Transactions of A. Razmadze
Mathematical Institute
Vol. 177 (2023), issue 2, 217-236

GEGENBAUER FRACTIONAL MAXIMAL FUNCTION AND ITS
COMMUTATORS ON GEGENBAUER-ORLICZ SPACES

ELMAN J. IBRAHIMOV! AND SAADAT AR. JAFAROVA?

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. In this paper, we find the necessary and sufficient conditions for the boundedness of
Gegenbauer fractional (G-fractional) maximal operator Mg in Gegenbauer-Olicz (G-Orlicz) spaces.
As an application of these results, we consider the boundedness of G-fractional maximal commutator
Mé’a in G-Orlicz spaces.

1. INTRODUCTION

Norm inequalities for several classical operators of harmonic type have been widely studied in the
context of Orlicz spaces. It is well known that many of such operators fail to have continuity properties
when they act between certain Lebesgue spaces and, in some situations, the Orlicz spaces appear as
adequate substitutes. For example, the Hardy—Littlewood maximal operator is bounded on LP for
1 < p < oo, but not on L'. However, by using Orlicz spaces, we can investigate the boundedness of
the maximal operator near p = 1 (for more precise statements, see [3,11,12] and for the theory of
Orlics spaces, see [14,15,17]).

Let 0 < a < n. The classical fractional maximal operator M, is given by

Maf(e) = s [B% [ 15y
B

and the fractional maximal commutators of M, with a locally integrable function b is defined by

Mp.o f(x) = sup IBI_H%/Ib(x) —bW)IIf(y)ldy,
B

B>x

where the supremum is taken over all balls B C R" containing z. If a = 0, then M = M, is the
Hardy-Littlewood maximal operator and M, = My o is the maximal commutator of M.

For more details about the operator M, o, where 0 < @ < n in the Orlicz space, we refer to [1,4,16]
and references therein.

2. DEFINITION, NOTATION AND AUXILIARY RESULTS

Our investigation is based on the Gegenbauer differential operator [7]
1y d A1 od 1
G=Gy=(2*-1)>"—(2*-1)""% — 1 A (07).
A (Z‘ ) dSC ('/E ) dCL” xe( 500)7 € 72
The shift operator Ai‘hy generated by G is given in the form [8]

Fr(A+1

1 T
Ay f (cha) = (1)) /f(chxchy — shashy cos ) (sin )} ~Ldyp,
2
0

r(r
where z,y € R..
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Let H, = (0,r) C Ry. For any measurable set E pE = |E|y = [ sh®*zdz. For 1 < p < oo, let
E
L,(R4, G) = L, A(Ry) be the space of uy(z) = sh**z measurable function on R, with the finite norm

1

P
7, = [156rpan@) . 1<
Ry
Note that the space L, » is the Banach space (see [6, Proposition 5.1]).
Throughout the whole paper, the notation A < B means that there exists a constant C' > 0 such
that A < CB, where C is independent of the appropriate quantities. If A < B and B < A, we write
A ~ B and say that A and B are equivalent. Further, we need the following lemmas.

Lemma 2.1 ([10]). The following relation:
v
|H, |, = /sh”‘ydy R (shg) , where 0<y<2\+1. (2.1)
0
s true.
Lemma 2.2 ([7]). If f € L, A(Ry), (1 <p < 0), then for any y € Ry, the following inequality:

A
AChnyLp,)\(R+) < HfHLp)x(]RJr)

holds.
For f € Llﬁﬁ\(ﬂ&_), the G-fractional maximal operator M is defined in [9] as follows:
e
Mg (eho) =sup H, I [ A3, |f(cha)| s (o). (2:2)
H,

Let b € Lllo‘f\ (Ry), then the commutator Mg’a, generated by Mg and b, is defined in [9] as follows:

«@ %_1
Mé f(chz) = su]g |H|y / ‘Ag\hyb(ch:v) — bHT,(chx)’ Ai‘hy|f(chm)|d,u>\(y). (2.3)
r> .
The definition of a G-BMO space is given below, in Section 5.

3. PRELIMINARIES

Before we proceed to proving our results, we shall introduce some preliminary definitions and
properties concerning the G-Orlicz spaces.

Definition 3.1. A function ® : [0,00) — [0, c0] is called a Young function if ® is continuous, convex
and strictly increasing, and ®(0) = 0, ®(r) — oo as r — 0.

The set of Young functions such that 0 < ®(r) < oo for 0 < r < co will be denoted by Y, then ®
is absolutely continuous on every closed interval in [0, 00) and bijective from [0, 00) to itself.
For a Young function ® and 0 < s < oo, let

O~ 1(s) =inf{r >0:®(r) > s}.
If ® €Y, then ® is the usual inverse function of ®. It is well known that
r<® P (r) < 2r, r >0,
where ® is defined by

B(r) = {Sup{rs —d(s):s€[0,00)}, r € [0, 00),

00, r = 00.
A Young function ® is said to satisfy the A, -condition, denoted also as ® € A,, if
O(2r) < c®(r), r >0,
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for some ¢ > 2. If ® € Ay, then ® € Y. A Young function ® is said to satisfy the Vo— condition,
denoted also as ® € Vy, if ®(r) < L®(cr), r > 0 for some ¢ > 1. We can verify the following examples:
the function ®(r) = r satisfies the Ag -condition, but does not satisfy the Vy-condition. If 1 < p < oo,
then ®(r) = r? satisfies both conditions. The function ®(r) = " — r — 1 satisfies the V5 -condition,
but does not satisfy the As-condition.

Definition 3.2 ([13] G-Orlicz space). For a Young function ®, the set

Ls(Ry,G) = {f € Llfg\(l&_) : /@(k|f(chx)|)du>\(x) < oo for some k> O}
R

is called the Gegenbauer—Orlicz (G-Orlicz) space.

If®(t) =tP, 1 <p<oo, then Le(Ry,G) = Ly a(Ry). IfF @(r) =0,(0 <r < 1) and O(r) = oo,
(r > 1), then Ls(R4,G) = Loo(R4). The space Llﬁj(]&_, G) we define as the set of all functions f
such that fxq € Le(R4,G) for all intervals  C Ry, where xq is a characteristic function of the
interval €.

Definition 3.3 ([13]). Let ® € Y and the norm ||-|| . on the space Lo (R4, G) be defined by

Flsaiecr =in {v >0+ [ (Lis)) din <1},

+

For a measurable set Q C Ry, a puy measurable function f and t > 0, let m(€Q, f,t) = [{z € Q:
|f(chz)| > t}|x. In case Q = R4, we shortly denote it by m(f,t).

Definition 3.4. The weak G-Orlicz space
WLler, ) = {f € LYS(RY) 1 lwie@e.cy < OO}

we define by the norm

=inf v > 0:su @tm(—,t)<1 .
”f”WLq,(]RJr,G) { t>IO) (t) o

Note that [|flly 1, &, .¢) < IfllLy @, .q) (see [13]).

We prove that

h
/(M>du>\(3€) <1, sup@(t)m(*,t) <1, (3.1)
5 Hf”L(p(Q,G) t>0 ”-f”WL(I)(QJr,G)
and
sup ®(t)m(Q, f,t) = sup tm(Q, f, &1 (t)) = suptm (Q, &(|f]), 1), (3.2)
>0 >0 >0
where
1l Lo0.0)0 = I xell ez, 0)
and

1flwre@.c) = 1fxellLa®, ¢ -

Inequalities (3.1) immediately follow from Definitions 3.3 and 3.4.
Now, let’s prove (3.2). It is known that ®(®~1(t)) ~ ®~1(®(¢)) ~ t. Then by the definition, we
have

m(Q, f,t) = {z € Q- [f(cha)| >t}
= [{z € Q: o(|f])(chz) > 2(t)}],
=m (Q: ®(|f]), ®()).
This implies that
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(t)m(, f,t) = 2()m(S, (|f]), ®(2))
~ @(O7H(t)m(Q, (If]), 27 (1))
~tm(Q, O(|f]),t).
On the other hand,
O(H)ym(Q, f,t) = &1 (1))m(Q, f, 71 (t)) = tm(Q, f, 271 (1)).
Thus we have

sup ®(1)m (S, f,1) = suptm(Q, f, (1)) = sup tm(Q, @ ], 1).
t>0 t>0 t>0

By the definition of ®, we have
ww < ®(u) + O(v),

which is called Young’s inequality.

Corollary 3.5. Let ® and d be complementary Young functions and let  be a measurable subset
of Ry. Suppose that u € Ly and v € Lg. Then uv € L1 z(2,G) and

/ fu(cha)o(cha)| dus (x) < / B (Ju(cha)]) dux(z) + / & (Ju(cha)]) dyua ().
Q

Q Q
By the definition (see [13]),

s =suw{ [ 1faldis = [ o <1}, 53
Q Q

Theorem 3.6. Let ® be a Young function and Q be a measurable subset of R.
Then Ls(Q,G) = L®(Q,G) and for all f € Ls(Q,G),

1 ze@.c) < e < 20 lLa@e) -

Proof. Let ® be a Young function, complementary to ®. Let Lg (2, G), f # 0, and let k = m,
so that

[ ® Fr(eha)) durta) < 1.

Q
Let g be such that [ @ (|g(chz)|) dux(x) < 1.

Q
By Corollary 3.5,

[ ftchag(cholan ) < 2.
Q
Hence

[ 15(eho)g(eha)idun @) <21f1,q0.0

Q
and so,

1z @6 <20, .0 -

To obtain the remaining inequality (3.3) it suffices to prove it for non-negative simple functions, and
as this is done, the use of the Fatou property possessed by the Banach function spaces L® (€2, G) and
f € Lo(€2, G) gives the general result. Let f be a non-negative simple function with || f||;+q gy > 0.
All we have to do is to show that

/ (v (cha)|dps () < 1,

Q
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where v = W Since f is simple, [ ®(v|f(cha)|dux(xz) < co. Now, represent ® in the integral
L?(Q,G) Q

u(chx)
form: ®(u(chz)) = [ ¢(s)ds, say . The function g given by g(chz) = p(vf(chz)) is simple. By
0
Young’s equality, _
B(g(che)) + ®(vf(cha)) = vf(cha)g(cha)
for all z € Q). Hence

[ owscnadn @) + [ Sgchoduno) = [viichalgtcha)dunz) (3.4)
Q Q Q
and so,
/;I;(g(chx))d,u,\(x) < 00.
Q

Since Lz(€,G) is the associate space of L®(€, G), Hélder’s inequality (see Theorem 3.7 below
and [13, Lemma 2.5))

£l <14 [ (o)) din(o) <1
Q
yields

[ wreha)gtchaydnn@) < 0.6 1911, @)
Q

< ol 0y < max {1, [ Blgleho))dn(e) .
Q
Thus from (3.4) we have

[ owstcnodn @) + [ @g(choydune) <1+ [ o(cha)dus o)
Q Q Q

and the result follows, since v = r—t— . O
”fHL'?(Q,G)

Theorem 3.7 ([13]). Let Q € R, be a measurable set and the functions f and g be its complemen-
tary ®. Then the following inequality

/ £ (eha)g(cha)| dpn (@) < 211l ey 91l o
Q

is valid for all f € Le(Q,G) and g € Lz(Q,G).

Lemma 3.8. Let ® be a Young function and H, = (0,7) be a set in Ry. Then

1
HXHTHWL@(HT,G) = ”XHTHL@(HT,G) = H-1 (\H |71) :
TIx

Proof. The description will be given in terms of the right-continuous inverse ® ! of ® which is defined
by

O L(t) =sup{s > 0: B(s) < t}, 0<t<oo0.
By Definition 3.3 and (3.2), we have

||XHTHWL¢,(HT7G) = HXHTHL@(HT,G)

—int {35 [® 0 o)) dir(o) < 1

T

inf{% H |y @) <1}
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1 1

_ [sup{u@(VﬁMH_l‘@*(l)' D

[Hr |y

Lemma 3.9. If 0 < |E|, < oo and ® is a Young function, then the norm of the characteristic
function, xg is given as

~_ 1
Ixellios.c) = 1EL 8 (i) (3.5)

® as usual being the complementary of ®.

Proof. Indeed, let g € Lg(E,G) such that Hg”L;I;(E,G) < 1. Then by Jensen’s inequality (see [13],

Remark 2.7), we get
~ 1 /
(17 [ ltena)l o))
(5 J ot

9/l ;2.0 |g(cha)|

1
< dpr(x) < ——.
F2A é(”gnL%(E,G)) F2AN

Applying &1 to both sides, we obtain

/\g(ch:@ldm(a:) <|E|,®! (|E|;1) :
E

Then by the definition, we have

IxellLeg,q) = sup {/XE(Chx)g(Chw)dﬂA(m) Nglloy e < 1}
Q

< sup{/ lg(cha)| dux() : llgll . (p,q) < 1}
E

< | & (1B (3.6)
On the other hand, if gy = ®~! <|E|;1> XE, then

||90||L%(E,G) =1 and so ||XE||L<I>(E,G)

> /XE(chx)go(chx)duA(z) =¢! (|E|;\1> /duA(x)

Q
= B[, & (1ER) . (37)
From (3.6) and (3.7), we obtain (3.5). O

Lemma 3.10. For the complementary pair @, 5, the following statement
u< ® () Hu) < 2u
is valid.

Proof. Let u = |Hr|;1 . Then by Lemma 3.8 and Lemma 3.9, we can write

1~_ 1
||XE||L<1>(E,G) = E‘I) 1(“)7 ||XE||L4, (E,G) — m

This implies that

~_ _ 1
o '(u) =ulxelp, pe and @ 1(u):m.
Ls (E,G
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Then )
O (w)@ (u) = ullxel L, (po) - ol
P B

Using Theorem 3.6, we obtain our statement.
From Theorem 3.7, Lemma 3.8 and Lemma 3.10, we have the following
Lemma 3.11. For a Young function ® and H,. C Ry ,the following inequality
- -1
[ 1#(cha) s () < 24881, 07 (HR) 1) o,

H’V‘

is valid.

The G-fractional integral J¢& is defined as follows:

%A h
J& f(cha) = / (hf)(x)
2

0

dua(y), 0<a<n9.

Lemma 3.12. Let 0 < a < «y. Then
Mg f(chz) < JG (| f]) (chx).
Proof. By the definition of J& and Lemma 2.1, we get

OOA)‘ chx
J&(f1)(ch) = / (hlf)<>

0
r

/Aéhy £ (cha)
(sh3)™"

T

dpx(y)

>

dp(y)

1
> s [ AY 1 F(che) dua(w)

(sh3)" "

T

~ e [ A3 Ifcha) duay).

~ ==
‘Hrl/\ ! 0

Taking the supremum on r > 0 of both parts, we obtain our statement.

4. THE BOUNDEDNESS OF G-FRACTIONAL MAXIMAL OPERATOR IN G-ORLICZ SPACE

223

In this section, we give the necessary and sufficient condition for the boundedness of G-fractional
maximal operator M& on the G-Orlicz space and weak G-Orlicz space. We begin with the boundedness

of the G-maximal operator Mg on G-Orlicz spaces, defined by (2.2) for o = 0,

1
Mg f(cha) = sup—-— / A%, | f(cha)| dpx (y).
r>0 |Hr |)\ %

We introduce the following
Definition 4.1. Let ® € Ly (R4, G) and T : Lg — Lg be a sublinear operator.
We say that the operator T is of the weak type (@, ®) if
B(a) [{z € Ry + [T (cha)] >}, < [ @ (1F(cha)))dis ),

Ry

for all f € Le(Ry,G) and all a > 0.
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Definition 4.2. Let ® € Lo(Ry,G) and T : Ly — Lo be a sublinear operator. We say that the
operator T is of the strong type (®, ®) if there exists a constant ¢ > 0 such that

ITf L@y < oy
for all f € Lo(Ry4, G).

Lemma 4.3 ([14]). Let ® be a Young function with the canonical representation

O(r) = /cp(s)ds, r > 0.
0

(1) Assume that ® € Ay. More precisely, ®(2r) < c®(r) for some ¢ > 2. Set f =logyc. If p > f+1,
then the following inequality

o0

/@ds<q>(r), r>0

sP rP

is valid.
(2) Assume that ® € V. Then the following inequality

is valid.

Lemma 4.4 ([13]). Let H, = (0,7) C Ry and let ® : H. — Ry be conver and we suppose that
f e Lia(Ry) and also @(A;\hyf) € Ly x(Ry).
Then Jensen’s type inequality

1
(I)<|Hr|,\IZA;\hyf(Ch$)dm(y)> < |Hr|A/(I) (A, f(cha)) dux(y)

H,

holds for every x € Ry.

Theorem 4.5. Let ® be a Young function. Then the mazimal operator M¢ is bounded from Lo (R4, G)
to WLs(R4,G) and for ® € Vs is bounded in Le (R4, G).

Proof. First, we prove that the maximal operator Mg is bounded from Lg (R4, G) to WLe (R4, Q).
We take f € Lo(R4, G) satisfying || fll,, &, ) =1, so that the modular

/ & (| f (cha)) dua () < 1.

Ry
By Lemma 4.4 and the definition of the maximal operator Mg, we have
O (Mg f(chx)) < Mg®(f(chx)). (4.1)
Using (4.1) and weak (1,1) boundedness of the maximal operator (see [14]), we get
{z € Ry : Maf(cha) > r}l, = {a € Ry : ®(Mg f(cha)) > B(r)},
{z € Ry : Mg®(f(chx)) > @(r)},
@ stcha)) duse)

Ry

IN

c

a(r)

IN

1

IN

<

‘b(cr) - @(

b

- r
CHfHLq)(neJr,c))
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since [|f[/;, &, ¢ =1 and 1d(r) > ®(Z), if ¢ > 1. Since the Ill£g (%, ) mnorm is homogeneous, the
inequality

{z € Ry : Maf(cha) > 1)}, < !

o (CHf”Lq)(RJr,G) )
is true for every f € Lo(Ry, G).
Now, we prove that for ® € Vs, the maximal operator Mg is bounded in Le(Ry,G). Let 6 > 0
and f € Le(Ry,G). Then we have

IVIGf(chz)

/(I)(Mcfe(chx / / $)dsdjin ()

Ry

://X{se(om):wx}w(S)dsduA(l")
Ry 0

:/@(s)(/X{:EGR+:Mcf(chx)>95}dﬂ/\(x)>dS
0 R

= % (g) H{zx € Ry : Mg f(chz) > v} dv

22 o) e By MoStehs) > 20}

0\8 9\8

By weak (1,1) boundedness of the maximal operator,

1
o eRe: Mafleh) > 2, S5 [ fleho)din()
{zeR;:|f(chz)|>v}

and the change of the order of integration results in

/q) (W) dpa(e) S 1 / (%) < / f(ch:v)dm(ff)> o

R4 Ry {z€R4:|f(cha)|>v}
|f (cha)|

N6/|fchx( / (35)% Jaar(o)

Now. we use Theorem 3.7 which yields

2071 f(chz)|

o) < (et o (L),
0

if f(chx) # 0. Recall that k®(r) < ®(kr) for k > 1 and r > 0, assuming ® is convex.
Therefore it follows that

/‘I’ (MGfa(Chx)> dux(z) < co / o <2|f(gh:r)> dux(z)

+ Ry

. /q) <00f(96hfv)l) o)

R
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Here, g is a constant we would like to ched lihgt on. Chosing 6 = ¢g Hf||Lq)(]R+ G » we get

[0 (M) gy <1

Ry
This means that
IMafllpyw,.c) <0=collfllLyw, e
from the definition of the norm. U
We recall that for the functions ® and ¥ from [0, o) into [0, co], the function ¥ is said to dominate ®

0,
globally if there exists a positive constant ¢ such that ®(s) < ¥(cs) for all s > 0.
In the theorem below we also use their notation

Ty(o) = / w1 (571 () ar (4.2

where 1 < p < oo and ¥ is the Young conjugate function to W, (s), where B! (s) is inverse to

S

B,(s) = / fﬁ? dt.

0

In [13], we have found the necessary and sufficient condition for the boundedness of Mg on the
G-Orlicz spaces.

Theorem 4.6 ([13]). Let 0 < a <~ and let ® and ¥ be Young functions. Then:
(1) Mg is bounded from Lo (R4, G) to WLe (R4, G) if and only if

® dominates globally the function V.,

whose inverse is given by
() = v ()
(ii) Mg is bounded from Ls(Ri,G) to Ly(Ry,G) if and only if

U(t
/M%dt < oo and ® dominates V., globally.

0
Here, U, is the Young function defined in (4.2).

In order to prove our main theorem, we also need the following
Lemma 4.7. Let Hy = H(0,79) C H-(0,7). Then
|H0\§ < Mé&xm,(chz) for every x € R4.
Proof. For x € Hy, we get

M@xn,(chx) = sup |Ho|3 |H, N Hol,
z€Hy

,1+Q o
> [Holy 7 |Holy = [Holy - O
Theorem 4.8. Let 0 < a <v,®, ¥ be Young functions and ® € Y. The condition
[Hly 7 @70 (1H, ) < 071 (| H, ) (4.3)

for all v > 0, where ¢ > 0 does not depend on r is necessary and sufficient for the boundednes of M§
from Le(R4, G) to WLg(R4,G) .

Moreover, if & € Vs, condition (4.3) is necessary and sufficient for the boundedness of M& from
ch([RJr7 G) to L\p(R+, G) .



GEGENBAUER FRACTIONAL MAXIMAL FUNCTION AND ITS COMMUTATORS

Proof. For an arbitrary interval H, we represent f as

f=h+f, fi=fxa, fo=Fxawu)y=Xrow>
and have
Mg f(chx) = Mg f,(chx) + Mg f,(chx).
If H,N (H,)¢ # &, then s > r, and by Lemmas 2.1, 2.2 and 3.9, we obtain

—1+<
Mafylcha)=sup |5 [ A, (o) din(w)
° H,N(H,)°

Ssup | / Ay | F(cha)] dir(v)

s>r

—14+2
S sl / Ay | F(cha)] dir(v)

s>r
— -1
g e, 00 H I3 @ (123

S\ & 1 -1
S Loy ,c) 21;1;’ (3h§> ® (|Hs|x ) :
To estimate Mq f,, we use inequality (3.8) and also sh(at) < asht for 0 < a < 1.

chy |f(Ch$)‘

(sh$)"™" )

Mg fu(cha) < & (|fxm,|) (che) < /
0

3 () (shger) [ A0 LrCen) dmato)
0

S |H, | M f(cha).
From (4.4) and (4.5), we obtain

Mg f(ch) S Hy|§ MaF(ehe) +1fll e, 0 5up 1HalX @7 (HIY).

Thus by (4.3), we have

|
Mg f(che) < Mcf(chx)w 0 (1) 1 iy

o=t (11,17)

(1,157 = Mellhe)
Co ||fHL4,(R+,G)

Choose

Then

C0|‘f“1,q,(ug+,c)

_ M chx
1 (|Hr‘)\’y) G f(chz)

collfllLgy @, ,a)

(1) ) (i )'

227

(4.4)

(4.5)
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Therefore we get
_ Mc f(chx)
Mg f(chz) < ¢, |If (wyte) [ et
G 1 Le(R4,G) V70 o HfHL@(RJr,G)
whence it follows that

Mg f(chx) ( Mg f(chx) >

allfliee, . collfliew, .
R4+,G R4,G)

o MGf(chx Me f(chz)
1 ||fHLq(R+7 COHfHLP (Ry,G) .

Then by (3.1) and Theorem 4.5, we have

and

Mg f(chz)
1M =S |
GJ WLy (R4,G) — c1 ||f||Lq> (R4+,G)

M,
=suprm | ¥ Gf (chz) )
>0 c lfllny e, e
Mg f(chx) ,
llflLyw )’

= sup &(r)m ( M f(chz) ,r) <1

r>0 Co HMGf||WL(1>(R+,G) B

<suprm | ®
r>0

Thus
\lMSf\lwh(M,G) < ||MGfHWL¢,(R+,G) 5 ”MGf”Lq)(]R+,G) :
Since ® € V,, by Theorem 4.5, we get

Mg f(cha) Mg f(chx)
Ul —=2 " )V dux(z O ——————— | dux(z
/ <a||f||L¢<R+,G>> ‘“”SR/ <co||fL¢(R+,G>> )

< / o Mellche) ) ) <1
Co ||MGf||L(p(R+7G)

Ry

ie.,

IMEFN Ly i) S NFll gy -
We now prove the necessity. Let Hy = (0,79) and z € Hy. By Lemma 4.7 and (2.1), we have
|Holy ~ (sh%‘))a S M&xn, (chz). Therefore by Lemma 3.8 and (2.1) , we obtain

o\ ¢ — -1
(Shg) < Pyl (IHO ) HMgXHOHWL\p Hy,G)

[Holy ™) IM&x ||WL\I, (R+,G)

2

B ((sh%ﬂ)*v)

v (1)

O (|Hol3 ) It | e,
v (k') v
S

and
7o\ ¢ — -1 o
()" s 0 (1Hol3™) IME sty 10

_ -1 o
SO (1HR") 1MEXH 1 =, 0
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SO (1Holy") ol s,
B s ((sh%)_v) |
Tt ((shy) )

Since this is true for every rg > 0, we are done.
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229

In this section, we investigate the boundedness of the G-maximal commutator Mg’o‘ in G-Orlicz

spaces.
We recall the definition of the G — BM O space.

Definition 5.1 ([13]). We denote by BMO¢(R;) the Gegenbauer-BMO (G-BMO) space as the set

of locally integrable functions on R such that

|H | / |A('hy Ch.T fHT (Chll?)|d‘u,>\(y)’

Il = sup
z,rER 4

where H, = (0,7),
fi, (eha) = g [ A Fcha)dinn (v

and the set
BMOG(Ry) = {f € L5 (Ra)\feonst} : [|f]}5; < oo}

Before proving our theorems, we need the following lemmas and theorem.

Lemma 5.2. Let f € BMOg(Ry) and ® be a Young function. Then
IF1l& = sup @ (|HAYY) ([ Ay f — fa,
z,r€ERy

Lq)(Hy-,G') :

Proof. According to Lemma 3.11, we have

17l = sup / [ A2y Fch) — f o (cha)ldpa ()
z,reR +|H X
< S E T |H 2T H(HART) ([ A2y &
S ,Sup @ U A%y f = Frll -
For the reverse inequality, we use equality (3.3).
Let f € BMOg and g(chy) = # thus [lgll,_(z, o) < 1, and we have

HAchyf er

(ch
e / Xl s bcha) — £ (cha))diua(y)
* IxH, ||L¢(R+,G)

1

~ m / |Aé\hyf(6h36) — [y (chz)|dux(y)
T Ld; R4,G)
H,

AN T
S g e

Using the equality (see [2, Chapter 2, Theorem 5.2])

L@(R+,G) = |HT|)\’

(
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we get

Iflle
~ ot (JHNY)

Lemma 5.3. Letb € BMOg(Ry) and ® € VoNY. Then the operator Mg, is bounded on Lo (R, G)
and the inequality

42

chy

0

b *
1M1, ) S 100 11 e
holds for all f € La(Ry, G).

Proof. From (2.3), we get

MY f(cha) = sup—— / [ Ay b(ch) b, (cha) A2y, | f(ch)|dua(y).
7‘>O|H Ix

For § >0 and f € L¥°(R;), denote by
1
5

r>0

Mo f(che) = S“P<|H1|A / |A§hyf<chx>|5dm<y>)
H,

Let 6 < e < 1. We use Holder’s inequality with the exponents r and 7/, where r = 5 > 1, and also
the relation

sup (|1¥‘A Jflchhy Chaﬂ f}{ Chﬂ:| d[LA ) ~ ”jwlg s 1 <:Z)<: 0.

z,rER

(H |A/‘AC}”’ (chx) — br, (cha)| AQy,, | f (cha)ldpn( ))

1
1 6”’/ W
< (g [ 140ptehs) = b ch] ™ st )
}{T

. -
(m / Aﬁhy|f<chx>|5’“dm<y>)
H.

r

< Ibllg Me. e f(cha) < [Ibllg Ma f(cha),

since by Hélder’s inequality, for 0 < e < 1, Mg . f(chz) < Mg f(chz).
Thus we have
Mg f(cha) < |[bllg Me f(cha),
whence we obtain

b * *
IMEF]o i o S IB1E MG i, 6y S 100 1 ey 0

Lemma 5.4. Ifb € Lll‘fg\(R+), H,, = (0,79), then

(sh 70" b, (cha) — b, (cha)] S MY, (cha).
for every x € Ry.

Proof. We choose ¢y so large that the inequality r < ¢grg would hold. When 0 < ¢ < ¢, the inequality
t < sht < et holds and according to (2.1), we have

coTo

T’ 1o 1o B
|Hrlif7 = (/sh2A tdt> < </sh2A tdt) ~ (sh%)v
0 0

CcoTro\ 7 ¢
S (0) T S eoe™) T S [y
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Then sup \Hr|;1+% z |HT0\;1+% and by (2.3) and (2.1), we have
r>0
M4 xH,, (chx) = sup — /’Ag‘hyb(chx) by (chax)| Ady, X, (cha)dux(y)
>0 |Hr|>\ ¥ i
=su = / |Achy (cha) = by (cha)|dpx
>0 |Hr|/\ ~y .
1
R— = / | ASnyb(cha) = by (cha)| dpux(y)
|H7"O|)\ H7'OOH7-0
1
E ‘ 17; / (Achyb(ChI) bH (Chl’)) d'u)\( )‘
|H7’0‘)\ HT‘O
_ |1 N a
= [ [ (Al bleha)dun(y) = by, (cha) [Hy |7 ) dpa(y)
‘ 7‘0|)\
— |Hyl} ‘bH (cha) = by, (cha)
~ (shr;) |bw, (cha) — ba,, (chz)|. O

Lemma 5.5. Let f € Le(R4,G), then the inequality
||AChtf||L<I>(R+,G) < ”f”Lq)(RJr,G)
is true for every t € (0, 00).

Proof. By the definition of A}, we have
/@((—Fﬁ)/f (mt — Va2 —1yt? — 1cos <p) (sin <p)2)‘_1dap> (2% — 1)A_%dx.
/H\roor )/

Taking the substitution (see [7, proof of Lemma 2])

z=at — /22 — 112 — 1cosp,
we will have
0o r ()\+ 1) zrt+vVz2—1v/t2 -1
J:/(P(Ql(t%l)%_)‘ / (1—x2—t2—22+2xt2)>\1>d9€.
LML (3)
1 o Wb

Since
— V2 -1V -1 <z<azt+ Va2 -1yt2 -1
< tz—Vi2-1vz22-1<z<tz+ V2 -1vV22 -1,
we obtain

00 r ()\ N 1) tz+vVa2—1V12—1

J-/@(F(A)Fé)(tzl)é’\f(z) / (17x27t2722+2:5tz)/\ 1dx>dz.
1 tz—Vz2—1V/12 -1

Taking into account

1—a? =12 — 224 2tz = (tz—\/tQ—lvzz—l—x> (m—tz—|—\/t2—1\/z2—1)



232 E. J. IBRAHIMOV AND S. AR. JAFAROVA

and in view of z = tz — V2 — 1v/22 — 1 cos p, we get
tz+V22—1v12 -1
(1—a2®—t*—2"+ thz))ﬁl dx
tz—V22—1Vt2 -1
tz+v2Z—1v/12—1
= / (tz+\/t271\/22717x))\_1 (xftz+\/t271\/2271)d:r
tz—xZ—1/12—1
Using the equality (see [5, p. 299])
b
T'(a)T'(b
/(x —a)" N (b—2z)" Y = (b—a)"T IF((a)—i—(b))’

by p=v =\, we get
J = /cp(f(z))(z2 — 1) 2z

1
Thus we obtain

/@(A?|f<x>|)<x2—1>A*% / (IF(2))(2 — 1) hdz,

or
)

/ B (Ao f(cher)) dpix () < / B(|f (chus) s (u).
From this it follows that ’ ’

/( cht|f(6h’x > /( |f Chu )dﬂ)\(u) <1,
AN TP S\ laes -
Thus our statement is proved. O

Supposing ®(t) = P, we have the following results (see [7, Lemma 2]).
Corollary 5.6 ([7]). If f € L, A(Ry), then for any t € [0,00) the following inequality:
||A('hff||Lp=)\ S ||fHLp1>\ﬂ ISPSOO,
holds.

Theorem 5.7. Let 0 < a <7, b€ BMOg(Ry) and ®, U be Young functions and ®,¥ € Y
(i) If ® € Vg and ¥ € Ay, then the condition

o e
(sh%) @ (151 + sup @71 (|H3Y) (sht> ST ()
2 r<t<oo 2

for all v > 0 is sufficient for the boundedness of Mé’;’a from Le(R4, G) to Ly (R4, G).
(ii) If U € Ag, then the condition

(shg)a ot (|H,I5Y) < vt (|H, 7Y (5.1)

is necessary for the boundedness of Mg’o‘ from Le(R4, G) to Ly(Ry,G).
(i) Let ® € Vo and ¥ € Ag. If the condition

—1 -1 t « T o 1

is true for all r > 0, then condition (5.1) is necessary and sufficient for the boundedness of Mé’a from
Lq> (R+7 G) to L\p (R+, G)
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Proof. (i). Let H, = (0,7) and (H,)¢ = [r, c0).
We write f = f1 + fo, where f1 = fxm, and fa = fx(m,)e. If H, N (H,)¢ # (0 and x € Ry, we have
1

MgafZ(chx) =sSup ———5 / ‘Achy (chz) — th(chx)| chy\f(chx)|du>\( )

t>0
=0 |H; ‘/\ HyN(H,)e

t

1

< sup - a/|AChy (chz) — by (chx) ’Achy\f chx)|dux(y)
t>r |Ht|)\ v

T
t

1
<o [ 143, beha) = by, ()| 420,11 (el )
r tl 5

1
= sup f%/ |Ai‘hyb(ch:v) — by, (chx) ’Achy\f chx)|dpx(y).
Therefore, for every z € R, we obtain

a AN
Mg’ fa(chz) < sup (sh2) /|A2‘hyb(chx) by, (chx) }Achy\f chx)|dpx(y).

t>r

Using Holder’s inequality, Lemma 5.2, Lemma 3.10 and Lemma 5.5, we get

b,a 4
MG fg(Ch.’L‘ <Sup< h2) chyb thHL (H:,G) HAChnyLq)(Ht,G)
£\ o (|| o' (1H:ly )
=sup () oy A s 1430
bl
N?ﬁ?( ) 5 () Ao e
< Ibl sup (shg) O~ (1 1) 1S - (53)
To estimate Mga f1, we prove that
Me” f(ch) < Jg* (| f]) (cha), (54)
where (see [9])
ba G Chy b(chz) — by, (chx)} \
J&" f(chz) A f(cha)dpy(y), O<a<y
G a ~ chy
0

for all x € R,..
Indeed, by the definition and (2.1), we have

b ‘Ai‘hyb chx) 1, (chz)
“(1f1)(cha) / S Al fekaids )
5

" AN b(chx) —b , (chz)

chy
(shg)”"

Ayl (ch)|dux (y)

hf) _7/ ’Ai\hyb(dm) _bHT(Ch$)|Aé\hy|f(6h$)|dﬂ>\(y)
0
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<l / A3y beh) = by, (cha)| Ay | (cha) din ()

Taking the supremum on r > 0 in both parts, we get (5.4).
Using (5.4), we obtain

AN, b(cha) — by (chx)(
Mb’af (chx) < ‘ Y —
o / (sn8)

Al | x, (cha)|dpx(y)

T

B / A3, b(chz) — bHT(chx)‘
- (sh¥)"™"

chylf(Chx”d:U/)\( )

0

s / A, (fh,fi - Z(chx)‘ ol
j=0_" Shy

7‘

gi (sh5r) (shrer) / | A, b(cha) — by, (cha)| Ady, | f(cha)|dux(y)

=0

<.

)aMgf(chx)ZQ_o‘j < (shg)QMgf(chm). (5.5)

< (sh 2

N3

Combining (5.3) and (5.5), we have
b, T\ b * t\« 1
M fleha) 5 (shg ) M (ch) + 101G 1 oe, ) 502 (shg ) @7 (1Hil)

According to (5.1), we get

ba < b vt (|H, L) 1 ~1 *
Mg f(cha) S Mg f(cha) ————2q¢ + O ([HAX) 16l 1y, ) -

¢ (|H, ")
1 —1\ _ M2, f(chz)
Choose r > 0 so that ®~* (|H,|[}') = A i P
Then
1 Mgf(cha:)
Pl (|Hr|;1) B (F™" 0 @) <00|b|*G”f|L¢I,([R{+,G)>
-1 H, -1\ M f(cha) :
(1#:157) 2 [

Therefore

M f(cha) )

MG f(cha) S e [1bllg 11 £ (T o B) .
G G I Le®ry,6) co [0l I1fll Lok, )

whence it follows that

Mg f(cha) g(w—lo¢)< Mg f(cha) >

1 bl f 1l e, ) co [0l £l e, )

. MG f(chz) < M, f(chzx) _
c1 [blle; ||fHL¢(R+,G) B co [Iblley ||f||L¢(R+,G)

Then by Lemma 5.3, we get

Consequently,
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b,a b
R e A P e e
& a bl Hf||Lq>(R+,G) g co |10l ||fHLq,(R+,G)
+ +

M f(chx) )
< fo| e )y <1,
NR{ <HMCb’ ) i) =

Moo

ie.,

s

b
Ly (Ry,G) s ||MGf||Lq,(R+,G) :

(ii) Now, let’s prove the second part of the theorem. Let H,, = (0,70) and = € H,,.
By Lemma 5.4, we get

e
(8]%) < Lo (Hry,G)
2/ |lonr, = bar,,

() || MG,

Ly (Hry,G)

L‘I’ (Hro »G)

5 \Il_l (lHTo‘;l) HMSO(XHTO

ST ([ I3 [[xa,

Lg(Ry,G) Lg(Ry,G)
_ 1 -1 To 77)
< V() v ((shp) .
~ -1 N — ro\ 7Y
o1 (|Hyly') @1 ((shg") )
Since it is valid for every ry > 0, the second part of the theorem is proved.
(iii) The third part of the theorem follows from the first and second parts of the theorem. O

Theorem 5.8. Let 0 < a <, b€ LlOC S(R1)\{const} and @, ¥ be Young functions and ®,¥ €Y.

(1) If®eV,y, Ve, and conditions (5.1) and (5.2) hold, then the condition b € BMOg(Ry) is
sufficient for the boundedness of Mé’a from Le (R4, G) to Ly(Ry,G).

(i) ZIf U= (|H, 1) S @7 ([H 1T [H -

Then the condition b € BMOg(Ry) is necessary for the boundedness of Mcb;’a from Lo (Ry,G) to
Ly (R4, G). X

(ili) If ® € Vo, ¥ € Ay, Psi™! (|H,|3") = @Y (|H, 1" [H,|] and condition (5.2) holds, then b €
BMOg(Ry) is necessary and sufficient for the boundedness of Mg’a from Ls (R4, G) to Ly(Ry,G).

Proof. The first statement follows from the first part of Theorem 5.7.
(ii) We prove the second part.

Let Mg’a be bounded from Lg (R4, G) to Ly (R4, G).Choosing every interval H, € R, by Lemma 3.8
and Lemma 3.11, we have

|H ‘)\ / ’Achy Ch‘r (Chl')|d,u,)\(y)

1
- / | A, blch) — by (char)] dpx () / v, (chy)dyia ()
H,

H,

1
BT / / | Ay blcha) = by (cha)| Ay, x, (char)dpn(y)dpn ()
H i
1 o
S e / MG (xa, (cha)) dux(x)
|H, |\~

H,
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10.

11.

12.

13.

14.

15.

16.

17.

< U (| H )

Hy

b,
g

o
|Hr|1 Ly (R4,G)

- -1
- ﬂ;]'ﬂfﬂﬂx ) <1
[H [ @t (| H[3)
Thus the third part of the theorem follows from the first and second parts of the theorem. O
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