THE COMPLEX LINE (p,q)-INTEGRAL AND (p,q)-GREEN'S FORMULA

ILKER GENÇTÜRK^{1*} AND KERİM KOCA²

Abstract. In this study, we present the complex line (p, q)-integral and multiple (p, q)-integral by using the concept of (p, q)-calculus. The (p, q)-Green's formula and the (p, q)-Gauss formulas are obtained with appropriate conditions in a complex plane.

1. INTRODUCTION

The q-calculus, where q stands for quantum, plays an important role in understanding various fields of mathematics, such as fractional calculus, discrete geometric function theory, analytic function theory, etc. There is a vast list of publications [1-4, 9-11, 15, 17] and references therein. Roughly speaking, q-calculus substitutes the classical derivative by a difference operator. For basic definitions and more details, see [7, 13].

The (p, q)-calculus, which is more general than q-calculus, has been studied due to its important applications in various subfields of mathematics and quantum physics [5, 6, 8, 12, 18-20]. In [16], the author investigated some properties of the (p, q)-calculus. Furthermore, in the same paper, the fundamental theorem and the formula of integration by parts were obtained.

It is well-known that Green's formula provides the relationship between a line integral around a simple closed curve C and a double integral over the plane region D bounded by C. The aim of our paper is to get the complex (p,q)-Green's Formula. The paper is organised as follows. In Section 2, we recall some basic definitions and properties of the (p,q)-calculus. In Section 3, the (p,q)-complex integral is defined. In the next and final section, we give the complex line (p,q)-integral and the multiple (p,q)-integral, respectively.

2. Basic Definitions and Preliminaries

In this work, unless otherwise stated, for fixed (x_0, y_0) $(x_0 \ge 0, y_0 \ge 0)$, we consider the discrete set

$$K = \{ p^m x_0 + i q^n y_0 \in \mathbb{C}, \ m, n = 0, 1, 2, \dots; \ 0$$

Definition 2.1. For $\alpha \in \mathbb{R}$, the (p,q)-analogue of α is defined as

$$[\alpha]_{p,q} = \frac{p^{\alpha} - q^{\alpha}}{p - q}.$$

Also, for $n \in \mathbb{N}$, the (p,q)-factorial of n is defined as

$$[n]_{p,q}! = [1]_{p,q} [2]_{p,q} \dots [n]_{p,q}, \quad n \ge 1; \quad [0]_{p,q}! = 1.$$

Moreover, let us introduce the p, q-binomial coefficients

$$\binom{n}{k}_{p,q} = \frac{[n]_{p,q}!}{[k]_{p,q}! [n-k]_{p,q}!}, \quad 0 \le k \le n; \quad n,k \in \mathbb{N}.$$

Definition 2.2. The (p,q)-differential of a complex discrete function f(z), defined at the points of a discrete domain K, is written as

$$D_{p,q} f(z) = \frac{f(pz) - f(qz)}{(p-q)z}, \quad z \neq 0,$$

²⁰²⁰ Mathematics Subject Classification. Primary 30A05, Secondary 30G25, 05A30.

Key words and phrases. Complex line (p,q)-integral; Multiple (p,q)-integral, (p,q)-Green's formula.

^{*} Corresponding author.

and

$$D_{p,q} f(0) = \lim_{z \to 0} \frac{f(p^n z) - f(q^n z)}{(p^n - q^n)z}.$$

For example, if $f(z) = z^n$, $n \in \mathbb{N}$, one can see that

$$D_{p,q} z^n = [n]_{p,q} z^{n-1}.$$

Definition 2.3. For $z = x + iy := (x, y) \in K$,

$$(z) = \{(x,y), (px,y), (x,py), (qx,y), (x,qy), (qx,py), (px,qx), (px,py), (qx,qy)\} \subset K$$

is called a basic discrete set with respect to $z \in K$.

Definition 2.4. For $z = x + iy \in S(z)$, the (p,q)-differential of a complex discrete function f(z) is defined as $d_{p,q} f(z) = f(pz) - f(qz) = f(px, py) - f(qx, qy)$.

Now, for $z = x + iy \in S(z)$, let us introduce the partial (p, q)-derivatives in real variables x and y.

$$D_{(p,q),x} f(x,y) = \frac{f(px,y) - f(qx,y)}{(p-q)x}, \quad D_{(p,q),y} f(x,y) = \frac{f(x,py) - f(x,qy)}{(p-q)y}.$$
 (2.1)

Also, we consider the dilatation operators

$$M_q^x f(x,y) = f(qx,y), \quad M_q^y f(x,y) = f(x,qy)$$
 (2.2)

in variables x and y, respectively.

Hence, the (p,q)-differential of f(z) can be written as

$$d_{p,q} f(x,y) = M_p^y D_{(p,q),x} f(x,y) d_{p,q} x + M_q^x D_{(p,q),y} f(x,y) d_{p,q} y,$$
(2.3)

where $d_{p,q}x = (p-q)x, d_{p,q}y = (p-q)y.$

For any point $z \in S(z)$, it can be seen that $d_{p,q}z = d_{p,q}x + i d_{p,q}y = (p-q)z$, $d_{p,q}\overline{z} = d_{p,q}x - i d_{p,q}y = (p-q)\overline{z}$.

Definition 2.5. Let $D_{(p,q),x}$, $D_{(p,q),y}$ and M_p , M_q be as in (2.1) and (2.2), respectively. Then the complex (p,q)-differential operators $D_{(p,q),z}$ and $D_{(p,q),\bar{z}}$ are defined as follows:

$$D_{(p,q),z} := \frac{1}{2} \left[M_p^y \, D_{(p,q),x} - i \, M_q^x \, D_{(p,q),y} \right], \tag{2.4}$$

$$D_{(p,q),\bar{z}} := \frac{1}{2} \left[M_p^y \, D_{(p,q),x} + i \, M_q^x \, D_{(p,q),y} \right].$$
(2.5)

Theorem 2.6. For any point $z \in S(z)$, the (p,q)-differential of discrete function f(z) defined at the points in K can be given by

$$d_{p,q} f(z) = D_{(p,q),z} f(z) d_{p,q} z + D_{(p,q),\bar{z}} f(z) d_{p,q} \bar{z}.$$
(2.6)

Proof. The validity of (2.6) can be seen by using (2.1), (2.2), (2.4) and (2.5) through simple calculations. Also, we note that (2.3) is equivalent to (2.6).

Definition 2.7. Let $B \subset K$ be a subdiscrete domain. For $S(z) \subset B$, if for all $z \in B$, f(z) satisfies $D_{(p,q),\overline{z}} f(z) \equiv 0$, then f(z) is called (p,q)-analytic on B.

Example 2.8. The function

$$f(z) = f(x, y) = qx^{2} + (p+q)ixy - py^{2}$$
(2.7)

is (p,q)-analytic. In fact, after some calculations, it is seen that

$$\frac{f(px, py) - f(qx, py)}{x} = (p^2 - q^2)(qx + ipy) = \frac{f(qx, py) - f(qx, qy)}{iy}$$

So, this implies that $D_{(p,q),\bar{z}}f(z) \equiv 0$.

Remark 2.9. In [14], the criterion of (p,q)-analyticity is given as $D_{p,x} f(z) = D_{q,y} f(z)$, where

$$D_{p,x} f(z) = \frac{f(z) - f(px, y)}{(1 - p)x}; \quad D_{q,y} f(z) = \frac{f(z) - f(x, qy)}{(1 - q)iy}.$$

The function (2.7) is not (p,q)-analytic in the sense of M. A. Khan.

On the other hand, in [17], the criterion of q-analyticity was given as

$$D_{q,\bar{z}} f(z) = \frac{1}{2} \left[D_{q,x} + i M^y_{\frac{1}{q}} D_{q,y} \right] f(z) = 0.$$

The function (2.7) is not q-analytic in the sense of Pashaev. However, by interchanging p and q, and then choosing p = 1, the new function $g(z) = g(x, y) = x^2 + (1+q)ixy - qy^2$ is q-analytic in the sense of Pashaev.

Let us define the operator $L_{p,q}$ by

$$L_{p,q} f(z) := z f(qx, py) - x f(qx, qy) - i y f(px, py).$$

Theorem 2.10. *For* $z = x + iy \in S(z)$ *,*

$$f(z)$$
 is (p,q) -analytic on $S(z) \Leftrightarrow L_{p,q}f(z) \equiv 0$

Corollary 2.11. If f(z) is (p,q)-analytic, it is easily seen that $d_{p,q} f(z) = D_{(p,q),z} f(z) d_{p,q} z$.

3. The (p,q)-complex integral

In this section, the (p,q)-Jackson integral is defined for an arbitrary function f(z).

Definition 3.1. Let f(z) be an arbitrary function and F(z) be a function such that $D_{(p,q),z} F(z) = f(z)$, then

$$\frac{F(pz) - F(qz)}{(p-q)z} = f(z).$$

The function F(z) is a (p,q)-antiderivative of f(z). F(z) is denoted by

 $\int f(z)d_{p,q}z.$

Definition 3.2 ([16]). Let f be an arbitrary function and a be a real number. The (p, q)-integral of f is defined as follows:

$$\int_{0}^{a} f(x) d_{p,q} x = (p-q) a \sum_{k=0}^{\infty} \frac{q^{k}}{p^{k+1}} f\left(\frac{q^{k}}{p^{k+1}}a\right), \quad \left|\frac{q}{p}\right| < 1.$$
(3.1)

Definition 3.3. A function f is called (p,q)-integrable on $[0,\infty)$ if the series in (3.1) converges absolutely.

Remark 3.4. If we choose p = 1, then formula (3.1) for the well-known Jackson integral (see [13, p. 67]) gives

$$\int f(x) d_q x = (1-q) x \sum_{k=0}^{\infty} q^k f\left(q^k x\right).$$
$$\left|\frac{p}{q}\right| < 1 \Leftrightarrow |rs| < 1,$$

For $p = r^{1/2}$, $q = s^{-1/2}$,

and formula
$$(3.1)$$
 gives

$$\int_{0}^{a} f(x)d_{p,q}x = (s^{-1/2} - r^{1/2}) a \sum_{k=0}^{\infty} r^{k/2} s^{(k+1)/2} f\left(r^{k/2} s^{(k+1)/2} a\right),$$

which is formula (11) given in [5].

The detailed information related to the (p, q)-integrals can be found in [16].

4. Line Integrals

On the complex plane \mathbb{C} , let

$$\gamma: z(t) = x(t) + i y(t), \quad t \in [0, a], \quad (a > 0)$$

be a curve which is piecewise smooth and rectifiable. Now, let us consider a function $f(z(t)) = u(z(t)) + iv(z(t)), t \in [0, a]$, on the curve γ .

Definition 4.1. If for z = x + iy,

$$\lim_{n,k\to\infty} h\left(\frac{q^n}{p^n}x,\frac{q^k}{p^k}y\right) := \lim_{n\to\infty} \left[\lim_{k\to\infty} h\left(\frac{q^n}{p^n}x,\frac{q^k}{p^k}y\right)\right] = \lim_{k\to\infty} \left[\lim_{n\to\infty} h\left(\frac{q^n}{p^n}x,\frac{q^k}{p^k}y\right)\right] = h(0,0),$$

then h(z) is called (p,q)-regular at the point (0,0).

Definition 4.2. Let f(z) be given on a piecewise smooth, rectifiable curve $\gamma \subset \mathbb{C}$, or indirectly, as a composite function f(z(t)) on I = [0, a]. It is said to be (p, q)-uniformly continuous on the curve γ if for any given positive number ε , we can find a number $\delta = \delta(\varepsilon)$ such that $\left| f\left(z\left(a \frac{q^k}{p^k} \right) \right) - f\left(z\left(a \frac{q^{k+1}}{p^{k+1}} \right) \right) \right| < \varepsilon$ for sufficiently large numbers k, provided $\left| z\left(a \frac{q^k}{p^k} \right) - z\left(a \frac{q^{k+1}}{p^{k+1}} \right) \right| < \delta$.

Lemma 4.3. Let $\gamma : z(t) = x(t) + iy(t)$ be a continuous curve on \mathbb{C} with $t \in [0, a]$, and let f(z) = u(z) + iv(z) = u(z(t)) + iv(z(t)) be a complex-valued function which is (p, q)-uniformly continuous on the given curve γ . If x(t), y(t) have (p, q)-derivative and u, v are (p, q)-integrable, then the Jackson integral of f(z) on γ is given by

$$\int_{\gamma} f(z) d_{p,q} z = \int_{0}^{a} f(z(t)) D_{p,q} z(t) d_{p,q} t$$
$$= (p-q) a \sum_{n=0}^{\infty} \frac{q^{n}}{p^{n+1}} f\left(z\left(a\frac{q^{n}}{p^{n+1}}\right)\right) D_{p,q} z\left(a\frac{q^{n}}{p^{n+1}}\right).$$
(4.1)

Here, the (p,q)-antiderivative of f(z) is (p,q)-regular at z = 0.

Proof. Let $\gamma : z(t) = x(t) + i y(t)$, for $0 \le t \le a$, and f(z) = f(z(t)) = u(z(t)) + i v(z(t)). Starting with

$$I = \int_{\gamma} f(z)d_{p,q}z = \int_{\gamma} u(z)d_{p,q}z + i \int_{\gamma} v(z)d_{p,q}z,$$

and making the substitution z = z(t) in each of integrals on the right-hand side, we have

$$\begin{split} I &= \int_{0}^{a} u(z(t)) D_{p,q} z(t) \, d_{p,q} t + i \int_{0}^{a} v(z(t)) D_{p,q} z(t) \, d_{p,q} t = \int_{0}^{a} f(z(t)) D_{p,q} z(t) \, d_{p,q} t \\ &= \int_{0}^{a} [u(z(t)) + iv(z(t))] [D_{p,q} x(t) + i D_{p,q} y(t)] \, d_{p,q} t \\ &= \int_{0}^{a} u(z(t)) D_{p,q} x(t) \, d_{p,q} t + i \int_{0}^{a} v(z(t)) D_{p,q} x(t) \, d_{p,q} t \\ &+ i \int_{0}^{a} u(z(t)) D_{p,q} y(t) \, d_{p,q} t - \int_{0}^{a} v(z(t)) D_{p,q} y(t) \, d_{p,q} t. \end{split}$$

By calculating the real integrals and using (3.1), we get

$$\begin{split} I &= \sum_{n=0}^{\infty} \left[u \left(z \left(a \frac{q^n}{p^{n+1}} \right) \right) + iv \left(z \left(a \frac{q^n}{p^{n+1}} \right) \right) \right] \\ &\times \left[x \left(a \frac{q^n}{p^{n+1}} \right) - x \left(a \frac{q^n}{p^{n+1}} \right) + i \left(y \left(a \frac{q^n}{p^{n+1}} \right) - y \left(a \frac{q^n}{p^{n+1}} \right) \right) \right] \\ &= \sum_{n=0}^{\infty} f \left(z \left(a \frac{q^n}{p^{n+1}} \right) \right) \left(z \left(a \frac{q^n}{p^n} \right) - z \left(a \frac{q^{n+1}}{p^{n+1}} \right) \right) \\ &= (p-q) a \sum_{n=0}^{\infty} \frac{q^n}{p^{n+1}} f \left(z \left(a \frac{q^n}{p^{n+1}} \right) \right) D_{p,q} z \left(a \frac{q^n}{p^{n+1}} \right). \end{split}$$

The proof is complete.

Definition 4.4. If the series in (4.1) is convergent, then the complex function f(z) is called (p,q)-integrable on the curve γ .

Remark 4.5. If f(z) is (p,q)-integrable on the continuous curve γ , then

$$\lim_{p \to 1} \int_{\gamma} f(z) \, d_{p,q} z = \int_{\gamma} f(z) \, d_q z.$$

Example 4.6. If we use (4.1) for $\gamma : z(t) = t^2 + it$, $0 \le t \le 2$, and the function $f(z) = \overline{z}$ for 0 < q < p < 1, we get

$$\int_{\gamma} \overline{z} \, d_{p,q} z = \int_{t=0}^{2} (t^2 - it) D_{p,q} z(t) \, d_{p,q} t = \int_{0}^{2} (t^2 - it) [t(p+q) + i] \, d_{p,q} t$$
$$= 4 \Big(\frac{4}{p^2 + q^2} - \frac{i(1 - (p+q))}{p^2 + q + q^2} + \frac{1}{p+q} \Big).$$

Note that the result above is the same as the following (p, q)-integral result as $p \to 1$:

$$\lim_{p \to 1} \int_{\gamma} \overline{z} \, d_{p,q} z = \int_{\gamma} \overline{z} \, d_q z = 4 \Big(\frac{4}{1+q^2} - \frac{2i}{1+q+q^2} + \frac{1}{1+q} \Big).$$

Let us assume that the rectifiable piecewise smooth curve

$$\gamma: z(t) = x(t) + iy(t), \quad 0 \le t \le a$$

is positively oriented. In that case, the initial point of γ is $z(0) = z_0 = x(0) + iy(0)$ and the final point of γ is $z(a) = z_a = x(a) + i(a)$.

Let f(z) be a (p,q)-integrable function on γ . Let $\tilde{\gamma}$ be the curve having the opposite orientation of γ , in the classical sense. Then the line (p,q)-integral of f(z) on $\tilde{\gamma}$ is defined by

$$\int\limits_{\widetilde{\gamma}} f(z) \, d_{p,q} z := - \int\limits_{\gamma} f(z) \, d_{p,q} z$$

5. Multiple (p,q)-Integrals

Let h(x, y) be a function given in $D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le a, 0 \le y \le a\}$. For $(x, y) \in D$, the multiple (p, q)-integral of h(x, y) with 0 < q < p < 1 can be given by,

$$I = \int_{0}^{x} \int_{0}^{y} h(s,t) \, d_{p,q}t \, d_{p,q}s = (p-q)^2 xy \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{q^{n+k}}{q^{n+k+2}} h\left(\frac{q^n}{p^{n+1}}x, \frac{q^k}{p^{k+1}}y\right).$$
(5.1)

Now, let us investigate under which conditions the series (5.1) will be convergent. For all $(x, y) \in D$, if $M \in (0, +\infty)$ exists such that $|h(x, y)| \leq M$, integral (5.1) always exists. However, even if h(x, y) is unbounded, integral (5.1) may exist, as well.

The following theorem is related to a function in this situation:

Theorem 5.1. Let h(x, y) be a function given in $D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le a, 0 \le y \le a\}$. Assume that for all $(x, y) \in (0, a] \times (0, a], 0 \le \alpha < 1, 0 \le \beta < 1$, there is a positive M such that

$$x^{\alpha}y^{\beta}|h(x,y)| < M.$$
(5.2)

Then the series (5.1) is convergent for all $(x, y) \in (0, a] \times (0, a]$.

Proof. From (5.2), for x > 0, y > 0, we have

$$|h(x,y)| < Mx^{-\alpha}y^{-\beta}.$$
(5.3)

In (5.3), if we replace x with $\frac{q^n}{p^{n+1}}x$ and y with $\frac{q^k}{p^{k+1}}y$, we get

$$\left|h\left(\frac{q^n}{p^{n+1}}x,\frac{q^k}{p^{k+1}}y\right)\right| < M\left(\frac{q^n}{p^{n+1}}x\right)^{-\alpha} \left(\frac{q^k}{p^{k+1}}y\right)^{-\beta}.$$

Thus

$$\frac{q^{n}}{p^{n+1}} \frac{q^{k}}{p^{k+1}} \left| h(q^{n}x, q^{k}y) \right| < M p^{\alpha - 1} p^{\beta - 1} \left(\frac{q}{p}\right)^{(1-\alpha)n} \left(\frac{q}{p}\right)^{(1-\beta)k} x^{-\alpha} y^{-\beta}$$

For 0 < q < p < 1, we have $0 < \left(\frac{q}{p}\right)^{1-\alpha} < 1$, $0 < \left(\frac{q}{p}\right)^{1-\beta} < 1$. The geometric series

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} M x^{-\alpha} y^{-\beta} p^{\alpha-1} p^{\beta-1} \left(\frac{q}{p}\right)^{(1-\alpha)n} \left(\frac{q}{p}\right)^{(1-\beta)k} = \frac{M x^{-\alpha} y^{-\beta}}{(p^{1-\alpha} - q^{1-\alpha})(p^{1-\beta} - q^{1-\beta})}$$

is pointwise convergent. Hence, for all $(x, y) \in (0, a] \times (0, a]$, we have

$$(p-q)^2 xy \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{q^{n+k}}{p^{n+k+2}} |h(x,y)| < \frac{Mx^{1-\alpha}y^{1-\beta}(p-q)^2}{(p^{1-\alpha}-q^{1-\alpha})(p^{1-\beta}-q^{1-\beta})}.$$

Finally, the series in (5.1) is absolutely convergent, therefore it is convergent.

Remark 5.2. The condition (5.2) is sufficient but not necessary for the convergence of the series in (5.1).

Remark 5.3. For all $(x, y) \in D$, if we take h(x, y) = 1, then

$$\int_{0}^{a} \int_{0}^{a} d_{p,q} x d_{p,q} y = a^{2} = Area(D).$$

Remark 5.4. We note that

$$\lim_{p \to 1} \int_{0}^{a} \int_{0}^{a} h(x, y) \, d_{p,q} x \, d_{p,q} y = \int_{0}^{a} \int_{0}^{a} h(x, y) \, d_{q} x \, d_{q} y$$

(see [15]).

Definition 5.5. Let h(x, y) be a function on a (p, q)-geometrical set $D = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le a, 0 \le y \le a\}$ with 0 < q < p < 1. For all $(x, y) \in D$ and $x \ne 0, y \ne 0$, if

$$\lim_{n \to \infty} h\left(\frac{q^n}{p^n}x, y\right) = h(0, y) \quad \text{and} \quad \lim_{k \to \infty} h\left(x, \frac{q^k}{p^k}y\right) = h(x, 0)$$

hold, then h(x, y) is called (p, q)-regular on line segments $D_1 = \{(0, y) \in \mathbb{R}^2 : 0 < y \le a\}$ and $D_2 = \{(x, 0) \in \mathbb{R}^2 : 0 < x \le a\}$, respectively.

Remark 5.6. Since $\frac{q}{p} < 1$, the definition of the (p,q)-regularity is the same as that of the q-regularity in [15]. Also, we note that (5.1) is always true if h(x, y) is (p, q)-regular on D_1, D_2 and at (0, 0).

Lemma 5.7. Let h(x,y) be (p,q)-regular on $D_1 = \{(0,y) \in \mathbb{R}^2 : 0 < y \le a\}$, $D_2 = \{(x,0) \in \mathbb{R}^2 : 0 < x \le a\}$ and at the point (0,0). If h(0,y) = h(x,0) = h(0,0) = 0, then

$$D_{(p,q),x} D_{(p,q),y} \int_{0}^{x} \int_{0}^{y} h(s,t) d_{p,q}t d_{p,q}s = \int_{0}^{x} \int_{0}^{y} D_{(p,q),s} D_{(p,q),t}h(s,t) d_{p,q}t d_{p,q}s.$$
(5.4)

Proof. For $x \neq 0$ and $y \neq 0$, using the definition of the multiple (p,q)-integral, we get

$$\begin{split} D_{(p,q),x} \ D_{(p,q),y} F(x,y) &= D_{(p,q),x} \ D_{(p,q),y} \int_{0}^{x} \int_{0}^{y} h(s,t) \ d_{p,q}t \ d_{p,q}s \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{q^{n+k}}{p^{n+k+2}} \left[p^2 h\left(\frac{q^n}{p^n}x, \frac{q^k}{p^k}y\right) - pqh\left(\frac{q^n}{p^n}x, \frac{q^{k+1}}{p^{k+1}}y\right) \right. \\ &\left. - pqh\left(\frac{q^{n+1}}{p^{n+1}}x, \frac{q^k}{p^k}y\right) + q^2h\left(\frac{q^{n+1}}{p^{n+1}}x, \frac{q^{k+1}}{p^{k+1}}y\right) \right] = h(x,y). \end{split}$$

m 11

On the other hand, for the right-hand side of (5.4), we get

$$\int_{0}^{x} \int_{0}^{y} D_{(p,q),t}h(s,t) d_{p,q}t d_{p,q}s = \int_{0}^{x} \int_{0}^{y} \frac{h(s,pt) - h(s,qt)}{(p-q)t} d_{p,q}t d_{p,q}s$$
$$= \int_{0}^{x} (p-q)y \sum_{k=0}^{\infty} \frac{q^{k}}{p^{k+1}} \left[\frac{h\left(s, \frac{q^{k}}{p^{k}}y\right) - h\left(s, \frac{q^{k+1}}{p^{k+1}}y\right)}{(p-q)\frac{q^{k}}{p^{k+1}}y} \right] d_{p,q}s$$
$$= \int_{0}^{x} \sum_{k=0}^{\infty} \left[h\left(s, \frac{q^{k}}{p^{k}}y\right) - h\left(s, \frac{q^{k+1}}{p^{k+1}}y\right) \right] d_{q}s.$$

It can be seen that

$$\sum_{k=0}^{N} \left[h\left(s, \frac{q^{k}}{p^{k}}y\right) - h\left(s, \frac{q^{k+1}}{p^{k+1}}y\right) \right] = h(s, y) - h\left(s, \frac{q^{N+1}}{p^{N+1}}y\right),$$
$$\lim_{N \to \infty} \sum_{k=0}^{N} \left[h\left(s, \frac{q^{k}}{p^{k}}y\right) - h\left(s, \frac{q^{k+1}}{p^{k+1}}y\right) \right] = h(s, y) - h(s, 0).$$

Hence we have

$$\int_{0}^{x} \int_{0}^{y} D_{(p,q),t} h(s,t) \, d_{p,q}t \, d_{p,q}s = \int_{0}^{x} [h(s,y) - h(s,0)] d_{p,q}s.$$

Finally, we get

$$\int_{0}^{x} \int_{0}^{y} D_{(p,q),s} D_{(p,q),t} h(s,t) d_{p,q} t \, d_{p,q} s = \int_{0}^{x} D_{p,q}^{s} \left[h(s,y) - h(s,0) \right] d_{p,q} s$$
$$= h(x,y) - h(x,0) - h(0,y) + h(0,0).$$

With our assumptions h(0, y) = h(x, 0) = h(0, 0) = 0, the lemma is proved.

Theorem 5.8. Let the real-valued functions u(x, y), v(x, y) be given on the set $D = [0, a] \times [0, a]$, and let the functions $u, v, D_{(p,q),x}v, D_{(p,q),y}u$ be (p,q)-integrable on D with respect to both x and y. Then the (p,q)-Green's formula

$$\int_{\partial D} u(x,y)d_{p,q}x + v(x,y)d_{p,q}y = \iint_{D} \left[D_{(p,q),x}v(x,y) - D_{(p,q),y}u(x,y) \right] d_{p,q}x d_{p,q}y$$
(5.5)

is valid. Here, ∂D is oriented positively.

Proof. Let $\partial D = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$. γ_1 is given by $\gamma_1 : x = t, 0 \le t \le a, y = 0$, so we have $d_{p,q}x(t) = d_{p,q}t, d_{p,q}y(t) = 0$. Then, calculating the left-hand side of (5.5) on γ_1 , we arrive at

$$\int_{\gamma_1} u(x,y) d_{p,q} x + v(x,y) d_{p,q} y = \int_0^a u(t,0) d_{p,q} t.$$

For the curve γ_2 , γ_2 : $x = a, y = t, 0 \le t \le a$, so we have $d_{p,q}x(t) = 0, d_{p,q}y(t) = d_{p,q}t$, and

$$\int_{\gamma_2} u(x,y)d_{p,q}x + v(x,y)d_{p,q}y = \int_0^a v(a,t)d_{p,q}t.$$

On the other hand, the curve γ_3 is the curve $\tilde{\gamma_3} : x = t, y = a, 0 \le t \le a$ oriented oppositely. Hence on $\tilde{\gamma_3}, d_{p,q}y = 0$ and $d_{p,q}x = d_{p,q}t$, we have

$$\int\limits_{\gamma_3} u(x,y)d_{p,q}x + v(x,y)d_{p,q}y = -\int\limits_{\widetilde{\gamma_3}} u(x,y)d_{p,q}x + v(x,y)d_{p,q}y = -\int\limits_0^a u(t,a)d_{p,q}t.$$

Similarly, the curve γ_4 is the curve $\tilde{\gamma_4}: x = 0, y = t, 0 \le t \le a$ oriented oppositely. Thus

$$\int_{\gamma_4} u(x,y) d_{p,q} x + v(x,y) d_{p,q} y = -\int_{\widetilde{\gamma_4}} u(x,y) d_{p,q} x + v(x,y) d_{p,q} y = -\int_0^a v(0,t) d_{p,q} t$$

Hence we have

$$\int_{\partial D} u(x,y)d_{p,q}x + v(x,y)d_{p,q}y = \int_{0}^{a} \left[u(t,0) + v(a,t) - u(t,a) - v(0,t)\right]d_{p,q}t.$$
(5.6)

On the other hand, by (5.1), we can write

$$\iint_{D} D_{(p,q),x} v(x,y) d_{p,q} x \, d_{p,q} y = \int_{0}^{a} \int_{0}^{a} D_{(p,q),x} v(x,y) d_{p,q} x \, d_{p,q} y = \int_{0}^{a} \left[v(a,t) - v(0,t) \right] d_{p,q} t, \quad (5.7)$$

and

$$\iint_{D} D_{(p,q),y} u(x,y) d_{p,q} x \, d_{p,q} y = \int_{0}^{a} \int_{0}^{a} D_{(p,q),y} u(x,y) d_{p,q} x \, d_{p,q} y = \int_{0}^{a} \left[u(t,a) - u(t,0) \right] d_{p,q} t.$$
(5.8)

Using (5.7) and (5.8), we have

$$\iint_{D} \left[D_{(p,q),x} v(x,y) - D_{(p,q),y} u(x,y) \right] d_{p,q} x \, d_{p,q} y = \int_{0}^{a} \left[v(a,t) - v(0,t) - u(t,a) + u(t,0) \right] d_{p,q} t.$$
(5.9)

If we compare (5.6) and (5.9), it is seen that the (p, q)-Green's formula (5.5) holds.

Remark 5.9. If the complex-valued function f(z) = f(x, y) is q-periodic in x, i.e., f(x, y) = f(qx, y), and p-periodic in y, i.e., f(x, y) = f(x, py), then using (p, q)-Green's formula (5.5), we get the following (p, q)-Gauss formulas

$$\int_{\partial D} f(z) d_{p,q} z = 2i \iint_{D} D_{(p,q),\overline{z}} f(z) d_{p,q} x d_{p,q} y,$$
(5.10)

$$\int_{\partial D} f(z)d_{p,q}\overline{z} = -2i \iint_{D} D_{(p,q),z}f(z)d_{p,q}x \, d_{p,q}y.$$
(5.11)

Remark 5.10. It is not difficult to seen that the function

$$f(z) = f(x, y) = e^{2\pi i \left(m \frac{\ln |x|}{\ln q} + k \frac{\ln |y|}{\ln p}\right)}, \quad m, k \in \mathbb{Z},$$
(5.12)

is q-periodic in x and p-periodic in y. It can be easily verified that (5.12) satisfies (5.10) and (5.11).

Acknowledgements

The authors would like to express sincere gratitude to the reviewers for their valuable suggestions.

References

- A. A. Alderremy, M. J. S. Belaghi, K. M. Saad, T. Allahviranloo, A. Ahmadian, S. Aly, S. Salahshour, Analytical solutions of q-fractional differential equations with proportional derivative. AIMS Math. 6 (2021), no. 6, 5737–5749.
- 2. M. H. Annaby, Z. S. Mansour, *q-fractional Calculus and Equations*. With a foreword by Mourad Ismail. Lecture Notes in Mathematics, 2056. Springer, Heidelberg, 2012.
- 3. M. J. S. Belaghi, Some properties of the q-exponential functions. J. Comput. Anal. Appl. 29 (2021), 737-741.
- M. Belaghi, M. Sari, Behaviour of the first-order q-difference equation. Int. J. Optim. Control. Theor. Appl. IJOCTA 11 (2021), no. 1, 68–74.
- I. M. Burban, A. U. Klimyk, P,Q-differentiation, P,Q-integration, and P,Q-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 2 (1994), no. 1, 15–36.
- 6. R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A 24 (1991), no. 13, L711–L718.
- 7. T. Ernst, A Comprehensive Treatment of q-calculus. Birkhäuser/Springer Basel AG, Basel, 2012.
- I. Gençtürk, Boundary value problems for a second-order (p, q)-difference equation with integral conditions. Turkish Journal of Mathematics 46 (2022), no. SI-1, 499–515.
- I. Gençtürk, Ş. Hökelekli, K. Koca, Some classes of q-analytic functions and the q-Green's formula. Journal of Universal Mathematics 4 (2021), no. 1, 1–12.
- 10. C. J. Harman, Discrete geometric function theory. I, Applicable anal. 7 (1978), no. 4, 315–336.
- 11. C. J. Harman, R. J. Duffin, Discrete geometric function theory. II. Applicable Anal. 9 (1979), no. 3, 191–203.
- M. N. Hounkonnou, J. Désiré, B. Kyemba, R(p,q)-calculus: differentiation and integration. SUT J. Math. 49 (2013), no. 2, 145–167.
- 13. V. G. Kac, P. Cheung, Quantum Calculus. Universitext. Springer-Verlag, New York, 2002.
- M. A. Khan, M. Najmi, Discrete analytic continuation of a (p,q)-analytic function. Pro mathematica 14 (2000), no. 27-28, 99–120.
- K. Koca, I. Gençtürk, M. Aydın, Complex line q-integrals and q-Green's formula on the plane. An. Stiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64 (2018), no. 1, 27–45.
- 16. S. Njionou, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. **73** (2018), no. 1, Paper No. 39, 21pp.
- O. K. Pashaev, S. Nalci, q-analytic functions, fractals and generalized analytic functions. J. Phys. A 47 (2014), no. 4, 045204, 25 pp.
- J. Prabseang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via (p,q)-Calculus. Mathematics 9 (2021), no. 4, 446p.
- 19. S. Thongjob, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, Generalizations of some integral inequalities related to hardy type integral inequalities via (p,q)-calculus. J. Inequal. Appl. **2021**, Paper No. 105, 17pp.
- M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some new Hermite-Hadamard and related inequalities for convex functions via (p,q)-integral. *Entropy* 23 (2021), no. 7, Paper No. 828, 21pp.

(Received 22.10.2020)

¹Department of Mathematics, Kirikkale University, Kirikkale 71450, Turkey

²DEPARTMENT OF MATHEMATICS KIRIKKALE UNIVERSITY, KIRIKKALE 71450, TURKEY Email address: ilkergencturk@gmail.com Email address: kerimkoca@gmail.com