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DENSITY PROPERTY FOR A PRODUCT OF TRANSLATION INVARIANT

DENSITY DIFFERENTIATION BASES

IRAKLI JAPARIDZE

Abstract. We prove that if B1, . . . , Bk are translation invariant density differentiation bases in
Rn1 , . . . ,Rnk , respectively, then their product B1 × · · · ×Bk (i.e., the basis in Rn1+···+nk for which

B1 × · · · ×Bk (x1, . . . , xk) consists of all sets R1 × · · · ×Rk with R1 ∈ B1(x1), . . . , Rk ∈ Bk(xk)) is

a density basis, as well.

1. Definitions and Notation

A mapping B defined on Rn is called a differentiation basis (briefly, basis) if for each x ∈ Rn the
value B(x) is a collection of bounded measurable sets of positive measure which contain x and there
exists a sequence (Rk) of sets from B(x) with lim

k→∞
diamRk = 0.

Let B be a basis. For f ∈ L(Rn) and x ∈ Rn, the upper and lower limits of the integral means
1
|R|

∫
R

f , where R is an arbitrary set from B(x) and diamR → 0, are called the upper and lower deriva-

tives with respect to B of the integral of f at the point x, and denoted by DB(
∫
f, x) and DB(

∫
f, x),

respectively. If the two derivatives coincide, then their common value is called the derivative of
∫
f at

x and denoted by DB(
∫
f, x). We say that B differentiates

∫
f (or

∫
f is differentiable with respect

to B) if DB(
∫
f, x) = DB(

∫
f, x) = f(x) for almost all x ∈ Rn. If this is true for each f in a class

F ⊂ L(Rn) of functions, we say that B differentiates F .
For a basis B, we denote by B the collection

⋃
x∈Rn

B(x).

A basis B is called:

• homothecy invariant if for every x ∈ Rn, every R ∈ B(x) and every homothecy H : Rn → Rn,
we have H(R) ∈ B(H(x));

• translation invariant if for every x ∈ Rn, every R ∈ B(x) and every translation T : Rn → Rn,
we have T (R) ∈ B(T (x));

• convex if it is formed by convex sets, i.e., each set from B is convex;
• density basis if B differentiates

∫
χ

E
for every bounded measurable set E ⊂ Rn.

Note that each homothecy invariant basis is also translation invariant.
The maximal operator MB and the truncated maximal operator Mr

B (r ∈ (0,∞]) corresponding to
a basis B are defined as follows:

MB(f)(x) = sup
R∈B(x)

1

|R|

∫
R

|f |,

Mr
B(f)(x) = sup

R∈B(x), diamR<r

1

|R|

∫
R

|f |,

where f ∈ Lloc(Rn) and x ∈ Rn. Obviously, MB = M∞
B and Mr

B = MBr , where Br denotes the
truncation of the basis B at the level r, i.e., Br(x) = {R ∈ B(x) : diamR < r} (x ∈ Rn).

Let B1, . . . , Bk be the bases in Rn1 , . . . ,Rnk , respectively. Denote by B1 × · · · ×Bk the product of
the basis B1, . . . , Bk, i.e., the basis in Rn1+···+nk for which B1 × · · · × Bk (x1, . . . , xk) consists of all
sets R1 × · · · ×Rk with R1 ∈ B1(x1), . . . , Rk ∈ Bk(xk).
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It is easy to see that the product of translation invariant (homothecy invariant) bases is translation
invariant (homothecy invariant) basis, as well.

2. Result

The following characterizations for homothecy invariant density bases and translation invariant
density bases are known.

Theorem 2.1. Let B be a homothecy invariant basis. Then the following two properties are equivalent:

(a) B is a density basis.
(b) For each λ ∈ (0, 1), there exists a positive constant c(B, λ) such that∣∣{MB(χE

) > λ
}∣∣ ≤ c(B, λ)|E|,

for each bounded measurable set E.

Theorem 2.2. Let B be a translation invariant basis. Then the following two properties are equiva-
lent:

(a) B is a density basis.
(b) For each λ ∈ (0, 1), there exist positive constants r(B, λ) and c(B, λ) such that∣∣{Mr(B,λ)

B (χ
E
) > λ

}∣∣ ≤ c(B, λ)|E|,

for each bounded measurable set E.

Theorem 2.1 belongs basically to Busemann and Feller (see, e.g., [1, Chapter II, Theorem 1.2]).
Theorem 2.2 under some additional restrictions is proved in the works of Oniani [4] and Hagelstein and
Parissis [2]. Although the method of proving given in these works allows to establish the statement
of Theorem 2.2 in a full generality.

Some other fundamental properties of density bases can be found in [4, Chapter III] and [3, 5, 6].
The main result of the paper is the following

Theorem 2.3. Let B1, . . . , Bk be translation invariant density bases. Then their product B1×· · ·×Bk

is a density basis, as well.

Note that in the proof of Theorem 2.3 the key tool is the above given characterization of translation
invariant density bases.

3. Auxiliary Propositions

Lemma 3.1. Let B be a translation invariant basis. Then for every f ∈ Lloc(Rn) and λ > 0 the set
{MB(f) > λ} is open.

Proof. First note that for an arbitrary bounded measurable set E ⊂ Rn,

|E ∩ (t+ E)| −→ |E| (t → 0). (3.1)

Expression (3.1) is clear if E is an elementary set (i.e., a union of a finite number of cubes). After
taking into account the possibility of approximation of a bounded measurable set by elementary sets,
we derive (3.1) for the general case.

Take an arbitrary point x from the set {MB(f) > λ}. Then there is R ∈ B(x) with 1
|R|

∫
R

|f | > λ.

Using (3.1) and the property of an absolute continuity of the integral, we have 1
|t+R|

∫
t+R

|f | > λ for

every t with the norm small enough. Hence, by the translation invariance of B, some neighbourhood
of x is included in the set {MB(f) > λ}. The lemma is proved. □

For a set E ⊂ Rn+m and the points x ∈ Rn and y ∈ Rm, we denote

Ex =
{
t ∈ Rm : (x, t) ∈ E

}
, Ey =

{
t ∈ Rn : (t, y) ∈ E

}
.
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Lemma 3.2. Let B and S be translation invariant bases in Rn and Rm, respectively. Then for every
open set E ⊂ Rn+m and a number λ > 0 the sets{

(x, y) ∈ Rn+m : MB(χEy )(x) > λ
}
,

{
(x, y) ∈ Rn+m : MS(χEx

)(y) > λ
}

are open.

Proof. Denote

G =
{
(x, y) ∈ Rn+m : MB(χEy )(x) > λ

}
.

Suppose (x, y) ∈ G. We have to prove that (x, y) is an interior point of G. Let R ∈ B(x) be such that

|R ∩ Ey|
|R|

=
1

|R|

∫
R

χ
Ey > λ.

Here, | · | denotes the Lebesgue measure in Rn. Taking into account the fact that Ey is open, by the
approximation argument we can find a compact set K ⊂ Ey for which

|R ∩K|
|R|

=
1

|R|

∫
R

χ
K
> λ.

By the reasoning similar to the one given in the proof of Lemma 3.1, we can find an open ball V
in Rn with center at the origin such that

|(t+R) ∩K|
|t+R|

=
1

|t+R|

∫
t+R

χ
K
> λ, (3.2)

for every t ∈ V .
On the other hand, there is an open ball U in Rm with center at the origin such that

K ⊂ Ey+τ , for every τ ∈ U. (3.3)

Indeed, assuming the opposite, we find the sequences τj ∈ Rm (j ∈ N) with τj → 0 (j → ∞) and
xj ∈ K (j ∈ N) such that xj ̸∈ Ey+τj for every j ∈ N. Then by virtue of the compactness of K, we
can choose a subsequence (xjp) which tends to some point x∗ from K. Hence we have

(xjp , y + τjp) → (x∗, y) ∈ E (p → ∞)

and

(xjp , y + τjp) ̸∈ E (p ∈ N).
But this is impossible, since (x∗, y) is an interior point for E.

Now, using (3.2) and (3.3), we conclude that

λ <
1

|t+R|

∫
t+R

χ
K
≤ 1

|t+R|

∫
t+R

χ
Ey+τ,

for every t ∈ V and τ ∈ U . Clearly, this implies that (x, y) + V × U ⊂ G. Hence (x, y) is an interior
point for the set G.

The reasoning is analogous for the second set {(x, y) ∈ Rn+m : Ms(χEx
)(y) > λ}. The lemma is

complete. □

Lemma 3.3. Let B and S be translation invariant bases in Rn and Rm, respectively. Then for every
open set E ⊂ Rn+m and a number λ > 0,{

MB×S(χE
) > λ

}
⊂

{
(x, y) ∈ Rn+m : MS(χFx

)(y) >
λ

2

}
,

where F is the set {
(x, y) ∈ Rn+m : MB(χEy )(x) >

λ

2

}
(which is open by Lemma 3.2).
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Proof. Suppose a point (x0, y0) ∈ Rn+m is such that

MS(χFx0
)(y0) ≤

λ

2
. (3.4)

Let us consider an arbitrary set I × J ∈ B × S(x0, y0). By (??) we have

|J ∩ Fx0
|m

|J |m
=

1

|J |m

∫
J

χ
Fx0

≤ λ

2
. (3.5)

Note that if y ∈ J \ Fx0
, then MB(χEy )(x0) ≤ λ

2 and, consequently,

|I ∩ Ey|n
|I|n

=
1

|I|

∫
I

χ
Ey ≤ λ

2
. (3.6)

By (3.5) and (3.6), we have∣∣E ∩ (I × J)
∣∣ = ∫

J

|Ey ∩ I|n dy

=

∫
J∩Fx0

|Ey ∩ I|n dy +
∫

J\Fx0

|Ey ∩ I|n dy ≤ |I|n · |J ∩ Fx0
|n +

(λ
2
|I|n

)
|J \ Fx0

|m

≤ |I|n ·
(λ
2
|J |m

)
+

λ

2
|I|n|J |m = λ · |I|n|J |m = λ|I × J |.

Thus
1

|I × J |

∫
I×J

χ
E
=

|E ∩ (I × J)|
|I × J |

≤ λ.

Hence, MB×S(χE
)(x0, y0) ≤ λ. The lemma is complete. □

4. Proof of Theorem 2.3

Without loss of generality, let us consider the case of two bases B1 = B and B2 = S in the spaces
Rn and Rm, respectively.

Let λ ∈ (0, 1). Since B and S are translation invariant bases, by Theorem 2.2, there exist positive
constants c(B, λ/2), c(S, λ/2), r(B, λ/2) and r(S, λ/2) such that∣∣∣{Mr(B,λ/2)

B (χ
P
) >

λ

2

}∣∣∣ ≤ c
(
P,

λ

2

)
|P | (4.1)

and ∣∣∣{Mr(S,λ/2)
S (χ

Q
) >

λ

2

}∣∣∣ ≤ c
(
Q,

λ

2

)
|Q|, (4.2)

for every bounded measurable sets P and Q in the spaces Rn and Rm, respectively.
Set

r(B × S, λ) = min
(
r
(
B,

λ

2

)
, r
(
S,

λ

2

))
and

c(B × S, λ) = c
(
B,

λ

2

)
c
(
S,

λ

2

)
.

Let us show that for any bounded open set E in Rn+m,∣∣{Mr(B×S,λ)
B×S (χ

E
) > λ

}∣∣ ≤ c(B × S, λ)|E|. (4.3)

It is clear that from (4.3), by Theorem 2.2, it follows that B × S is a density basis.
Note that

(B × S)r(B×S,λ) ⊂ Br(B×S,λ) × Sr(B×S,λ). (4.4)

Denote

F =
{
(x, y) ∈ Rn+m : M

r(B×S,λ)
B (χ

Ey )(x) >
λ

2

}
.



DENSITY PROPERTY FOR A PRODUCT 57

By Lemma 3.2, F is an open subset of Rn+m.
By (4.1) and the estimation r(B × S, λ) ≤ r(B, λ/2), for every y ∈ Rm, we have

|F y|n =
∣∣∣{x ∈ Rn : M

r(B×S,λ)
B (χ

Ey )(x) >
λ

2

}∣∣∣
n

≤
∣∣∣{x ∈ Rn : M

r(B,λ/2)
B (χ

Ey )(x) >
λ

2

}∣∣∣
n

≤ c
(
B,

λ

2

)
|Ey|n.

Hence

|F | =
∫
Rm

|F y|n dy ≤
∫
Rm

c
(
B,

λ

2

)
|Ey|n dy = c

(
B,

λ

2

)
|E|. (4.5)

Now, let us consider the set

G =
{
(x, y) ∈ Rn+m : M

r(B×S,λ)
S (χ

Ex
)(y) >

λ

2

}
,

which by Lemma 3.2 is open and by Lemma 3.3 and (4.4) contains the set {Mr(B×S,λ)
B×S (χ

E
) > λ}.

Using (4.2) and the estimation r(B × S, λ) ≤ r(S, λ/2) for every x ∈ Rn, we write

|Gx|m =
∣∣∣{y ∈ Rm : M

r(B×S,λ)
S (χ

Fx
)(y) >

λ

2

}∣∣∣
m

≤
∣∣∣{y ∈ Rm : M

r(S,λ/2)
S (χ

Fx
)(y) >

λ

2

}∣∣∣
m

≤ c
(
S,

λ

2

)
|Fx|m.

Hence by (4.5), we have

|G| =
∫
Rn

|Gx|m dx ≤
∫
Rn

c
(
S,

λ

2

)
|Fx|m dx = c

(
S,

λ

2

)
|F | = c

(
S,

λ

2

)
c
(
B,

λ

2

)
|E|.

Thus from (4.3) and all written within it, we conclude that the theorem is complete.
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