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ON SOME SPACES WITH MIXED NORMS
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Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. We present Rubio de Franćıa’s extrapolation theorem in grand function spaces generated
by Lp(·) and Lq

u, where Lp(·) is the variable exponent Lebesgue space and Lq
u is the weighted constant

exponent Lebesgue space. We study diagonal and off-diagonal cases. As a consequence, we have the
boundedness of operators of Harmonic Analysis in these spaces.

In recent years, it was understood that classical function spaces are no longer appropriate for
solving a number of contemporary problems arising naturally in various mathematical models of
applied sciences. It thus became necessary to introduce and study quite new nonstandard function
spaces from various viewpoints. We emphasize that in recent years the following function spaces were
studied: variable exponent Lebesgue and variable exponent Sobolev spaces, grand function spaces,
Morrey type spaces, mixed-normed function spaces, etc. (see, e.g., the monographs [3,4,18,19,22,23],
the survey paper [12] and references cited therein).

In this note, we deal with the non-standard function spaces
(
Lp(·), Lqu

)ψ(·),φ(·)
and

(
Lp(·),ψ(·), L

q),φ(·)
u

)
defined on the base of the variable exponent Lebesgue space Lp(·) and the constant exponent weighted

Lebesgue space Lqu. The space
(
Lp(·), Lqu

)ψ(·),φ(·)
is the grand mixed-normed space and

(
Lp(·),ψ(·),

L
q),φ(·)
u

)
is the mixed-normed space generated by the grand spaces Lp(·),ψ(·) and L

q),φ(·)
u . In partic-

ular, we give Rubio de Francia’s extrapolation theorem in these spaces. As a consequence of the
extrapolation results, we have the boundedness of operators of Harmonic Analysis in the mentioned
spaces.

In 1961, the mixed Lebesgue space L
−→p with −→p ∈ (0,∞]n, as a natural generalization of the classical

Lebesgue space Lp via replacing the constant exponent p by an exponent vector −→p , was investigated
by Benedek and Panzone [1]. Indeed, the origin of these mixed Lebesgue spaces can be traced back
to the interesting article of Hörmander [11] on the estimates for translation invariant operators.

For grand mixed-normed Lebesgue spaces
(
Lp0v , L

q0
u

)θ1,θ2
and the boundedness of operators of

Harmonic Analysis in these spaces we refer to the papers [14,16,17]. Extrapolation in mixed-normed
Banach function spaces was studied in [8, 10,17].

The boundedness problem of the strong Hardy–Littlewood maximal operator M (S) in the space(
Lp1(·), Lp2(·)

)
is still open (see, e.g., [8, 10]); however, it is known (see [21]) that the strong maximal

operator is bounded in Lp(·) unless p(·) is constant.
Grand Lebesgue spaces Lp0),θ(Ω), where p0 is a constant, 1 < p0 < ∞, and Ω is a bounded open

set in Rn, were introduced in T. Iwaniec and C. Sbordone [13] for θ = 1, regarding the Jacobian
integrability problem, and in L. Greco, T. Iwaniec and C. Sbordone [7] for θ > 0 when studying the
solvability problem of certain non-linear PDEs.

Grand variable exponent Lebesgue spaces were introduced in [15] (see also [5] for more precise
spaces). In that paper, the mapping properties of operators of Harmonic Analysis were studied,
as well. Finally, we mention that Rubio de Franćıa’s extrapolation problem in mixed-normed space
(Lp(·), Lq) with a variable p(·) and constant q was studied in [10]. Our aim is to study similar problems

for the spaces
(
Lp(·), Lqu

)ψ(·),φ(·)
and

(
Lp(·),ψ(·), L

q),φ(·)
u

)
.
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1. Preliminaries

Let Ω be an open set in Rn, L0 be the space (equivalence classes) of measurable real-valued functions
on Ω. A Banach space E := E(Ω) is said to be a Banach function space (BFS, briefly) on Ω if the
following properties are satisfied:

(i) ∥f∥E = 0 if and only if f = 0 a.e.;
(ii) |g| ≤ |f | a.e. implies that ∥g∥E ≤ ∥f∥E ;
(iii) if 0 ≤ fj ↑ f a.e., then ∥fj∥E ↑ ∥f∥E ;
(iv) if χF ∈ L0 is such that µ(F ) <∞, then χF ∈ E;
(v) if χF ∈ L0 is such that |F | < ∞, then

∫
F
f(x)dx ≤ CF ∥f∥E for all f ∈ E and with some

positive constant CF .
For a BFS, E, the Köthe dual (or associate) space E′, is defined to be the set of all f ∈ L0(µ) for

which

∥f∥E′ = sup

{∫
Ω

f(x)g(x)dx : ∥g∥E ≤ 1

}
<∞.

It is known that the space E′ is a Banach function space. For examples and properties of BFSs,
we refer to [2].

Let E1 and E2 be BFSs defined on the open sets Ω1 ⊆ Rn and Ω2 ⊆ Rm, respectively. The
mixed-norm space, denoted by (E1(Ω1), E2(Ω2)), (or simply (E1, E2)) is defined with respect to the
norm defined for a measurable function f : Ω1 × Ω2 → R as follows:

∥f∥(E1,E2) = ∥∥f∥E1∥E2 .

It can be checked that for its associate space,

(E1, E2)
′ = (E′

1, E
′
2)

holds (see, e.g., [10]).
For a Banach space E and a constant 0 < r <∞, the r-convexification of E is defined as follows:

Er = {f : |f |r ∈ E}.

Er can be equipped with the quasi-norm ∥f∥Er = ∥|f |r∥1/rE . It can be observed that if 1 ≤ r < ∞,
then Er is a Banach space, as well. For 1 ≤ r <∞ and BFSs E1 and E2 we have

(E1, E2)
r = (Er1 , E

r
2).

For a survey on the recent developments of function spaces with mixed norms on Rn, including
mixed Lebesgue spaces, iterated weak Lebesgue spaces, weak mixed-norm Lebesgue spaces, etc., we
refer, e.g., to [9, 12].

One of the examples of a BFS is a variable exponent Lebesgue space.
Let Ω be an open set in Rn. We denote by P (Ω) the family of all real-valued measurable functions

p(·) on Ω such that

1 < p− ≤ p+ <∞,

where

p− := p−(Ω) := inf
Ω
p(x), p+ := p+(Ω) := sup

Ω
p(x).

Let p(·) ∈ P (Ω). The variable exponent Lebesgue space denoted by Lp(·)(Ω) is the class of all µ-
measurable functions f on Ω for which

Sp(f) :=

∫
Ω

|f(x)|p(x)dx <∞.

The norm in Lp(·)(Ω) is defined as follows:

∥f∥Lp(·)(Ω) = inf
{
λ > 0 : Sp

(
f/λ

)
≤ 1

}
.

If p(·) ≡ p0 is constant, then Lp(·)(Ω) is the classical Lebesgue space Lp0(Ω).
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Let p(·) ∈ P (Ω). We write that p(·) ∈ B(Ω) if the Hardy-Littlewood maximal operator MΩ defined
on Ω:

MΩf(x) = sup
r>0

1

B(x, r)

∫
B(x,r)∩Ω

|f(y)|dy, x ∈ Ω,

is bounded in Lp(·)(Ω).
If Ω = Rn, then we denote MΩ by M .

We say that a function p(·) ∈ P (Ω) belongs to the class P log
0 (Ω) (or p(·) satisfies the log-Hölder

continuity condition on Ω) if there is a positive constant C0 such that for all x, y ∈ Ω with |x−y| ≤ 1/2,

|p(x)− p(y)| ≤ C0

− log |x− y|
.

If Ω is unbounded, then we denote by P log
∞ (Ω) the class of exponents p(·) satisfying the condition

|p(x)− p(y)| ≤ C∞

log(e+ |x|)
, |y| ≥ |x|, x, y ∈ Ω,

with the positive constant C∞, independent of x and y.

If p(·) ∈ P log
0 (Ω) ∩ P log

∞ (Ω), then we say that p(·) ∈ P log(Ω).

The class of exponents P log plays an important role in the theory of integral operators in Lp(·)

spaces. For example, maximal, fractional and singular integral operators are bounded in Lp(·) under
the condition p(·) ∈ P log (see, e.g., the monographs [3, 4, 18] and references cited therein).

Criterion governing the boundedness of the maximal operator M in Lp(·)(Rn), provided that p(·)
is constant outside some large ball, was found in [20]. In particular, in that paper the author proved
that M is bounded in Lp(·)(Rn) for p(·) ∈ P (Rn) if and only if dx ∈ Ap(·), i.e.,

sup
Q

|Q|−1∥χQ∥Lp(·)∥χQ∥Lp′(·) <∞, p′(·) = p(·)
p(·)− 1

,

where the supremum is taken over all cubes Q in Rn with sides, parallel to the coordinate axes.
Let |Ω| < ∞ and p ∈ P (Ω). In [15], the authors introduced the space Lp(·),ψ(·)(Ω) (resp.,

Lp(·),ψ(·),σ(·)(Ω)) called grand variable exponent Lebesgue space (GV ELS briefly) which is defined
with respect to the norm

∥f∥Lp(·),ψ(·)(Ω) = sup
0<ε<p−−1

(
ψ(ε)

) 1
p−−ε ∥f∥Lp(·)−ε(Ω)(

resp. ∥f∥Lp(·),ψ(·),σ(·)(Ω) = sup
η(·)∈P0(σ(·),Ω)

φ(η+)
1

p−−η+ ∥f∥Lp(·)−η(·)(Ω)

)
,

where ψ(·) is a non-decreasing function on (0, p− − 1) such that lim
t→0+

ψ(t) = 0, and P0(σ(·),Ω) is the
class of exponents η(·) such that η(·) ∈ P0(Ω) and 0 < η− ≤ η(x) ≤ σ(x) ≤ σ+ ≤ p− − 1 with a given
positive function σ(·) on Ω.

If ψ(t) = tθ with the positive constant θ, then GV ELSs Lp(·),ψ(·)(Ω) and Lp(·),ψ(·),σ(·)(Ω) will be
denoted by Lp(·),θ(Ω) and Lp(·),θ,σ(·)(Ω), respectively.

For a constant q, 1 < q < ∞, an open bounded set Ω on Rm and a weight (i.e., a.e. positive

locally integrable function) u on Ω, we denote by L
q),φ(·)
u (Ω) weighted grand Lebesgue space which is

determined by the norm

Lq),φ(·)u (Ω) := sup
0<ε<q−1

(
φ(ε)

∫
Ω

|f(x)|q−εu(x)dx
)1/(q−ε)

.

For ψ(t) = tθ, θ > 0, and u ≡ const, L
q),φ(·)
u (Ω) is the Iwaniec-Sbordone space denoted by Lq),θ(Ω).

In [6], the authors proved that for the boundedness of the Hardy–Littlewood maximal operator in

L
q),θ
u (Ω) it is necessary and sufficient that u belongs to the Muckenhoupt class Aq. Later, it turned

out that a similar result holds for other operators of Harmonic Analysis (see [19] and references
therein).
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Let Ω1 and Ω2 be open sets in Rn and Rm, respectively. Suppose that p(·) ∈ P (Ω) and let q be a
constant such that 1 < q <∞. Let u be a weight function on Rm. Let us introduce a mixed-normed
space (see [10] for unweighted case) defined with respect to the norm

∥f∥(
Lp(·)(Ω1),L

q)
u (Ω2)

) := ∥∥f(x, ·)∥Lp(x)(Ω1)∥Lqu(Ω2) =

(∫
Ω2

∥f(·, y)∥q
Lp(·)(Ω1)

u(y)dy

) 1
q

.

Let p(·) ∈ P (Ω) and 1 < q <∞. Suppose that ψ(·) and φ(·) are positive non-decreasing functions
on the intervals (0, p− − 1) and (0, q − 1), respectively such that lim

λ→0+
ψ(λ) = lim

λ→0+
φ(λ) = 0. In this

case, we say that (ψ(·), φ(·)) ∈ Ap(·),q.
Let now Ω1 and Ω2 be bounded open sets in Rn and Rn, respectively. Suppose that p(·) ∈ P (Ω1) and

let q be a constant such that 1 < q <∞. Let u be a weight function on Ω2 and (ψ(·), φ(·)) ∈ Ap(·),q.

We say that a measurable function f on Ω1 × Ω2 belongs to
(
Lp(·)(Ω1), L

q
u(Ω2)

)ψ(·),φ(·)
if

∥f∥(
Lp(·)(Ω1),L

q
u(Ω2)

)ψ(·),φ(·)

= sup
0<ε1<p−−1

sup
0<ε2<q−1

(
ψ(ε1)

) 1
p−−ε1

(
φ(ε2)

) 1
q−ε2 ∥f∥(

Lp(·)−ε1 (Ω1),L
q−ε2
u (Ω2)

) <∞.

A measurable function f : Ω1 × Ω2 7→ R belongs to
(
Lp(·)(Ω1), L

q
u(Ω2)

)ψ(·),φ(·)
σ(·) if

∥f∥(
Lp(·)(Ω1),L

q
u(Ω2)

)ψ(·),φ(·)

σ(·)

= sup
η(·)∈P0(σ(·),Ω)

sup
0<ε<q−1

(
ψ(η+)

) 1
p−−η+

(
φ(ε)

) 1
q−ε ∥f∥(

Lp(·)−η(·)(Ω1),L
q−ε
u (Ω2)

) <∞.

Further, we are also interested in the investigation of the mixed-normed grand function spaces(
Lp(·),ψ(·), Lq),φ(·)u

)
and

(
Lp(·),ψ(·),σ(·), Lq),φ(·)u

)
.

It is clear that (
Lp(·),ψ(·), Lq),φ(·)u

)
↪→

(
Lp(·), Lqu

)ψ(·),φ(·)
and (

Lp(·),ψ(·),σ(·), Lq),φ(·)u

)
↪→

(
Lp(·), Lqu

)ψ(·),φ(·)
σ(·) .

Define a strong Hardy–Littlewood maximal operator on Ω× Ω as follows:

M
(S)
Ω1,Ω2

g(x, y) = sup
B1∋x,B2∋y

1

|B1||B2|

∫
B1×B2

|g(t, s)| dtds, g ∈ Lloc(Ω1 × Ω2),

where B1 := B1 ∩ Ω1, B2 := B2 ∩ Ω2, B1 and B2 are the balls in Rn and Rm, respectively.
If Ω1 = Rn and Ω2 = Rm, then M

(S)
Ω1,Ω2

is denoted by M (S).
We say that a weight function u on Rn belongs to the Muckenhoupt class Ap0 , 1 < p0 <∞, if(

1

|B|

∫
B

w(x)dx

)(
1

|B|

∫
B

w1−p′0(x)dx

)p0−1

≤ C, p′0 =
p0

p0 − 1
,

for all balls B in Rn. Further, a weight function w on Rn × Rm belongs to the strong Muckenhoupt

class A
(S)
p0 if[

w
]
A

(S)
p0

:= sup
B1,B2

(
1

|B1 ×B2|

∫
B1×B2

w(x, y)dxdy

)(
1

|B1 ×B2|

∫
B1×B2

w1−p′0(x, y)dxdy

)p0−1

<∞,

where the supremum is taken over all balls B1 ⊂ Rn and B2 ⊂ Rm. We say that a weight w on

Rn×Rm belongs to the class A
(S)
1 if there is a positive constant C such that for a.e. (x, y) ∈ Rn×Rm,

M (S)w(x, y) ≤ Cw(x, y). (1)
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The best possible constant in (1) is called A
(S)
1 − characteristic of a weight w and is denoted by [w]

A
(S)
1

.

It is easy to see that the following relation[
w
]
A

(S)
p0

≤
[
w
]
A

(S)
p1

, 1 ≤ p1 ≤ p0 <∞

holds.
Further, we will need also the Muckenhoupt–Wheeden class of weights Ap0,q0 . A weight u on Rm

belongs to the class ∈ Ap0,q0 , 1 < p0, q0 <∞, if[
u
]
Ap0,q0

= sup
B

(
1

|B|

∫
B

uq0(x)dx

)(
1

|B|

∫
B

u−p
′
0(x)dx

)q0/p0
<∞.

Our first statement reads as follows.

Theorem 1.1 (Diagonal case). Let Ω1 and Ω2 be bounded domains in Rn and Rm, respectively. Let
F be a family of pairs (f, g) of measurable functions f and g defined on Ω1 × Ω2. Suppose that for

some 1 < p0 <∞, for every w ∈ A
(S)
p0 and all (f, g) ∈ F , the one-weight inequality( ∫

Ω1×Ω2

gp0(x, y)w(x, y) dxdy

) 1
p0

≤ CN
([
w
]
A

(S)
p0

)( ∫
Ω1×Ω2

fp0(x, y)w(x, y) dxdy

) 1
p0

holds with some positive constant C, independent of (f, g), and the constant N
([
w
]
A

(S)
p0

)
such that the

mapping · 7→ N(·) is non-decreasing. Then for any exponent p(·) ∈ B(Ω1), the constant q, 1 < q <∞,
for all (f, g) ∈ F , u ∈ Aq, and every

(
ψ(·), φ(·)

)
∈ Ap(·),q, the inequality

∥g∥(E1,E2) ≤ C̃∥f∥(E1,E2)

holds with a positive constant C̃, independent of (f, g), where

(E1, E2) :=
(
Lp(·),ψ(·)(Ω1), L

q),φ(·)
u (Ω2)

)
,(

resp., (E1, E2) :=
(
Lp(·)(Ω1), L

q
u(Ω2)

)ψ(·),φ(·))
.

In the off-diagonal case, we have

Theorem 1.2 (Off-diagonal Case). Let Ω1 and Ω2 be bounded domains in Rn and Rm, respectively.
Let F be a family of pairs (f, g) of measurable functions f and g defined on Ω1×Ω2. Suppose that for

some 1 < p0 ≤ q0 <∞, for every w ∈ A
(S)
1+q0/p′0

(Ω1 ×Ω2) and all (f, g) ∈ F , the one-weight inequality( ∫
Ω1×Ω2

gq0(x, y)w(x, y) dxdy

) 1
q0

≤ CN
(
[w]

A
(S)

1+
q0
p′0

)( ∫
Ω1×Ω2

fp0(x, y)w
p0
q0 (x, y) dxdy

) 1
p0

holds with the positive constant C, independent of (f, g), and the constant N
(
[w]

A
(S)

1+
q0
p′0

)
such that the

mapping s → N(s) is non-decreasing. Then for any variable exponents p1(·), q1(·) ∈ P (Ω1), with
q1(·) ∈ B(Ω1), constant exponents 1 < p2, q2 <∞ satisfying the condition

1

p1(·)
− 1

q1(·)
=

1

p2
− 1

q2
=

1

p0
− 1

q0
,

for all 0 < θ1, θ2 <∞, for all (f, g) ∈ F and any u ∈ Ap2,q2(Rm), the inequality

∥u(y)∥g(·, y)∥
L
q1(·),

θ1(q1)−
(p1)−

,σ(·)
(Ω1)

∥
L
q2),

θ2q2
p2 (Ω2))

≤ C̃∥u(y)∥f(·, y)∥Lp1(·),θ1,η(·)(Ω1)
∥
Lp2),θ2 (Ω2)

),(
resp. ∥u(y)g(x, y)∥(

Lq1(x)(Ω1),Lq2 (Ω2)
) θ1(q1)−

(p1)−
,
θ2q2
p2

σ(·)

≤ C̃∥u(y)f(x, y)∥(
Lp1(x)(Ω1),Lp2 (Ω2)

)θ1,θ2
η(·)

)
is fulfilled, where σ(·), η(·) are defined as follows:
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1

p1(x)− σ(x)
− 1

q1(x)− η(x)
=

1

p2
− 1

q2
=

1

p0
− 1

q0
,

and the positive constant C̃ is independent of (f, g).

Further, we have

Theorem 1.3. Let F be a family of pairs (f, g) of measurable functions f and g defined on Rn×Rm.

Suppose that for some 1 < p0 <∞ and for every w ∈ A
(S)
p0 and all (f, g) ∈ F , the one-weight inequality( ∫

Rn×Rm

gp0(x, y)w(x, y) dxdy

) 1
p0

≤ CN
([
w
]
A

(S)
p0

)( ∫
Rn×Rm

fp0(x, y)w(x, y) dxdy

) 1
p0

holds with some positive constant C, independent of (f, g), and the constant N
([
w
]
A

(S)
p0

)
such that

the mapping · 7→ N
(
·
)
is non-decreasing. Then for any variable exponent p(·) with p(·) ∈ B(Rn), a

constant q, 1 < q <∞, and every u ∈ Aq(Rm), the inequality

∥g∥(
Lp(·)(Rn),Lqu(Rm)

) ≤ C̃∥f∥(
Lp(·)(Rn),Lqu(Rm)

),
where the positive constant C̃ is independent of (f, g).

Theorem 1.3 in the unweighted case (u ≡ 1) was derived in [10, Theorem 1].

Theorem 1.4 (Off-diagonal Case). Let Ω1 and Ω2 be the bounded domains in Rn and Rm, respectively.
Let F be a family of pairs (f, g) of measurable functions f and g defined on Rn × Rm. Suppose that

for some 1 < p0 ≤ q0 <∞ and for every w ∈ A
(S)
1+q0/p′0

and (f, g) ∈ F , the one-weight inequality( ∫
Rn×Rm

gq0(x, y)w(x, y) dxdy

) 1
q0

≤ CN
(
[w]

A
(S)

1+
q0
p′0

)( ∫
Rn×Rm

fp0(x, y)w
p0
q0 (x, y) dxdy

) 1
p0

holds with the positive constant C independent of (f, g), and some non-decreasing mapping s→ N(s).
Then for any exponents p1(·), q1(·) ∈ P (Rn) with q1(·) ∈ B(Rn), constant exponents 1 < p2, q2 < ∞
satisfying the condition

1

p1(x)
− 1

q1(x)
=

1

p2
− 1

q2
=

1

p0
− 1

q0
,

for all (f, g) ∈ F and any u ∈ Ap2,q2(Rm),

∥u(y)∥g(·, y)∥Lq1(·)(Rn)∥Lq2 (Rm) ≤ C̃∥u(y)∥f(·, y)∥Lp1(·)(Rn)∥Lp2 (Rm),

with the positive constant C̃, independent of (f, g) ∈ F .

Remark 1.1. As a consequence of these statements, we have the boundedness of operators of Har-
monic Analysis for which the one-weight inequality holds under the strong Muckenhoupt condition

A
(S)
p0 , 1 < p0 < ∞. Such operators are, for example, Hardy–Littlewood maximal operator M (S),

multiple Calderón–Zygmund and multiple fractional integral operators, etc.

Remark 1.2. In Theorems 1.1 and 1.2, we may assume that the Muckenhoupt classes are defined
for weights on domains Ω1 and Ω2, where Ω1 and Ω2 satisfy the conditions: |B(x,R1)| ≥ CRn1 ,
|B(y,R2)| ≥ CRm2 , x ∈ Ω1, y ∈ Ω2, R1 ∈ (0, diam(Ω1)), R2 ∈ (0, diam(Ω2)).

In the sequel, we write (E1, E2) ∈ MS if the operator M (S) is bounded in (E1, E2).
Theorems 1.1, 1.2, 1.3, 1.4 follow from more general statements formulated in quantitative form

(see also [10] for the diagonal case).
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Theorem 1.5 (Diagonal Case). Let F be a family of pairs (f, g) of measurable functions f and g

defined on Ω1 × Ω2. Suppose that for some 1 < p0 < ∞ and for every w ∈ A
(S)
p0 and all (f, g) ∈ F ,

the one-weight inequality( ∫
Ω1×Ω2

gp0(x, y)w(x, y) dxdy

) 1
p0

≤ CN
(
[w]

A
(S)
p0

)( ∫
Ω1×Ω2

fp0(x, y)w(x, y) dxdy

) 1
p0

(2)

holds with some positive constant C, independent of (f, g), and some non-decreasing mapping s →
N(s). Suppose that there exists 1 < q0 < ∞ such that E

1/q0
1 and E

1/q0
2 are again BFSs. If(

(E
1/q0
1 )′, (E

1/q0
2 )′

)
∈ MS, then for any (f, g) ∈ F ,

∥g∥(E1,E2) ≤ J
(
∥M (S)∥

(E
1/q0
1 ,E

1/q0
2 )′

, p0, q0
)
∥f∥(E1,E2),

where J
(
∥M (S)∥

(E
1/q0
1 ,E

1/q0
2 )′

, p0, q0
)
is the constant such that the mapping t 7→ J

(
t, p0, q0

)
is non-

decreasing in t for fixed p0 and q0.

Theorem 1.6 (Off-diagonal Case). Let F be a family of pairs (f, g) of measurable functions f, g on

Ω1 × Ω2. Suppose that for some 1 < p0, q0 < ∞ and for every w ∈ A
(S)
1+q0/p′0

and (f, g) ∈ F , the

one-weight inequality( ∫
Ω1×Ω2

gq0(x, y)w(x, y) dxdy

) 1
q0

≤ CN
(
[w]

A
(S)

1+
q0
p′0

)( ∫
Ω1×Ω2

fp0(x, y)w
p0
q0 (x, y) dxdy

) 1
p0

(3)

holds with some positive constant C, independent of (f, g), and non-decreasing mapping s → N(s).
Suppose that E1 := E1(Ω1), E1 := E1(Ω1), E2 := E2(Ω2) and E2 := E2(Ω2) are BFSs. Let there
exist 1 < p̃0 <∞, 1 < q̃0 <∞ such that

1

p̃0
− 1

q̃0
=

1

p0
− 1

q0
,

and E
1/q̃0
1 , E

1/p̃0
1 , E

1/q̃0
2 , E

1/p̃0
2 are again BFSs satisfying the conditions(

E
1/q̃0
1

)′
=

[(
E

1/p̃0
1

)′]p̃0/q̃0
;

(
E

1/q̃0
2

)′
=

[(
E

1/p̃0
2

)′]p̃0/q̃0
.

If
((
E

1/q̃0
1

)′
,
(
E

1/q̃0
2

)′) ∈ MS, then for any (f, g) ∈ F ,

∥g∥(E1,E2)
≤ J

(
∥M (S)∥((

E
1/q̃0
1

)′
,
(
E

1/q̃0
2

)′), p0, q0, p̃0, q̃0)∥f∥(E1,E2),

where the constant J
(
∥M (S)∥((

E
1/q̃0
1

)′
,
(
E

1/q̃0
2

)′), p0, q0, p̃0, q̃0) is such that the mapping t 7→ J
(
t, p0, q0,

p̃0, q̃0
)
is non-decreasing in t for fixed p0, q0, p̃0, q̃0.
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Variable exponent Hölder, Morrey-Campanato and grand spaces. Operator Theory: Advances and Applications,
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