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THE TOTAL OUTER CONNECTED MONOPHONIC NUMBER OF A GRAPH

KATHIRESAN GANESAMOORTHY1 AND SHANMUGAM LAKSHMI PRIYA2

Abstract. For a connected graph G = (V,E) of order at least two, a total outer connected mono-
phonic set S of G is an outer connected monophonic set such that the subgraph induced by S has
no isolated vertices. The minimum cardinality of a total outer connected monophonic set of G is
the total outer connected monophonic number of G and is denoted by cmto(G). In this paper,
we present several properties of this parameter. Also, some realization results of the total outer
connected monophonic number of a graph are studied. This concept can be mainly used in fault
tolerance of communication network.

1. Introduction

By a graph G = (V,E) we mean a finite simple undirected connected graph, where V is the vertex
set and E is the edge set of G. The order and size of G are denoted by p and q, respectively. For
basic graph theoretical terminology we refer to Harary [11,22]. The degree of a vertex v in a graph G
denoted by deg(v), is the number of edges incident with v. The distance d(x, y) between two vertices
x and y in a connected graph G is the length of a shortest x− y path in G. An x− y path of length
d(x, y) is called x − y geodesic [1]. A vertex v in a graph G is said to be an end-vertex if its degree
is 1. A vertex v of G is called a support vertex of G if it is adjacent to an end-vertex of G. The
neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent to v. A
vertex v of G is called an extreme vertex if the subgraph induced by its neighbors is complete. Let
G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = φ, then the join G1 + G2 is a graph
G = (V,E), where V = V1 ∪ V2 and E = E1 ∪E2 together with all the edges joining vertices of V1 to
vertices of V2 and miKj denotes mi-copies of the complete graph Kj , where mi ≥ 2 and j ≥ 2.

A chord of a cycle C is an edge not in C whose endpoints lie on C. A chordless cycle is a cycle of
length at least four in G that has no chord. A graph G is chordal if it is simple and has no chordless
cycle. A relationship between pairwise compatibility graphs and chordal graphs are studied in [21]. A
chord of a path P is an edge joining two non-adjacent vertices of P . A path P is called a monophonic
path if it is a chordless path. A set S of vertices of G is a monophonic set of G if each vertex v of G
lies on an x− y monophonic path for some x and y in S. The minimum cardinality of a monophonic
set of G is the monophonic number of G and is denoted by m(G). The monophonic number of a
graph, and algorithmic aspects of monophonic concepts have been studied in [2–5,12–16,19]. A total
monophonic set of a graph G is a monophonic set S such that the subgraph G[S] induced by S has
no isolated vertices. The minimum cardinality of a total monophonic set of G is the total monophonic
number of G and is denoted by mt(G). Several results on a total monophonic number can be found
in [9, 10, 20]. A set S of vertices in a graph G is said to be an outer connected monophonic set if S
is a monophonic set of G and either S = V , or the subgraph induced by V − S is connected. The
minimum cardinality of an outer connected monophonic set of G is the outer connected monophonic
number of G and is denoted by moc(G). The outer connected monophonic number of a graph was
introduced in [6] and further studied in [7, 8].

For any two vertices u and v in a connected graph G, the monophonic distance dm(u, v) from u
to v is defined as the length of a longest u− v monophonic path in G. The monophonic eccentricity
em(v) of a vertex v in G is em(v) = max{dm(v, u) : u ∈ V (G)}. The monophonic radius radm(G) and
monophonic diameter diamm(G) of G are defined, respectively, as the minimum and the maximum
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monophonic eccentricity among all the vertices in G. The monophonic distance was introduced in [17]
and further studied in [18]. There are several interesting applications of these concepts to facility
location in real life situations, routing of transport problems and communication network designs.
As the paths involved in the discussion of this paper are monophonic, no intervention by hackers or
enemies is possible to the respective facilities provided. Further, as monophonic paths are secured
and longer than geodesic paths, it is advantageous to more customers in getting the service with
protection.

The following theorems will be used in the sequel.

Theorem 1.1 ([6]). Each extreme vertex of a connected graph G belongs to every outer connected
monophonic set of G.

Theorem 1.2 ([6]). For the complete graph Kp (p ≥ 2), moc(Kp) = p.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Main Results

Definition 2.1. A total outer connected monophonic set S of G is an outer connected monophonic
set such that the subgraph induced by S has no isolated vertices. The minimum cardinality of a total
outer connected monophonic set of G is the total outer connected monophonic number of G and is
denoted by cmto(G).

Example 2.2. For the graph G given in Figure 1, it is clear that S = {v1, v4, v5} is the unique
minimum outer connected monophonic set of G and so, moc(G) = 3. Since the subgraph induced by
S has an isolated vertex v1, S is not a total outer connected monophonic set of G. It is easily verified
that S1 = S ∪ {v2} is a minimum total outer connected monophonic set of G and so, cmto(G) = 4.
Thus the outer connected monophonic number and the total outer connected monophonic number of
a graph are different for such an example.
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In an application point of view, a vertex represents a router of the communication network and an
edge represents the information that travels along the routers. Communication among the vertices are
restricted to the chordless (monophonic) path only. Vertices which are lying along a monophonic path
are grouped together. Leading vertices (LVs) manage a group of vertices which lie on a monophonic
path between the two LVs in which they are not isolated. Even though this set of LVs fails, in
order to make the network fault tolerant, the rest of the vertices are able to communicate with each
other. The problem is to identify the minimum number of LVs in such a way that each vertex of
the communication network lies on some monophonic path between two LVs. Then for the model
of the above communication network, we are interested in finding a minimum total outer connected
monophonic set of the graph representing a communication network.

The following results are clear from the fact that every total outer connected monophonic set S of
G is an outer connected monophonic set of G and the subgraph induced by S has no isolated vertices.
Also, each extreme vertex of a connected graph G belongs to every outer connected monophonic set
of G.

Theorem 2.3. Each extreme vertex and each support vertex of a connected graph G belong to every
total outer connected monophonic set of G. If the set S of all extreme vertices and support vertices
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form a total outer connected monophonic set, then it is the unique minimum total outer connected
monophonic set of G.

Corollary 2.4. For the complete graph Kp (p ≥ 2), cmto(G) = p.
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Figure 2

Remark 2.5. The converse of Corollary 2.4 need not be true. For the graph G given in Figure 2,
every vertex of G is either an extreme vertex or a support vertex, by Theorem 2.3, S = V (G) is the
unique minimum total outer connected monophonic set of G and so, cmto(G) = p, it is not a complete
graph.

Theorem 2.6. For a connected graph G of order p, 2 ≤ moc(G) ≤ cmto(G) ≤ p.

Proof. Any outer connected monophonic set of G needs at least two vertices and so moc(G) ≥ 2. Since
every total outer connected monophonic set of G is also an outer connected monophonic set of G, it
follows that moc(G) ≤ cmto(G). Since V (G) is a total outer connected monophonic set of G, it is
clear that cmto(G) ≤ p. Hence 2 ≤ moc(G) ≤ cmto(G) ≤ p. �

Corollary 2.7. Let G be a connected graph. If cmto(G) = 2, then moc(G) = 2.

For any path Pn of order n ≥ 4, the outer connected monophonic number of Pn is 2 and the total
outer connected monophonic number of Pn is 4. Thus, this shows that the converse of Corollary 2.7
is not necessarily true.

Remark 2.8. The bounds in Theorem 2.6 are sharp. For any path Pn of order n ≥ 3, moc(Pn) = 2
and for the complete graph Kp (p ≥ 2), cmto(Kp) = p. Also, all the inequalities in Theorem 2.6 can
be strict. For the graph G given in Figure 1, moc(G) = 3, cmto(G) = 4 and p = 7 so, 2 < moc(G) <
cmto(G) < p.

Theorem 2.9. For any non-trivial tree T , the set of all end-vertices and support vertices of T is the
unique minimum total outer connected monophonic set of G.

Proof. Since the set of all end-vertices and support vertices of T forms a total outer connected mono-
phonic set, the result follows from Theorem 2.3. �

Now, we proceed to characterize the graph G for which the bounds in Theorem 2.6 are attained.

Theorem 2.10. For any connected graph G, cmto(G) = 2 if and only if G = K2.

Proof. If G = K2, then cmto(G) = 2. Conversely, let cmto(G) = 2. Let S = {u, v} be a minimum
total outer connected monophonic set of G. Then uv is an edge. It is clear that a vertex, different
from u and v, cannot lie on a u− v monophonic path and so, G = K2. �

Theorem 2.11. Let G be a connected graph of order p ≥ 2. Then every vertex of G is either an
extreme vertex, or a support vertex if and only if cmto(G) = p.

Proof. Let G, a connected graph with every vertex of G, be either an extreme vertex, or a support
vertex. Then the result follows from Theorem 2.3.

Conversely, let cmto(G) = p. Suppose that there is a vertex x in G which is neither an extreme
vertex nor a support vertex. Since x is not an extreme vertex, the subgraph induced by N(x) is
not complete. Then there exist vertices u, v ∈ N(x) such that d(u, v) = 2. Clearly, x lies on a
u − v monophonic path in G. Also, since x is not a support vertex, deg(u) ≥ 2 and deg(v) ≥ 2.
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It is clear that the subgraph induced by V − {x} has no isolated vertices and V − {x} is an outer
connected monophonic set. Hence V − {x} is a total outer connected monophonic set of G and so,
cmto(G) ≤ |V − {x}| = p− 1, which is a contradiction. �

Theorem 2.12. For the complete bipartite graph G = Km,n (2 ≤ m ≤ n),

cmto(G) =

{
n+ 1, if 2 = m ≤ n,

4, if 3 ≤ m ≤ n.

Proof. Let U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn} be the bipartition of G, where m ≤ n. We
prove this theorem by considering two cases.

Case (i) m = 2. It is easy to observe that any subset S ⊆ V (G) with cardinality |S| ≤ n is not
an outer connected monophonic set of G. Clearly, S = V (G) − {v1} is a minimum outer connected
monophonic set of G and the subgraph induced by S has no isolated vertices so, cmto(G) = n+ 1.

Case (ii) 3 ≤ m ≤ n. Let S = {u1, u2, v1, v2}. Clearly, S is a total outer connected monophonic
set of G, it follows that cmto(G) ≤ 4. It suffices to show that no 3-element subset of V (G) forms a
minimum total outer connected monophonic set of G. Let X be a 3-element subset of V (G). If |U | = 3
and X ⊆ U , then it is clear that X is a monophonic set of G and the subgraph induced by V − X
is not connected. Hence X is not an outer connected monophonic set of G. If |U | ≥ 4 and X ⊆ U ,
then there exists an element u ∈ U and u /∈ X, is not an internal vertex of any x − y monophonic
path in G, for some x, y ∈ X. Hence X is not an outer connected monophonic set of G. Therefore
we may take that X ∩ U = {ui, uj} and X ∩ V = {vk}. It is clear that X is not an outer connected
monophonic set of G. If X ⊆ V , then the argument is similar to the above. �

Theorem 2.13. Let G be a connected graph of order p.
(i) If G = K1 +

⋃
miKj, where j ≥ 2,

∑
mi ≥ 2, then cmto(G) = p− 1;

(ii) If G = K2 +
⋃
miKj, where j ≥ 2,

∑
mi ≥ 2, then cmto(G) = p− 2.

Proof. These results follow from Theorem 2.3. �

Remark 2.14. The converse of Theorem 2.13 (i) and (ii) need not be true. For the cycle C4,
cmto(C4) = 3 = p−1, it is not in the form G = K1+

⋃
miKj and for the cycle C5, cmto(C5) = 3 = p−2,

it is not in the form G = K2 +
⋃
miKj .

3. Some Realization Results on the Total Outer Connected Monophonic Number

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [17] that every two positive
integers a and b with a ≤ b are realizable as the monophonic radius and monophonic diameter,
respectively, of some connected graph. This theorem can also be extended so that the total outer
connected monophonic number can be prescribed when radm(G) < diamm(G).

Theorem 3.1. For positive integers r, d and k ≥ 5 with r < d, there exists a connected graph G such
that radm(G) = r, diamm(G) = d and cmto(G) = k.

Proof. Let r = 1 and d ≥ 2. Let Pd+1 : v1, v2, . . . , vd+1 be a path of length d. The graph G is
obtained from the path Pd+1 and the star K1,k−3 having the vertex set {x, u1, u2, . . . , uk−3} with x as
the cut-vertex, by connecting the vertex x to the vertices vi (1 ≤ i ≤ d+ 1) of Pd+1. The graph G is
shown in Figure 3. It is clear that em(x) = 1, em(v1) = em(vd+1) = d and 1 < em(v) ≤ d for all other
vertices v of G. Then radm(G) = r and diamm(G) = d. Let S = {u1, u2, . . . , uk−3, v1, vd+1, x} be the
set of all extreme vertices and support vertex of G. Since S is a total outer connected monophonic
set of G, it follows from Theorem 2.3 that cmto(G) = k.

Now, let r ≥ 2 and r < d. Let C : v1, v2, . . . , vr+2, v1 be the cycle of order r + 2 and let W =
K1 + Cd+1 be the wheel with V (Cd+1) = {w1, w2, . . . , wd+1} and z as the central vertex. Let H be
the graph obtained from C and W by identifying v1 of C and the vertex w1 of W ; and also, joining
each vertex x ∈ {v3, v4, . . . , vr+1} to the vertex v1 of C. Add k − 5 new vertices u1, u2, . . . , uk−5 to
the graph H and join each ui (1 ≤ i ≤ k − 5) to the vertex v1 of H and also join the vertex v3 of
H to the vertex z of W , thereby producing the graph G as shown in Figure 4. It is easily verified
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that r ≤ em(u) ≤ d for any vertex u in G, em(z) = r and em(v2) = d. Then radm(G) = r and
diamm(G) = d.
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Note that S = {u1, u2, . . . , uk−5, v2, vr+2, v1} is the set of all extreme vertices and support vertex
of G. By Theorem 2.3, every total outer connected monophonic set of G contains S. It is clear that
S is not a total outer connected monophonic set of G. Also, for any x ∈ V − S, S ∪ {x} is not a total
outer connected monophonic set of G. It is easy to verify that S1 = S ∪ {w2, w3} is a minimum total
outer connected monophonic set of G and so, cmto(G) = k. �

We leave the following problem as an open question.

Problem 3.2. For any three positive integers r, d and k ≥ 5 with r = d, does there exist a connected
graph G with radm(G) = r, diamm(G) = d and cmto(G) = k?

Theorem 3.3. If p, d and k are positive integers such that 2 ≤ d ≤ p−2, k ≥ 3 and p−d−k+2 ≥ 0,
then there exists a connected graph G of order p with monophonic diameter d and cmto(G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. Let d = 2. Add k − 1 new vertices w1, w2, . . . , wk−1 to the complete graph Kp−k+1 and

join each vertex wi (1 ≤ i ≤ k − 1) to all the vertices of Kp−k+1, thereby producing the graph G of
order p as shown in Figure 5. It is easily verified that 1 ≤ em(u) ≤ 2 for any vertex u in G, em(wi) = 2
(1 ≤ i ≤ k − 1) and hence the monophonic diameter of G is 2.

Let S = {w1, w2, . . . , wk−1} be the set of all extreme vertices of G. By Theorem 2.3, every total
outer connected monophonic set of G contains S. It is clear that S is not a total outer connected
monophonic set of G. It is easy to observe that for any x ∈ V (Kp−k+1), S ∪ {x} is a minimum total
outer connected monophonic set of G and so, cmto(G) = k.

Case 2. d ≥ 3. First, let k = 3. Let Cd+2 : v1, v2, . . . , vd+2, v1 be the cycle of order d + 2. Add
p − d − 2 new vertices w1, w2, . . . , wp−d−2 to Cd+2 and join each vertex wi (1 ≤ i ≤ p − d − 2) to
both v1 and v3, thereby producing the graph G. Then G has order p and monophonic diameter d.
It is clear that S = {v3, v4, v5} is a minimum total outer connected monophonic set of G and so



32 K. GANESAMOORTHY AND S. L. PRIYA

b b b

w1 w2 wk−1

Kp−k+1

bb b

Figure 5

b b b
u1 u2 uk−3

b b b

b

b

b

b

b

b

b

v3

v2vd+1 v1

v4

v5

b

b

b

b b bw1 w2 b b b wp−d−k+2

Figure 6

cmto(G) = 3 = k. Now, let k ≥ 4. The graph G1 is obtained from the cycle Cd+1 : v1, v2, . . . , vd+1, v1
of order d+1 by adding p−d−1 new vertices u1, u2, . . . , uk−3, w1, w2, . . . , wp−d−k+2 and joining each
vertex ui(1 ≤ i ≤ k− 3) to the vertex v1 of Cd+1; and joining each vertex wj(1 ≤ j ≤ p−d−k+2) to
the vertices v2, v3 and v4 of Cd+1. The graph G1 of order p is shown in Figure 6. It is easily verified
that 3 ≤ em(u) ≤ d for any vertex u in G1, em(ui) = d(1 ≤ i ≤ k − 3) and hence the monophonic
diameter of G1 is d. Let S = {u1, u2, . . . , uk−3, v1} be the set of all extreme vertices and support
vertex of G1. By Theorem 2.3, every total outer connected monophonic set of G1 contains S. It is
clear that S is not a total outer connected monophonic set of G1. Also, for any vertex x /∈ S, S ∪ {x}
is not a total outer connected monophonic set of G1. It is easily seen that S∪{v2, vd+1} is a minimum
total outer connected monophonic set of G1 and so cmto(G1) = k. �

Theorem 3.4. For positive integers a, b such that 3 ≤ a ≤ b with b ≤ 2a, there exists a connected
graph G such that moc(G) = a and cmto(G) = b.

Proof. We prove this theorem by considering two cases.
Case 1. 3 ≤ a = b. By Theorem 1.2 and Corollary 2.4, the complete graph Ka has the desired

properties.
Case 2. 3 ≤ a < b. Let b = a + k, where 1 ≤ k ≤ a. For k = 1, the star K1,a has the desired

properties.
Now, let k ≥ 2. The graph G is obtained from the star K1,a−k+1 having the vertex set {x, x1, x2, . . . ,

xa−k+1} with x as the cut-vertex and “k − 1” copies of path Pi : ui, vi (1 ≤ i ≤ k − 1) of order 2 by
joining each vertex ui (1 ≤ i ≤ k − 1) of Pi to the vertex x in K1,a−k+1. The graph G is shown in
Figure 7. Let S = {x1, x2, . . . , xa−k+1, v1, v2, . . . , vk−1} be the set of all extreme vertices of G. By
Theorem 1.1, every outer connected monophonic set of G contains S. It is clear that S is the unique
minimum outer connected monophonic set of G and so, moc(G) = a. Since the subgraph induced by
S contains only isolated vertices, S is not a total outer connected monophonic set of G. Since every
vertex of G is either an extreme vertex, or a support vertex, by Theorem 2.11, V (G) is the unique
minimum total outer connected monophonic set of G and so, cmto(G) = a+ k = b. �
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