ON THE DIFFERENTIATION OF RANDOM MEASURES WITH RESPECT TO HOMOTHECY INVARIANT BASES

KAKHA CHUBINIDZE¹ AND GIORGI ONIANI²

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. For every homothecy invariant convex density differentiation basis B in \mathbb{R}^d , there are characterized sequences of weights $w = (w_j)_{j \in \mathbb{N}}$ for which the random measures $\mu_{w,\theta} = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$ are differentiable with respect to the basis B for almost every selection of a sequence of points $\theta_1, \theta_2, \ldots$ from the unit cube $[0, 1]^d$.

1. Definitions and Notation

Let $w = (w_j)_{j \in \mathbb{N}} \in (0, \infty)^{\mathbb{N}}$ and $\sum_{j=1}^{\infty} w_j < \infty$. The random measure generated by the sequence of weights $w = (w_j)_{j \in \mathbb{N}}$ and corresponding to a selection of points $\theta_1, \theta_2, \ldots$ from the unit cube $[0, 1]^d$ is defined as the discrete Lebesgue–Stieltjes measure $\mu_{w,\theta} = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$. Here and below, $\delta_x = \delta_x^X$ denotes the *Dirac measure* on a non-empty set X supported on a point $x \in X$.

We denote by m_d , μ_d and μ the Lebesgue measures in \mathbb{R}^d , $[0,1]^d$ and $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, respectively.

A mapping B defined on \mathbb{R}^d is said to be a *differentiation basis* (briefly, *basis*) if for every $x \in \mathbb{R}^d$, B(x) is a collection of bounded open subsets of \mathbb{R}^d which contain the point x, and there exists a sequence (R_j) of sets from B(x) with $\lim_{j\to\infty} \operatorname{diam} R_j = 0$.

For a Lebesgue–Stieltjes measure μ and a basis B, the numbers

$$\overline{D}_B(\mu, x) = \limsup_{R \in B(x), \operatorname{diam} R \to 0} \frac{\mu(R)}{\boldsymbol{m}_d(R)}, \quad \underline{D}_B(\mu, x) = \liminf_{R \in B(x), \operatorname{diam} R \to 0} \frac{\mu(R)}{\boldsymbol{m}_d(R)}$$

are called respectively the *upper* and *lower derivatives* of μ at the point x with respect to B. If the upper and lower derivatives coincide, then their common value is called the *derivative* of μ at a point x with respect to B and denoted by $D_B(\mu, x)$. Replacing $\mu(R)$ by $\int f d\mathbf{m}_d$ in the above expressions,

we define $\overline{D}_B(\int f, x)$, $\underline{D}_B(\int f, x)$ and $D_B(\int f, x)$ for a function $f \in L_{\text{loc}}(\mathbb{R}^d)$. The maximal operator M_B corresponding to the basis B is defined as follows:

$$M_B(\mu)(x) = \sup_{R \in B(x)} \frac{\mu(R)}{\boldsymbol{m}_d(R)},$$

where μ is a Lebesgue–Stieltjes measure on \mathbb{R}^d and $x \in \mathbb{R}^d$. Replacing $\mu(R)$ in the above supremum by $\int_{R} |f| d\mathbf{m}_d$, we get the definition of the maximal operator M_B for a function $f \in L_{\text{loc}}(\mathbb{R}^d)$. Denote by B^r (r > 0) the truncation of a basis B at the level r, i.e., $B^r(x) = \{R \in B(x) : \text{diam} R < r\}$ $(x \in \mathbb{R}^d)$. The operator M_{B^r} (r > 0) is called the truncated maximal operator.

A basis B is said:

- to differentiate a Lebesgue-Stieltjes measure μ if $D_B(\mu, x)$ exists for almost all $x \in \mathbb{R}^d$;
- to differentiate the integral of a function $f \in L_{loc}(\mathbb{R}^d)$ if $D_B(\int f, x) = f(x)$ for almost all $x \in \mathbb{R}^d$;

²⁰²⁰ Mathematics Subject Classification. 28A15, 42B25.

Key words and phrases. Random measures; Differentiation; Homothecy invariant basis.

- to differentiate a class $\Omega \subset L_{\text{loc}}(\mathbb{R}^d)$ if B differentiates $\int f$ for every $f \in \Omega$;
- to be translation invariant (homothecy invariant) if for every $x \in \mathbb{R}^d, R \in B(x)$ and a translation (homothecy) $M : \mathbb{R}^d \to \mathbb{R}^d$, we have $M(R) \in B(M(x))$;
- to be *convex* if each set $R \in \bigcup_{x \in \mathbb{R}^d} B(x)$ is convex;
- to be a *density basis* if *B* differentiates the integral of the characteristic function of every bounded measurable set;
- to be a Busemann-Feller basis if $(x \in \mathbb{R}^d, R \in B(x), y \in R) \Rightarrow R \in B(y)$.

Note that each homothecy invariant basis is also translation invariant.

In what follows, the dimension of the space \mathbb{R}^d is assumed to be greater than one.

Denote by I the bases for which I(x) ($x \in \mathbb{R}^d$) consists of all d-dimensional open intervals contain-

ing x. The differentiation with respect to \mathbf{I} is called the *strong differentiation*.

For a basis B in \mathbb{R}^d , we denote by φ_B the function defined by

$$\varphi_B(\lambda) = \boldsymbol{m}_d(\{M_{B^1}(\delta_0) > \lambda\}) \quad (0 < \lambda < \infty),$$

where δ_0 is the Dirac measure supported at the origin.

For an arbitrary homothecy invariant convex density basis B, the estimate $\varphi_B(\lambda) \geq \frac{c}{\lambda}$ ($\lambda > 1$) is valid, where c is a positive constant, not depending on λ . If, additionally, it is known that B does not differentiate $L(\mathbb{R}^d)$, then $\limsup_{\lambda \to \infty} \lambda \varphi_B(\lambda) = \infty$. These two estimates for φ_B will be checked later.

For the basis I in [2] (see Lemma 1), it is shown that there exist the constants $0 < c_d < C_d$ for which

$$\frac{c_d}{\lambda}(1+\ln^{d-1}\lambda) \le \varphi_{\mathbf{I}}(\lambda) \le \frac{C_d}{\lambda}(1+\ln^{d-1}\lambda) \quad (\lambda>1).$$

Let (X, μ) be a measure space. By $\mu^{\mathbb{N}}$ we denote the measure in $X^{\mathbb{N}}$ which is the product of a countable number of copies of the measure μ .

2. Results

Kahane (see [1, Chapter X]) proved the following alternative for the Fourier series of random measures on the torus: If a sequence of weights $w = (w_j)_{j \in \mathbb{N}} \in (0, \infty)^{\mathbb{N}}$ is such that $\sum_{j=1}^{\infty} w_j < \infty$ and $\sum_{j=1}^{\infty} w_j \ln \frac{1}{w_j} < \infty$, then for a.e. sequence $\theta = (\theta_j)_{j \in \mathbb{N}} \in \mathbb{T}^{\mathbb{N}}$ (in the sense of the measure $\mu^{\mathbb{N}}$), the sequence of the partial sums of the Fourier series for the random measure $\mu_{w,\theta}$ is bounded for a.e. $x \in \mathbb{T}$; and if $w = (w_j)_{j \in \mathbb{N}} \in (0, \infty)^{\mathbb{N}}$ is such that $\sum_{j=1}^{\infty} w_j < \infty$ and $\sum_{j=1}^{\infty} w_j \ln \frac{1}{w_j} = \infty$, then for a.e. sequence $\theta = (\theta_j)_{j \in \mathbb{N}} \in \mathbb{T}^{\mathbb{N}}$, the Fourier series of the random measure $\mu_{w,\theta}$ diverges unboundedly for a.e. $x \in \mathbb{T}$.

Similar result for random measures on $[0, 1]^d$ in the context of the strong differentiation was shown by Karagulyan [2]. Namely, in [2], the following theorem is proved: If $w = (w_j)_{j \in \mathbb{N}} \in (0, \infty)^{\mathbb{N}}$ is such that $\sum_{j=1}^{\infty} w_j < \infty$ and $\sum_{j=1}^{\infty} w_j \ln^{d-1} \frac{1}{w_j} < \infty$, then for a.e. sequence $\theta = (\theta_j)_{j \in \mathbb{N}} \in ([0, 1]^d)^{\mathbb{N}}$ (in the sense of the measure $\mu_d^{\mathbb{N}}$), the random measure $\mu_{w,\theta}$ is strongly differentiable, moreover, $D_{\mathbf{I}}(\mu_{w,\theta}, x) = 0$ for a.e. $x \in [0, 1]^d$; and if $w = (w_j)_{j \in \mathbb{N}} \in (0, \infty)^{\mathbb{N}}$ is such that $\sum_{j=1}^{\infty} w_j < \infty$ and $\sum_{j=1}^{\infty} w_j \ln^{d-1} \frac{1}{w_j} = \infty$, then for a.e. sequence $\theta = (\theta_j)_{j \in \mathbb{N}} \in ([0, 1]^d)^{\mathbb{N}}$, the random measure $\mu_{w,\theta}$ is not strongly differentiable, moreover, $\overline{D}_{\mathbf{I}}(\mu_{w,\theta}, x) = \infty$ for a.e. $x \in [0, 1]^d$.

In the theorem given below, for every homothecy invariant convex density basis B in \mathbb{R}^d , there are characterized sequences of weights $w = (w_j)_{j \in \mathbb{N}}$ for which the random measures $\mu_{w,\theta} = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$ are differentiable with respect to the basis B for almost every selection of a sequence of points $\theta_1, \theta_2, \ldots$ from the unit cube $[0, 1]^d$.

Theorem 2.1. Let *B* be a homothecy invariant convex density basis in \mathbb{R}^d . If $w = (w_j)_{j \in \mathbb{N}} \in (0,\infty)^{\mathbb{N}}$ is such that $\sum_{j=1}^{\infty} w_j < \infty$ and $\sum_{j=1}^{\infty} \varphi_B(\frac{1}{w_j}) < \infty$, then for a.e. sequence $\theta = (\theta_j)_{j \in \mathbb{N}} \in ([0,1]^d)^{\mathbb{N}}$ the random measure $\mu_{w,\theta} = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$ is differentiable with respect to the basis *B*, moreover, $D_B(\mu_{w,\theta}, x) = 0$ for a.e. $x \in [0,1]^d$; and if $w = (w_j)_{j \in \mathbb{N}} \in (0,\infty)^{\mathbb{N}}$ is such that $\sum_{i=1}^{\infty} w_j < \infty$ and

 $\sum_{j=1}^{\infty} \varphi_B\left(\frac{1}{w_j}\right) = \infty, \text{ then for a.e. sequence } \theta = (\theta_j)_{j \in \mathbb{N}} \in ([0,1]^d)^{\mathbb{N}} \text{ the random measure } \mu_{w,\theta} = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$ is not differentiable with respect to the basis B, moreover, $\overline{D}_B(\mu_{w,\theta}, x) = \infty$ for a.e. $x \in [0,1]^d$.

References

- 1. J. -P. Kahane, Some Random Series of Functions. D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968.
- G. Karagulyan, A necessary and sufficient condition for differentiability of integrals of random measures in Rⁿ over n-dimensional intervals. (Russian) translated from Mat. Zametki 49 (1991), no. 4, 63–68, 158 Math. Notes 49 (1991), no. 3-4, 375–378

(Received 08.01.2023)

 $^1\mathrm{Departament}$ of Mathematics, Akaki Tsereteli State University, 59 Tamar Mepe Str., Kutaisi 4600, Georgia

 $^2 {\rm School}$ of Computer Science and Mathematics, Kutaisi International University, Youth Avenue, 5th Lane, Kutaisi 4600, Georgia

Email address: kakha.chubinidze@atsu.edu.ge *Email address*: giorgi.oniani@kiu.edu.ge