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THE COMPLEX LINE (p, q)-INTEGRAL AND (p, q)-GREEN’S FORMULA

İLKER GENÇTÜRK1∗ AND KERİM KOCA2

Abstract. In this study, we present the complex line (p, q)-integral and multiple (p, q)-integral by
using the concept of (p, q)-calculus. The (p, q)-Green’s formula and the (p, q)-Gauss formulas are

obtained with appropriate conditions in a complex plane.

1. Introduction

The q-calculus, where q stands for quantum, plays an important role in understanding various fields
of mathematics, such as fractional calculus, discrete geometric function theory, analytic function
theory, etc. There is a vast list of publications [1–4, 9–11, 15, 17] and references therein. Roughly
speaking, q-calculus substitutes the classical derivative by a difference operator. For basic definitions
and more details, see [7, 13].

The (p, q)-calculus, which is more general than q-calculus, has been studied due to its important
applications in various subfields of mathematics and quantum physics [5, 6, 8, 12, 18–20]. In [16],
the author investigated some properties of the (p, q)-calculus. Furthermore, in the same paper, the
fundamental theorem and the formula of integration by parts were obtained.

It is well-known that Green’s formula provides the relationship between a line integral around a
simple closed curve C and a double integral over the plane region D bounded by C. The aim of our
paper is to get the complex (p, q)-Green’s Formula. The paper is organised as follows. In Section 2,
we recall some basic definitions and properties of the (p, q)-calculus. In Section 3, the (p, q)-complex
integral is defined. In the next and final section, we give the complex line (p, q)-integral and the
multiple (p, q)-integral, respectively.

2. Basic Definitions and Preliminaries

In this work, unless otherwise stated, for fixed (x0, y0) (x0 ≥ 0, y0 ≥ 0), we consider the discrete
set

K =
{
pmx0 + i qny0 ∈ C, m, n = 0, 1, 2, . . . ; 0 < p < 1, 0 < q < 1

}
.

Definition 2.1. For α ∈ R, the (p, q)-analogue of α is defined as

[α]p,q =
pα − qα

p− q
.

Also, for n ∈ N, the (p, q)-factorial of n is defined as

[n]p,q! = [1]p,q [2]p,q . . . [n]p,q, n ≥ 1; [0]p,q! = 1.

Moreover, let us introduce the p, q-binomial coefficients(
n

k

)
p,q

=
[n]p,q!

[k]p,q! [n− k]p,q!
, 0 ≤ k ≤ n; n, k ∈ N.

Definition 2.2. The (p, q)-differential of a complex discrete function f(z), defined at the points of a
discrete domain K, is written as

Dp,q f(z) =
f(pz)− f(qz)

(p− q)z
, z ̸= 0,
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and

Dp,q f(0) = lim
z→0

f(pnz)− f(qnz)

(pn − qn)z
.

For example, if f(z) = zn, n ∈ N, one can see that

Dp,q z
n = [n]p,q z

n−1.

Definition 2.3. For z = x+ iy := (x, y) ∈ K,

(z) =
{
(x, y), (px, y), (x, py), (qx, y), (x, qy), (qx, py), (px, qx), (px, py), (qx, qy)

}
⊂ K

is called a basic discrete set with respect to z ∈ K.

Definition 2.4. For z = x + iy ∈ S(z), the (p, q)-differential of a complex discrete function f(z) is
defined as dp,q f(z) = f(pz)− f(qz) = f(px, py)− f(qx, qy).

Now, for z = x+ iy ∈ S(z), let us introduce the partial (p, q)-derivatives in real variables x and y.

D(p,q),x f(x, y) =
f(px, y)− f(qx, y)

(p− q)x
, D(p,q),y f(x, y) =

f(x, py)− f(x, qy)

(p− q)y
. (2.1)

Also, we consider the dilatation operators

Mx
q f(x, y) = f(qx, y), My

q f(x, y) = f(x, qy) (2.2)

in variables x and y, respectively.
Hence, the (p, q)-differential of f(z) can be written as

dp,q f(x, y) = My
p D(p,q),x f(x, y) dp,qx+Mx

q D(p,q),y f(x, y) dp,qy, (2.3)

where dp,qx = (p− q)x, dp,qy = (p− q)y.
For any point z ∈ S(z), it can be seen that dp,qz = dp,qx+i dp,qy = (p−q)z, dp,q z̄ = dp,qx−i dp,qy =

(p− q)z̄.

Definition 2.5. Let D(p,q),x, D(p,q),y and Mp,Mq be as in (2.1) and (2.2), respectively. Then the
complex (p, q)-differential operators D(p,q),z and D(p,q),z̄ are defined as follows:

D(p,q),z : =
1

2

[
My

p D(p,q),x − iMx
q D(p,q),y

]
, (2.4)

D(p,q),z̄ : =
1

2

[
My

p D(p,q),x + iMx
q D(p,q),y

]
. (2.5)

Theorem 2.6. For any point z ∈ S(z), the (p, q)-differential of discrete function f(z) defined at the
points in K can be given by

dp,q f(z) = D(p,q),z f(z) dp,qz +D(p,q),z̄ f(z) dp,q z̄. (2.6)

Proof. The validity of (2.6) can be seen by using (2.1), (2.2), (2.4) and (2.5) through simple calcula-
tions. Also, we note that (2.3) is equivalent to (2.6). □

Definition 2.7. Let B ⊂ K be a subdiscrete domain. For S(z) ⊂ B, if for all z ∈ B, f(z) satisfies
D(p,q),z̄ f(z) ≡ 0, then f(z) is called (p, q)-analytic on B.

Example 2.8. The function

f(z) = f(x, y) = qx2 + (p+ q)ixy − py2 (2.7)

is (p, q)-analytic. In fact, after some calculations, it is seen that

f(px, py)− f(qx, py)

x
= (p2 − q2)(qx+ ipy) =

f(qx, py)− f(qx, qy)

iy
.

So, this implies that D(p,q),z̄f(z) ≡ 0.
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Remark 2.9. In [14], the criterion of (p, q)-analyticity is given as Dp,x f(z) = Dq,y f(z), where

Dp,x f(z) =
f(z)− f(px, y)

(1− p)x
; Dq,y f(z) =

f(z)− f(x, qy)

(1− q)iy
.

The function (2.7) is not (p, q)-analytic in the sense of M. A. Khan.
On the other hand, in [17], the criterion of q-analyticity was given as

Dq,z̄ f(z) =
1

2

[
Dq,x + iMy

1
q

Dq,y

]
f(z) = 0.

The function (2.7) is not q-analytic in the sense of Pashaev. However, by interchanging p and q,
and then choosing p = 1, the new function g(z) = g(x, y) = x2 + (1+ q)ixy− qy2 is q-analytic in the
sense of Pashaev.

Let us define the operator Lp,q by

Lp,q f(z) := z f(qx, py)− x f(qx, qy)− i y f(px, py).

Theorem 2.10. For z = x+ iy ∈ S(z),

f(z) is (p, q)-analytic on S(z) ⇔ Lp,qf(z) ≡ 0.

Corollary 2.11. If f(z) is (p, q)-analytic, it is easily seen that dp,q f(z) = D(p,q),z f(z) dp,qz.

3. The (p, q)-complex Integral

In this section, the (p, q)-Jackson integral is defined for an arbitrary function f(z).

Definition 3.1. Let f(z) be an arbitrary function and F (z) be a function such that D(p,q),z F (z) =
f(z), then

F (pz)− F (qz)

(p− q)z
= f(z).

The function F (z) is a (p, q)-antiderivative of f(z). F (z) is denoted by∫
f(z)dp,qz.

Definition 3.2 ( [16]). Let f be an arbitrary function and a be a real number. The (p, q)-integral of
f is defined as follows:

a∫
0

f(x) dp,qx = (p− q)a

∞∑
k=0

qk

pk+1
f

(
qk

pk+1
a

)
,

∣∣∣∣qp
∣∣∣∣ < 1. (3.1)

Definition 3.3. A function f is called (p, q)-integrable on [0,∞) if the series in (3.1) converges
absolutely.

Remark 3.4. If we choose p = 1, then formula (3.1) for the well-known Jackson integral (see [13,
p. 67]) gives ∫

f(x) dqx = (1− q)x

∞∑
k=0

qkf
(
qkx

)
.

For p = r1/2, q = s−1/2, ∣∣∣∣pq
∣∣∣∣ < 1 ⇔ |rs| < 1,

and formula (3.1) gives
a∫

0

f(x)dp,qx = (s−1/2 − r1/2) a

∞∑
k=0

rk/2 s(k+1)/2 f
(
rk/2 s(k+1)/2a

)
,

which is formula (11) given in [5].

The detailed information related to the (p, q)-integrals can be found in [16].
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4. Line Integrals

On the complex plane C, let

γ : z(t) = x(t) + i y(t), t ∈ [0, a], (a > 0)

be a curve which is piecewise smooth and rectifiable. Now, let us consider a function f(z(t)) =
u(z(t)) + iv(z(t)), t ∈ [0, a], on the curve γ.

Definition 4.1. If for z = x+ iy,

lim
n,k→∞

h

(
qn

pn
x,

qk

pk
y

)
:= lim

n→∞

[
lim
k→∞

h

(
qn

pn
x,

qk

pk
y

)]
= lim

k→∞

[
lim
n→∞

h

(
qn

pn
x,

qk

pk
y

)]
= h(0, 0),

then h(z) is called (p, q)-regular at the point (0, 0).

Definition 4.2. Let f(z) be given on a piecewise smooth, rectifiable curve γ ⊂ C, or indirectly, as a
composite function f(z(t)) on I = [0, a]. It is said to be (p, q)-uniformly continuous on the curve γ if for

any given positive number ε, we can find a number δ = δ(ε) such that
∣∣∣f (

z
(
a qk

pk

))
− f

(
z
(
a qk+1

pk+1

))∣∣∣ <
ε for sufficiently large numbers k, provided

∣∣∣z (a qk

pk

)
− z

(
a qk+1

pk+1

)∣∣∣ < δ.

Lemma 4.3. Let γ : z(t) = x(t) + iy(t) be a continuous curve on C with t ∈ [0, a], and let f(z) =
u(z) + iv(z) = u(z(t)) + iv(z(t)) be a complex-valued function which is (p, q)-uniformly continuous on
the given curve γ. If x(t), y(t) have (p, q)-derivative and u, v are (p, q)-integrable, then the Jackson
integral of f(z) on γ is given by∫

γ

f(z)dp,qz =

a∫
0

f (z(t))Dp,qz(t) dp,qt

= (p− q)a

∞∑
n=0

qn

pn+1
f

(
z

(
a

qn

pn+1

))
Dp,qz

(
a

qn

pn+1

)
. (4.1)

Here, the (p, q)-antiderivative of f(z) is (p, q)-regular at z = 0.

Proof. Let γ : z(t) = x(t) + i y(t), for 0 ≤ t ≤ a, and f(z) = f(z(t)) = u(z(t)) + i v(z(t)). Starting
with

I =

∫
γ

f(z)dp,qz =

∫
γ

u(z)dp,qz + i

∫
γ

v(z)dp,qz,

and making the substitution z = z(t) in each of integrals on the right-hand side, we have

I =

a∫
0

u(z(t))Dp,qz(t) dp,qt+ i

a∫
0

v(z(t))Dp,qz(t) dp,qt =

a∫
0

f(z(t))Dp,qz(t) dp,qt

=

a∫
0

[u(z(t)) + iv(z(t))][Dp,qx(t) + iDp,qy(t)] dp,qt

=

a∫
0

u(z(t))Dp,qx(t) dp,qt+ i

a∫
0

v(z(t))Dp,qx(t) dp,qt

+ i

a∫
0

u(z(t))Dp,qy(t) dp,qt−
a∫

0

v(z(t))Dp,qy(t) dp,qt.
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By calculating the real integrals and using (3.1), we get

I =

∞∑
n=0

[
u

(
z

(
a

qn

pn+1

))
+ iv

(
z

(
a

qn

pn+1

))]
×
[
x

(
a

qn

pn+1

)
− x

(
a

qn

pn+1

)
+ i

(
y

(
a

qn

pn+1

)
− y

(
a

qn

pn+1

))]
=

∞∑
n=0

f

(
z

(
a

qn

pn+1

))(
z

(
a
qn

pn

)
− z

(
a
qn+1

pn+1

))

= (p− q)a

∞∑
n=0

qn

pn+1
f

(
z

(
a

qn

pn+1

))
Dp,qz

(
a

qn

pn+1

)
.

The proof is complete. □

Definition 4.4. If the series in (4.1) is convergent, then the complex function f(z) is called (p, q)-
integrable on the curve γ.

Remark 4.5. If f(z) is (p, q)-integrable on the continuous curve γ, then

lim
p→1

∫
γ

f(z) dp,qz =

∫
γ

f(z) dqz.

Example 4.6. If we use (4.1) for γ : z(t) = t2 + it, 0 ≤ t ≤ 2, and the function f(z) = z for
0 < q < p < 1, we get∫

γ

z dp,qz =

2∫
t=0

(t2 − it)Dp,qz(t) dp,qt =

2∫
0

(t2 − it)[t(p+ q) + i] dp,qt

= 4
( 4

p2 + q2
− i(1− (p+ q))

p2 + q + q2
+

1

p+ q

)
.

Note that the result above is the same as the following (p, q)-integral result as p → 1:

lim
p→1

∫
γ

z dp,qz =

∫
γ

z dqz = 4
( 4

1 + q2
− 2i

1 + q + q2
+

1

1 + q

)
.

Let us assume that the rectifiable piecewise smooth curve

γ : z(t) = x(t) + iy(t), 0 ≤ t ≤ a

is positively oriented. In that case, the initial point of γ is z(0) = z0 = x(0) + i y(0) and the final
point of γ is z(a) = za = x(a) + i (a).

Let f(z) be a (p, q)-integrable function on γ. Let γ̃ be the curve having the opposite orientation of
γ, in the classical sense. Then the line (p, q) -integral of f(z) on γ̃ is defined by∫

γ̃

f(z) dp,qz := −
∫
γ

f(z) dp,qz.

5. Multiple (p, q)-Integrals

Let h(x, y) be a function given in D =
{
(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ a

}
. For (x, y) ∈ D, the

multiple (p, q)-integral of h(x, y) with 0 < q < p < 1 can be given by,

I =

x∫
0

y∫
0

h(s, t) dp,qt dp,qs = (p− q)2xy

∞∑
n=0

∞∑
k=0

qn+k

qn+k+2
h

(
qn

pn+1
x,

qk

pk+1
y

)
. (5.1)

Now, let us investigate under which conditions the series (5.1) will be convergent. For all (x, y) ∈ D,
if M ∈ (0,+∞) exists such that |h(x, y)| ≤ M, integral (5.1) always exists. However, even if h(x, y) is
unbounded, integral (5.1) may exist, as well.
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The following theorem is related to a function in this situation:

Theorem 5.1. Let h(x, y) be a function given in D =
{
(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ a

}
. Assume

that for all (x, y) ∈ (0, a]× (0, a], 0 ≤ α < 1, 0 ≤ β < 1, there is a positive M such that

xαyβ |h(x, y)| < M. (5.2)

Then the series (5.1) is convergent for all (x, y) ∈ (0, a]× (0, a].

Proof. From (5.2), for x > 0, y > 0, we have

|h(x, y)| < Mx−αy−β . (5.3)

In (5.3), if we replace x with qn

pn+1x and y with qk

pk+1 y, we get∣∣∣∣h( qn

pn+1
x,

qk

pk+1
y

)∣∣∣∣ < M

(
qn

pn+1
x

)−α (
qk

pk+1
y

)−β

.

Thus
qn

pn+1

qk

pk+1

∣∣h(qnx, qky)∣∣ < Mpα−1pβ−1
(q
p

)(1−α)n(q
p

)(1−β)k

x−αy−β .

For 0 < q < p < 1, we have 0 <
(

q
p

)1−α

< 1, 0 <
(

q
p

)1−β

< 1. The geometric series

∞∑
n=0

∞∑
k=0

Mx−αy−βpα−1pβ−1
(q
p

)(1−α)n(q
p

)(1−β)k

=
Mx−αy−β

(p1−α − q1−α)(p1−β − q1−β)

is pointwise convergent. Hence, for all (x, y) ∈ (0, a]× (0, a], we have

(p− q)2xy

∞∑
n=0

∞∑
k=0

qn+k

pn+k+2
|h(x, y)| < Mx1−αy1−β(p− q)2

(p1−α − q1−α)(p1−β − q1−β)
.

Finally, the series in (5.1) is absolutely convergent, therefore it is convergent. □

Remark 5.2. The condition (5.2) is sufficient but not necessary for the convergence of the series in
(5.1).

Remark 5.3. For all (x, y) ∈ D, if we take h(x, y) = 1, then

a∫
0

a∫
0

dp,qxdp,qy = a2 = Area(D).

Remark 5.4. We note that

lim
p→1

a∫
0

a∫
0

h(x, y) dp,qx dp,qy =

a∫
0

a∫
0

h(x, y) dqx dqy

(see [15]).

Definition 5.5. Let h(x, y) be a function on a (p, q)-geometrical set D =
{
(x, y) ∈ R2 : 0 ≤ x ≤ a,

0 ≤ y ≤ a
}
with 0 < q < p < 1. For all (x, y) ∈ D and x ̸= 0, y ̸= 0, if

lim
n→∞

h

(
qn

pn
x, y

)
= h(0, y) and lim

k→∞
h

(
x,

qk

pk
y

)
= h(x, 0)

hold, then h(x, y) is called (p, q)-regular on line segments D1 =
{
(0, y) ∈ R2 : 0 < y ≤ a

}
and D2 ={

(x, 0) ∈ R2 : 0 < x ≤ a
}
, respectively.

Remark 5.6. Since
q

p
< 1, the definition of the (p, q)-regularity is the same as that of the q-regularity

in [15]. Also, we note that (5.1) is always true if h(x, y) is (p, q)-regular on D1, D2 and at (0, 0).
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Lemma 5.7. Let h(x, y) be (p, q)-regular on D1 =
{
(0, y) ∈ R2 : 0 < y ≤ a

}
, D2 =

{
(x, 0) ∈ R2 :

0 < x ≤ a
}
and at the point (0, 0). If h(0, y) = h(x, 0) = h(0, 0) = 0, then

D(p,q),x D(p,q),y

x∫
0

y∫
0

h(s, t) dp,qt dp,qs =

x∫
0

y∫
0

D(p,q),s D(p,q),th(s, t) dp,qt dp,qs. (5.4)

Proof. For x ̸= 0 and y ̸= 0, using the definition of the multiple (p, q)-integral, we get

D(p,q),x D(p,q),yF (x, y) = D(p,q),x D(p,q),y

x∫
0

y∫
0

h(s, t) dp,qt dp,qs

=

∞∑
n=0

∞∑
k=0

qn+k

pn+k+2

[
p2h

(
qn

pn
x,

qk

pk
y

)
− pqh

(
qn

pn
x,

qk+1

pk+1
y

)
−pqh

(
qn+1

pn+1
x,

qk

pk
y

)
+ q2h

(
qn+1

pn+1
x,

qk+1

pk+1
y

)]
= h(x, y).

On the other hand, for the right-hand side of (5.4), we get
x∫

0

y∫
0

D(p,q),th(s, t) dp,qt dp,qs =

x∫
0

y∫
0

h(s, pt)− h(s, qt)

(p− q)t
dp,qt dp,qs

=

x∫
0

(p− q)y

∞∑
k=0

qk

pk+1

h
(
s, qk

pk y
)
−h

(
s, qk+1

pk+1 y
)

(p− q) qk

pk+1 y

 dp,qs

=

x∫
0

∞∑
k=0

[
h

(
s,

qk

pk
y

)
− h

(
s,

qk+1

pk+1
y

)]
dqs.

It can be seen that
N∑

k=0

[
h

(
s,

qk

pk
y

)
− h

(
s,

qk+1

pk+1
y

)]
= h(s, y)− h

(
s,

qN+1

pN+1
y

)
,

lim
N→∞

N∑
k=0

[
h

(
s,

qk

pk
y

)
− h

(
s,

qk+1

pk+1
y

)]
= h(s, y)− h(s, 0).

Hence we have
x∫

0

y∫
0

D(p,q),th(s, t) dp,qt dp,qs =

x∫
0

[h(s, y)− h(s, 0)]dp,qs.

Finally, we get
x∫

0

y∫
0

D(p,q),s D(p,q),th(s, t)dp,qt dp,qs =

x∫
0

Ds
p,q [h(s, y)− h(s, 0)] dp,qs

= h(x, y)− h(x, 0)− h(0, y) + h(0, 0).

With our assumptions h(0, y) = h(x, 0) = h(0, 0) = 0, the lemma is proved. □

Theorem 5.8. Let the real-valued functions u(x, y), v(x, y) be given on the set D = [0, a] × [0, a],
and let the functions u, v, D(p,q),xv, D(p,q),yu be (p, q)-integrable on D with respect to both x and y.

Then the (p, q)-Green’s formula∫
∂D

u(x, y)dp,qx+ v(x, y)dp,qy =

∫∫
D

[
D(p,q),xv(x, y)−D(p,q),yu(x, y)

]
dp,qx dp,qy (5.5)

is valid. Here, ∂D is oriented positively.
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Proof. Let ∂D = γ1 ∪ γ2 ∪ γ3 ∪ γ4. γ1 is given by γ1 : x = t, 0 ≤ t ≤ a, y = 0, so we have
dp,qx(t) = dp,qt, dp,qy(t) = 0. Then, calculating the left-hand side of (5.5) on γ1, we arrive at∫

γ1

u(x, y)dp,qx+ v(x, y)dp,qy =

a∫
0

u(t, 0)dp,qt.

For the curve γ2, γ2 : x = a, y = t, 0 ≤ t ≤ a, so we have dp,qx(t) = 0, dp,qy(t) = dp,qt, and∫
γ2

u(x, y)dp,qx+ v(x, y)dp,qy =

a∫
0

v(a, t)dp,qt.

On the other hand, the curve γ3 is the curve γ̃3 : x = t, y = a, 0 ≤ t ≤ a oriented oppositely. Hence
on γ̃3, dp,qy = 0 and dp,qx = dp,qt, we have∫

γ3

u(x, y)dp,qx+ v(x, y)dp,qy = −
∫
γ̃3

u(x, y)dp,qx+ v(x, y)dp,qy = −
a∫

0

u(t, a)dp,qt.

Similarly, the curve γ4 is the curve γ̃4 : x = 0, y = t, 0 ≤ t ≤ a oriented oppositely. Thus∫
γ4

u(x, y)dp,qx+ v(x, y)dp,qy = −
∫
γ̃4

u(x, y)dp,qx+ v(x, y)dp,qy = −
a∫

0

v(0, t)dp,qt.

Hence we have∫
∂D

u(x, y)dp,qx+ v(x, y)dp,qy =

a∫
0

[
u(t, 0) + v(a, t)− u(t, a)− v(0, t)

]
dp,qt. (5.6)

On the other hand, by (5.1), we can write∫∫
D

D(p,q),xv(x, y)dp,qx dp,qy =

a∫
0

a∫
0

D(p,q),xv(x, y)dp,qx dp,qy =

a∫
0

[
v(a, t)− v(0, t)

]
dp,qt, (5.7)

and∫∫
D

D(p,q),yu(x, y)dp,qx dp,qy =

a∫
0

a∫
0

D(p,q),yu(x, y)dp,qx dp,qy =

a∫
0

[
u(t, a)− u(t, 0)

]
dp,qt. (5.8)

Using (5.7) and (5.8), we have∫∫
D

[
D(p,q),xv(x, y)−D(p,q),yu(x, y)

]
dp,qx dp,qy =

a∫
0

[
v(a, t)− v(0, t)− u(t, a) + u(t, 0)

]
dp,qt. (5.9)

If we compare (5.6) and (5.9), it is seen that the (p, q)-Green’s formula (5.5) holds. □

Remark 5.9. If the complex-valued function f(z) = f(x, y) is q-periodic in x, i.e., f(x, y) = f(qx, y),
and p-periodic in y, i.e., f(x, y) = f(x, py), then using (p, q)-Green’s formula (5.5), we get the following
(p, q)-Gauss formulas ∫

∂D

f(z) dp,qz = 2i

∫∫
D

D(p,q),zf(z)dp,qx dp,qy, (5.10)

∫
∂D

f(z)dp,qz = −2i

∫∫
D

D(p,q),zf(z)dp,qx dp,qy. (5.11)
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Remark 5.10. It is not difficult to seen that the function

f(z) = f(x, y) = e2πi(m
ln |x|
ln q +k

ln |y|
ln p ), m, k ∈ Z, (5.12)

is q-periodic in x and p-periodic in y. It can be easily verified that (5.12) satisfies (5.10) and (5.11).
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