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Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. For every homothecy invariant convex density differentiation basis B in Rd, there are

characterized sequences of weights w = (wj)j∈N for which the random measures µw,θ =
∞∑
j=1

wjδθj

are differentiable with respect to the basis B for almost every selection of a sequence of points
θ1, θ2, . . . from the unit cube [0, 1]d.

1. Definitions and Notation

Let w = (wj)j∈N ∈ (0,∞)N and
∞∑
j=1

wj < ∞. The random measure generated by the sequence of

weights w = (wj)j∈N and corresponding to a selection of points θ1, θ2, . . . from the unit cube [0, 1]d is

defined as the discrete Lebesgue–Stieltjes measure µw,θ =
∞∑
j=1

wjδθj . Here and below, δx = δXx denotes

the Dirac measure on a non-empty set X supported on a point x ∈ X.
We denote by md, µd and µ the Lebesgue measures in Rd, [0, 1]d and T = R/Z, respectively.
A mapping B defined on Rd is said to be a differentiation basis (briefly, basis) if for every x ∈ Rd,

B(x) is a collection of bounded open subsets of Rd which contain the point x, and there exists a
sequence (Rj) of sets from B(x) with lim

j→∞
diamRj = 0.

For a Lebesgue–Stieltjes measure µ and a basis B, the numbers

DB(µ, x) = lim sup
R∈B(x),diamR→0

µ(R)

md(R)
, DB(µ, x) = lim inf

R∈B(x),diamR→0

µ(R)

md(R)

are called respectively the upper and lower derivatives of µ at the point x with respect to B. If the
upper and lower derivatives coincide, then their common value is called the derivative of µ at a point
x with respect to B and denoted by DB(µ, x). Replacing µ(R) by

∫
R

fdmd in the above expressions,

we define DB(
∫
f, x), DB(

∫
f, x) and DB(

∫
f, x) for a function f ∈ Lloc(Rd). The maximal operator

MB corresponding to the basis B is defined as follows:

MB(µ)(x) = sup
R∈B(x)

µ(R)

md(R)
,

where µ is a Lebesgue–Stieltjes measure on Rd and x ∈ Rd. Replacing µ(R) in the above supremum
by

∫
R

|f |dmd, we get the definition of the maximal operator MB for a function f ∈ Lloc(Rd). Denote

by Br (r > 0) the truncation of a basis B at the level r, i.e., Br(x) = {R ∈ B(x) : diamR < r}
(x ∈ Rd). The operator MBr (r > 0) is called the truncated maximal operator.

A basis B is said:

• to differentiate a Lebesgue–Stieltjes measure µ if DB(µ, x) exists for almost all x ∈ Rd;
• to differentiate the integral of a function f ∈ Lloc(Rd) if DB(

∫
f, x) = f(x) for almost all

x ∈ Rd;
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• to differentiate a class Ω ⊂ Lloc(Rd) if B differentiates
∫
f for every f ∈ Ω;

• to be translation invariant (homothecy invariant) if for every x ∈ Rd, R ∈ B(x) and a trans-
lation (homothecy) M : Rd → Rd, we have M(R) ∈ B(M(x));

• to be convex if each set R ∈ ∪
x∈Rd

B(x) is convex;

• to be a density basis if B differentiates the integral of the characteristic function of every
bounded measurable set;

• to be a Busemann–Feller basis if (x ∈ Rd, R ∈ B(x), y ∈ R) ⇒ R ∈ B(y).

Note that each homothecy invariant basis is also translation invariant.
In what follows, the dimension of the space Rd is assumed to be greater than one.
Denote by I the bases for which I(x) (x ∈ Rd) consists of all d-dimensional open intervals contain-

ing x. The differentiation with respect to I is called the strong differentiation.
For a basis B in Rd, we denote by φB the function defined by

φB(λ) = md({MB1(δ0) > λ}) (0 < λ < ∞),

where δ0 is the Dirac measure supported at the origin.
For an arbitrary homothecy invariant convex density basis B, the estimate φB(λ) ≥ c

λ (λ > 1) is
valid, where c is a positive constant, not depending on λ. If, additionally, it is known that B does not
differentiate L(Rd), then lim sup

λ→∞
λφB(λ) = ∞. These two estimates for φB will be checked later.

For the basis I in [2] (see Lemma 1), it is shown that there exist the constants 0 < cd < Cd for
which

cd
λ
(1 + lnd−1 λ) ≤ φI(λ) ≤

Cd

λ
(1 + lnd−1 λ) (λ > 1).

Let (X,µ) be a measure space. By µN we denote the measure in XN which is the product of a
countable number of copies of the measure µ.

2. Results

Kahane (see [1, Chapter X]) proved the following alternative for the Fourier series of random

measures on the torus: If a sequence of weights w = (wj)j∈N ∈ (0,∞)N is such that
∞∑
j=1

wj < ∞ and

∞∑
j=1

wj ln
1
wj

< ∞, then for a.e. sequence θ = (θj)j∈N ∈ TN (in the sense of the measure µN), the

sequence of the partial sums of the Fourier series for the random measure µw,θ is bounded for a.e.

x ∈ T; and if w = (wj)j∈N ∈ (0,∞)N is such that
∞∑
j=1

wj < ∞ and
∞∑
j=1

wj ln
1
wj

= ∞, then for a.e.

sequence θ = (θj)j∈N ∈ TN, the Fourier series of the random measure µw,θ diverges unboundedly for
a.e. x ∈ T.

Similar result for random measures on [0, 1]d in the context of the strong differentiation was shown
by Karagulyan [2]. Namely, in [2], the following theorem is proved: If w = (wj)j∈N ∈ (0,∞)N is such

that
∞∑
j=1

wj < ∞ and
∞∑
j=1

wj ln
d−1 1

wj
< ∞, then for a.e. sequence θ = (θj)j∈N ∈ ([0, 1]d)N (in the sense

of the measure µN
d ), the random measure µw,θ is strongly differentiable, moreover, DI(µw,θ, x) = 0

for a.e. x ∈ [0, 1]d; and if w = (wj)j∈N ∈ (0,∞)N is such that
∞∑
j=1

wj < ∞ and
∞∑
j=1

wj ln
d−1 1

wj
= ∞,

then for a.e. sequence θ = (θj)j∈N ∈ ([0, 1]d)N, the random measure µw,θ is not strongly differentiable,

moreover, DI(µw,θ, x) = ∞ for a.e. x ∈ [0, 1]d.
In the theorem given below, for every homothecy invariant convex density basis B in Rd, there are

characterized sequences of weights w = (wj)j∈N for which the random measures µw,θ =
∞∑
j=1

wjδθj are

differentiable with respect to the basis B for almost every selection of a sequence of points θ1, θ2, . . .
from the unit cube [0, 1]d.
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Theorem 2.1. Let B be a homothecy invariant convex density basis in Rd. If w = (wj)j∈N ∈

(0,∞)N is such that
∞∑
j=1

wj < ∞ and
∞∑
j=1

φB

(
1
wj

)
< ∞, then for a.e. sequence θ = (θj)j∈N ∈

([0, 1]d)N the random measure µw,θ =
∞∑
j=1

wjδθj is differentiable with respect to the basis B, moreover,

DB(µw,θ, x) = 0 for a.e. x ∈ [0, 1]d; and if w = (wj)j∈N ∈ (0,∞)N is such that
∞∑
j=1

wj < ∞ and

∞∑
j=1

φB

(
1
wj

)
= ∞, then for a.e. sequence θ = (θj)j∈N ∈ ([0, 1]d)N the random measure µw,θ =

∞∑
j=1

wjδθj

is not differentiable with respect to the basis B, moreover, DB(µw,θ, x) = ∞ for a.e. x ∈ [0, 1]d.
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