is strong non-oscillatory.

The main results concerning the boundedness below and discreteness of the operator L are stated
in Theorems 2.3, 3.3, 4.3 and 5.3 for the cases (1.5), (1.6), (1.7) and (1.8), respectively.

Remark 1.1. The proofs of the main results for the cases (1.5) and (1.6) are given in [6] and the
proofs of the main results for the cases (1.7) and (1.8) are presented in [1].

2. The Case W̊ 2
p,v(r, I) = {f ∈ W 2

p,v(r, I) : D
1
rf(0) = f(∞) = D1

rf(∞) = 0}

Let τ ∈ I and

A+
1 (τ) = sup

z>τ

( z∫
τ

( z∫
t

r−1(x)dx

)q

u(t)dt

) 1
q
( ∞∫

z

v1−p′
(s)ds

) 1
p′

,
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A+
2 (τ) = sup

z>τ

( z∫
τ

u(t)dt

) 1
q
( ∞∫

z

( s∫
z

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

A+
3 (τ) =

( τ∫
0

u(t)dt

) 1
q
( ∞∫

τ

( s∫
τ

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

E−
1 (τ) = sup

0<z<τ

( z∫
0

u(t)dt

) 1
q
( τ∫

z

( τ∫
s

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

E−
2 (τ) = sup

0<z<τ

( τ∫
z

( τ∫
t

r−1(x)dx

)q

u(t)dt

) 1
q
( z∫

0

v1−p′
(s)ds

) 1
p′

,

A+(τ) =max{A+
1 (τ), A

+
2 (τ), A

+
3 (τ)}, E−(τ) = max{E−

1 (τ), E−
2 (τ)},

A+E− = inf
τ∈I

max{A+(τ), E−(τ)}.

According to [5], the following conditions on the weights v and r provide (1.5):

v1−p′
∈ L1(I), r−1 ∈ L1(1,∞), r−1 /∈ L1(0, 1),

1∫
0

( 1∫
t

r−1(x)dx

)p′

v1−p′
(t)dt = ∞. (2.1)

Since v1−p′ ∈ L1(I), for any τ ∈ I there exists kτ such that
τ∫
0

v1−p′
(t)dt = kτ

∞∫
τ

v1−p′
(t)dt.

Our main result concerning the inequality (1.4) reads:

Theorem 2.1. Let 1 < p ≤ q < ∞ and the conditions (2.1) hold. Then for the least constant C in
(1.4) the estimates

4−
1
pA+E− ≤ C ≤ 11p

1
q (p′)

1
p′ A+E−,

sup
τ∈I

(1 + kp−1
τ )−

1
pE−(τ) ≤ C ≤ 11p

1
q (p′)

1
p′ E−(τ1) (2.2)

hold, where τ1 = inf{τ > 0 : A+(τ) ≤ E−(τ)}.

For the case p = 2 the conditions (2.1) can be rewritten in the form:

v−1 ∈ L1(I), r−1 ∈ L1(1,∞), r−1 /∈ L1(0, 1),

1∫
0

( 1∫
t

r−1(x)dx

)2

v−1(t)dt = ∞. (2.3)

From the estimate (2.2) for p = q = 2 and Lemma 1.1 we have the following result for the strong
oscillation and non-oscillation of the equation (1.9):

Theorem 2.2. Let (2.3) hold.
(i) The equation (1.9) is strong non-oscillatory at zero if and only if

lim
z→0+

z∫
0

u(t)dt

∞∫
z

( ∞∫
s

r−1(x)dx

)2

v−1(s)ds = 0, (2.4)

lim
z→0+

∞∫
z

( ∞∫
t

r−1(x)dx

)2

u(t)dt

z∫
0

v−1(s)ds = 0. (2.5)

(ii) The equation (1.9) is strong oscillatory at zero if and only if

lim
z→0+

z∫
0

u(t)dt

∞∫
z

( ∞∫
s

r−1(x)dx

)2

v−1(s)ds = ∞
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or

lim
z→0+

∞∫
z

( ∞∫
t

r−1(x)dx

)2

u(t)dt

z∫
0

v−1(s)ds = ∞.

From Theorem 2.2 and Lemma 1.2 we have the following result for the spectral properties of the
operator L:

Theorem 2.3. Let (2.3) hold. Then the operator L is bounded below and has a discrete spectrum if
and only if (2.4) and (2.5) hold.

3. The Case W̊ 2
p,v(r, I) = {f ∈ W 2

p,v(r, I) : f(0) = D1
rf(0) = D1

rf(∞) = 0}

Let τ ∈ I and

A−
1 (τ) = sup

0<z<τ

( τ∫
z

u(t)

( t∫
z

r−1(x)dx

)q

dt

) 1
q
( z∫

0

v1−p′
(s)ds

) 1
p′

,

A−
2 (τ) = sup

0<z<τ

( τ∫
z

u(t)dt

) 1
q
( z∫

0

 z∫
s

r−1(x)dx

p′

v1−p′
(s)ds

) 1
p′

,

A−
3 (τ) =

( ∞∫
τ

u(t)dt

) 1
q
( τ∫

0

( τ∫
s

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

E+
1 (τ) = sup

z>τ

( ∞∫
z

u(t)dt

) 1
q
( z∫

τ

( s∫
τ

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

E+
2 (τ) = sup

z>τ

( z∫
τ

( t∫
τ

r−1(x)dx

)q

u(t)dt

) 1
q
( ∞∫

z

v1−p′
(s)ds

) 1
p′

,

A−(τ) =max{A−
1 (τ), A

−
2 (τ), A

−
3 (τ)}, E+(τ) = max{E+

1 (τ), E+
2 (τ)},

A−E+ = inf
τ∈I

max{A−(τ), E+(τ)}.

For the case (1.6) to be hold, we need the following conditions:

v1−p′
∈ L1(I), r−1 ∈ L1(0, 1), r−1 /∈ L1(1,∞),

∞∫
1

( t∫
1

r−1(x)dx

)p′

v1−p′
(t)dt = ∞. (3.1)

Theorem 3.1. Let 1 < p ≤ q < ∞ and the conditions (3.1) hold. Then for the least constant C in
(1.4) the estimates

4−
1
pA−E+ ≤ C ≤ 11p

1
q (p′)

1
p′ A−E+,

sup
τ∈I

(1 + k1−p
τ )−

1
pE+(τ) ≤ C ≤ 11p

1
q (p′)

1
p′ E+(τ2)

hold, where τ2 = sup{τ > 0 : A−(τ) ≤ E+(τ)}.

Theorem 3.2. Let v−1 ∈ L1(I), r
−1 ∈ L1(0, 1), r

−1 /∈ L1(1,∞),
∞∫
1

( t∫
1

r−1(x)dx
)2

v−1(t)dt = ∞.

(i) The equation (1.9) is strong non-oscillatory at infinity if and only if

lim
z→∞

∞∫
z

u(t)dt

z∫
0

( s∫
0

r−1(x)dx

)2

v−1(s)ds = 0, (3.2)
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lim
z→∞

z∫
0

( t∫
0

r−1(x)dx

)2

u(t)dt

∞∫
z

v−1(s)ds = 0. (3.3)

(ii) The equation (1.9) is strong oscillatory at infinity if and only if

lim
z→∞

∞∫
z

u(t)dt

z∫
0

( s∫
0

r−1(x)dx

)2

v−1(s)ds = ∞

or

lim
z→∞

z∫
0

( t∫
0

r−1(x)dx

)2

u(t)dt

∞∫
z

v−1(s)ds = ∞.

Theorem 3.3. Let the conditions of Theorem 3.2 hold. Then the operator L is bounded below and
has a discrete spectrum if and only if (3.2) and (3.3) hold.

4. The Case W̊ 2
p,v(r, I) = {f ∈ W 2

p,v(r, I) : f(0) = f(∞) = D1
rf(∞) = 0}

Assume that ρ(t) =
t∫
0

r−1(x)dx, t ∈ I. Let τ ∈ I and

B+
3 (τ) =

1

ρ(τ)

( τ∫
0

ρq(t)u(t)dt

) 1
q
( ∞∫

τ

( s∫
τ

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

F−
1 (τ) = sup

0<z<τ

1

ρ(τ)

( z∫
0

ρq(t)u(t)dt

) 1
q
( τ∫

z

( τ∫
s

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

F−
2 (τ) = sup

0<z<τ

1

ρ(τ)

( τ∫
z

( τ∫
t

r−1(x)dx

)q

u(t)dt

) 1
q
( z∫

0

ρp
′
(s)v1−p′

(s)ds

) 1
p′

,

B+(τ) =max{A+
1 (τ), A

+
2 (τ), B

+
3 (τ)}, F−(τ) = max{F−

1 (τ), F−
2 (τ)},

B+F− = inf
τ∈I

max{B+(τ), F−(τ)}.

The case (1.7) holds if

r−1 ∈ L1(I), v1−p′
∈ L1(1,∞), v1−p′

/∈ L1(0, 1),

1∫
0

( t∫
0

r−1(x)dx

)p′

v1−p′
(t)dt < ∞. (4.1)

Let v̄(t) = ρ−p(t)v(t), t ∈ I. Since from (4.1) we get that v̄1−p′ ∈ L1(I), for any τ ∈ I there

exists lτ such that
τ∫
0

v̄1−p′
(t)dt = lτ

∞∫
τ

v̄1−p′
(t)dt.

Theorem 4.1. Let 1 < p ≤ q < ∞ and the conditions (4.1) hold. Then for the least constant C in
(1.4) the estimates

4−
1
pB+F− ≤ C ≤ 11p

1
q (p′)

1
p′ B+F−,

sup
τ∈I

(1 + lp−1
τ )−

1
pF−(τ) ≤ C ≤ 11p

1
q (p′)

1
p′ F−(τ3)

hold, where τ3 = inf{τ > 0 : B+(τ) ≤ F−(τ)}.

Theorem 4.2. Let r−1 ∈ L1(I), v
−1 ∈ L1(1,∞), v−1 /∈ L1(0, 1),

1∫
0

( t∫
0

r−1(x)dx
)2

v−1(t)dt < ∞.
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(i) The equation (1.9) is strong non-oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

1

ρ2(τ)

z∫
0

ρ2(t)u(t)dt

τ∫
z

( τ∫
s

r−1(x)dx

)2

v−1(s)ds = 0, (4.2)

lim
τ→0+

sup
0<z<τ

1

ρ2(τ)

τ∫
z

( τ∫
t

r−1(x)dx

)2

u(t)dt

z∫
0

ρ2(s)v−1(s)ds = 0. (4.3)

(ii) The equation (1.9) is strong oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

1

ρ2(τ)

z∫
0

ρ2(t)u(t)dt

τ∫
z

( τ∫
s

r−1(x)dx

)2

v−1(s)ds = ∞

or

lim
τ→0+

sup
0<z<τ

1

ρ2(τ)

τ∫
z

( τ∫
t

r−1(x)dx

)2

u(t)dt

z∫
0

ρ2(s)v−1(s)ds = ∞.

Theorem 4.3. Let the conditions of Theorem 4.2 hold. Then the operator L is bounded below and
has a discrete spectrum if and only if (4.2) and (4.3) hold.

5. The Case W̊ 2
p,v(r, I) = {f ∈ W 2

p,v(r, I) : f(0) = D1
rf(0) = f(∞) = 0}

Assume that ρ̄(t) =
∞∫
t

r−1(x)dx, t ∈ I. Let τ ∈ I and

B−
3 (τ) =

1

ρ̄(τ)

( ∞∫
τ

ρ̄q(t)u(t)dt

) 1
q
( τ∫

0

( τ∫
s

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

F+
1 (τ) = sup

z>τ

1

ρ̄(τ)

( z∫
τ

( t∫
τ

r−1(x)dx

)q

u(t)dt

) 1
q
( ∞∫

z

ρ̄p
′
(s)v1−p′

(s)ds

) 1
p′

,

F+
2 (τ) = sup

z>τ

1

ρ̄(τ)

( ∞∫
z

ρ̄q(t)u(t)dt

) 1
q
( z∫

τ

( s∫
τ

r−1(x)dx

)p′

v1−p′
(s)ds

) 1
p′

,

B−(τ) =max{A−
1 (τ), A

−
2 (τ)}, B

−
3 (τ)}, F+(τ) = max{F+

1 (τ), F+
2 (τ)},

B−F+ = inf
τ∈I

max{B−(τ), F+(τ)}.

For the last case (1.8) we need the following conditions:

r−1 ∈ L1(I), v1−p′
/∈ L1(1,∞), v1−p′

∈ L1(0, 1),

∞∫
1

( ∞∫
t

r−1(x)dx

)p′

v1−p′
(t)dt < ∞. (5.1)

Theorem 5.1. Let 1 < p ≤ q < ∞ and the conditions (5.1) hold. Then for the least constant C in
(1.4) the estimates

4−
1
pB−F+ ≤ C ≤ 11p

1
q (p′)

1
p′ B−F+,

sup
τ∈I

(1 + l1−p
τ )−

1
pF+(τ) ≤ C ≤ 11p

1
q (p′)

1
p′ F+(τ4)

hold, where τ4 = sup{τ > 0 : B−(τ) ≤ F+(τ)}.

Theorem 5.2. Let r−1 ∈ L1(I), v
−1 /∈ L1(1,∞), v−1 ∈ L1(0, 1),

∞∫
1

( ∞∫
t

r−1(x)dx
)2

v−1(t)dt < ∞.
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(i) The equation (1.9) is strong non-oscillatory at infinity if and only if

lim
τ→∞

sup
z>τ

1

ρ̄2(τ)

z∫
τ

( t∫
τ

r−1(x)dx

)2

u(t)dt

∞∫
z

ρ̄2(s)v−1(s)ds = 0, (5.2)

lim
τ→∞

sup
z>τ

1

ρ̄2(τ)

∞∫
z

ρ̄2(t)u(t)dt

z∫
τ

( s∫
τ

r−1(x)dx

)2

v−1(s)ds = 0. (5.3)

(ii) The equation (1.9) is strong oscillatory at infinity if and only if

lim
τ→∞

sup
z>τ

1

ρ̄2(τ)

z∫
τ

( t∫
τ

r−1(x)dx

)2

u(t)dt

∞∫
z

ρ̄2(s)v−1(s)ds = ∞

or

lim
τ→∞

sup
z>τ

1

ρ̄2(τ)

∞∫
z

ρ̄2(t)u(t)dt

z∫
τ

( s∫
τ

r−1(x)dx

)2

v−1(s)ds = ∞.

Theorem 5.3. Let the conditions of Theorem 5.2 hold. Then the operator L is bounded below and
has a discrete spectrum if and only if (5.2) and (5.3) hold.
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