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PRIMELY FILTERS IN BL-ALGEBRAS

AFSANEH BEHZADI1, SOMAYEH MOTAMED2,∗ AND FARHAD KHAKSAR HAGHANI1

Abstract. In this paper, we introduce the concept of primely filters in BL-algebras. As for the

concept, we present some related results in BL-algebras. In particular, we show some relations
between primely filters and other types of filters in BL-algebras.

1. Introduction

BL-algebras are the algebraic structure for Hájek basic logic (BL-logic) in order to investigate many-
valued logic by algebraic means [7]. Filters theory plays an important role in studying these logical
algebras and ordered semi groups. From logical point of view, various filters correspond to various
sets of provable formulas. Hájek introduced the concepts of filters and prime filters in BL-algebras.
Using prime filters in BL-algebras, Hájek proved the completeness of Basic Logic BL. Haveshki et
al. extended the algebraic analysis of BL-algebras and introduced positive implicative filters of BL-
algebras [8]. Kondo and Dudek [10] proved that positive implicative filters (introduced by Haveshki et
al.) and the original implicative deductive systems (introduced by Turunen [17]) coincide and every
positive implicative filter is a Boolean filter.

Today this many-valued logic has been developed into a fuzzy logic, which meets together with
the motivations from the beginning of the twentieth century in one theory that connects quantum
mechanics, mathematical logic, probability theory, computer science, algebra, soft computing and
many other important aspects of our modern world. This was the motivation for the researchers
of this study to introduce some new filters in BL-algebras. BL-algebras are important classes of
algebras inspired by logic. In fact, the objective of this paper is to develop and define new concepts
for investigating BL-algebras.

The structure of the paper is as follows:
Section 2 is a recall of some definitions and results about BL-algebras that are used in the paper.

In Section 3, a new filter (primely filter) in BL-algebra is introduced and many properties of it are
obtained. Also, the relationships between this new filter and other types of filters in BL-algebra are
investigated. In Section 4, we define the notion of primely BL-algebras and the related algebra, called
primely BL-algebra.

2. Preliminaries

Definition 2.1 ( [7]). A BL-algebra is an algebra (A,∧,∨, ∗,→, 0, 1) with four binary operations
∧,∨, ∗,→ and two constants 0, 1 such that:

(BL1) (A,∧,∨, 0, 1) is a bounded lattice;
(BL2) (A, ∗, 1) is a commutative monoid;
(BL3) ∗ and → form an adjoint pair, i.e., c ≤ a → b if and only if a ∗ c ≤ b, for all a, b, c ∈ A;
(BL4) a ∧ b = a ∗ (a → b), for all a, b ∈ A;
(BL5) (a → b) ∨ (b → a) = 1, for all a, b ∈ A.

• Let F be a non-empty subset of a BL-algebra A and a, b ∈ A. Then the following conditions are
equivalent:

(i) F is a filter of A.
(ii) If a, b ∈ F imply a ∗ b ∈ F and if a ∈ F and a ≤ b, then b ∈ F .
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(iii) 1 ∈ F , and if a, a → b ∈ F, then b ∈ F [7].

Definition 2.2. A non-empty subset F of a BL-algebra A is called:

• a prime filter of A, if F is a proper filter and for all x, y ∈ A, if x ∨ y ∈ F implies x ∈ F or
y ∈ F [7];

• a maximal filter of A, if F is a proper filter and it is not properly contained in any other
proper filter of A [7];

• an integral filter of A, if F is a proper filter and for all x, y ∈ A, if (x ∗ y)− ∈ F , implies
x− ∈ F or y− ∈ F [4];

• an obstinate filter of A, if F is a proper filter and for all x, y ∈ A, if x, y /∈ F implies that
x → y ∈ F and y → x ∈ F [3];

• a semi-integral filter of A, if F is a proper filter and for all x, y ∈ A, if (x ∗ y)− ∈ F , implies
x− ∈ F or (yn)− ∈ F , for some n ∈ N [12].

Definition 2.3. Let F be a filter, M be a non-empty subset of BL-algebra A and x, x1, xn, a,m ∈ A.
Then:

(i) the intersection of all maximal filters of A containing F is called the radical of F and denoted
by Rad(F ) [14].

(ii) (F : x) = {r ∈ A : r ∨ x ∈ F} [13].
(iii) [M) = {a ∈ A : x1 ∗ · · · ∗ xn ≤ a, for some x1, . . . , xn ∈ M} and [M) is a filter of A generated

by M [15].
(iv) [m) = {x ∈ A : x ≥ mn, for some n ∈ N}, then [m) is a filter of A generated by m [15].
(v) D(F ) = {x ∈ A : x−− ∈ F} is a filter of A and, clearly, F ⊆ D(F ) [3].

3. Primely Filters in BL-algebras

Here, we introduce the concept of a primely filter in a BL-algebra.

Definition 3.1. A proper filter F of a BL-algebra A is called a primely filter if for x, y ∈ A, (x ∧
y)− ∈ F , implies x− ∈ F or y− ∈ F .

In the following we present some examples of infinite, finite primely filters in BL-algebras.

Example 3.2. (i) Let A = {−∞, . . . ,−3,−2,−1, 0, a, b, 1}, where −∞ < · · · < −3 < −2 < −1 < 0 <
a, b < c < 1. The operations ∗, → are defined as follows:

∗ −∞ . . . −3 −2 −1 0 a b 1

−∞ −∞ · · · −∞ −∞ −∞ −∞ −∞ −∞ −∞
...

...
. . .

...
...

...
...

...
...

...

−3 −∞ · · · −6 −5 −4 −3 −3 −3 −3

−2 −∞ · · · −5 −4 −3 −2 −2 −2 −2

−1 −∞ · · · −4 −3 −2 −1 −1 −1 −1

0 −∞ · · · −3 −2 −1 0 0 0 0

a −∞ · · · −3 −2 −1 0 a 0 a

b −∞ · · · −3 −2 −1 0 0 b b

1 −∞ · · · −3 −2 −1 0 a b 1

and
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→ −∞ . . . −3 −2 −1 0 a b 1

−∞ 1 · · · 1 1 1 1 1 1 1
...

...
. . .

...
...

...
...

...
...

...

−3 −∞ · · · 1 1 1 1 1 1 1

−2 −∞ · · · −1 1 1 1 1 1 1

−1 −∞ · · · −1 1 1 1 1 1 1

0 −∞ · · · −3 −2 −1 1 1 1 1

a −∞ · · · −3 −2 −1 b 1 b 1

b −∞ · · · −3 −2 −1 a a 1 1

1 −∞ · · · −3 −2 −1 0 a b 1,

then (A,∧,∨, ∗,→,−∞, 1) is a BL-algebra [9]. All filters of A are F1 = {1}, F2 = {a, 1}, F3 = {b, 1},
F4 = {0, a, b, 1} and F5 = {. . . ,−3,−2,−1, 0, a, b, 1} − {−∞}. It is clear that all filters are primely.

(ii) Let A = {0, a, b, c, d, 1}, where 0 < d < c < a, b < 1. If the operations ∗ and → are defined as
follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b b d 1
b 0 a 1 a d 1
c 0 1 1 1 d 1
d d 1 1 1 1 1
1 0 a b c d 1

and

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a c c d a
b 0 c b c d b
c 0 c c c d c
d 0 d d d 0 d
1 0 a b c d 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [11]. It is easy to see that F1= {1}, F2 ={a, 1}, F3 ={b, 1}
and F4 = {a, b, c, 1} are primely filters of A.

(iii) Let A = {0, a, b, c, d, 1}, where 0 < a < c < 1 and 0 < b < c, d < 1. If the operations ∗ and →
are defined as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b a a 1 1 1 1
c 0 a d 1 d 1
d a a c c 1 1
1 0 a b c d 1

and

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 b b b b
c 0 a b c b c
d 0 0 b b d d
1 0 a b c d 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [9]. Clearly, F1 = {1} and F2 = {c, 1} are not primely filters
of A. Since (a ∧ b)− = 1, while a− = d and b− = a.

Theorem 3.3. Let F be a proper filter of a BL-algebra A. Then F is a primely filter if and only if
x− → y− ∈ F or y− → x− ∈ F , for all x, y ∈ A.

Proof. Let F be a primely filter and x, y ∈ A. We known that ((x− → y−)∨ (y− → x−))−− = 1 ∈ F ,
so, ((x− → y−)− ∧ (y− → x−)−)− = 1 ∈ F . Hence, according to the hypothesis (x− → y−)−− =
x− → y− ∈ F or (y− → x−)−− = y− → x− ∈ F , for all x, y ∈ A. Now, let x− → y− ∈ F or
y− → x− ∈ F , for all x, y ∈ A. We also assume that x− ∨ y− = (x ∧ y)− ∈ F , for x, y ∈ A. Since
x− ∨ y− ≤ (x− → y−) → y− and x− ∨ y− ≤ (y− → x−) → x−, so, (x− → y−) → y− ∈ F and
(y− → x−) → x− ∈ F . Now, if x− → y− ∈ F , then y− ∈ F . Hence F is a primely filter. Also, if
y− → x− ∈ F , then x− ∈ F . Therefore F is a primely filter. □

According to Theorem 3.3:

Theorem 3.4 (Extension property for primely filters). Let F and G be two proper filters of BL-algebra
A such that F ⊆ G and let F be a primely filter. Then G is a primely filter.
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Proposition 3.5. Let A be a BL-algebra. Then the following conditions are equivalent:
(i) {1} is a primely filter;
(ii) all filters of A are primely filters;
(iii) x− ≤ y− or y− ≤ x−, for all x, y ∈ A.

Proof. ((i) ⇒ (ii)) Based on Theorem 3.4, the proof is clear.
((ii) ⇒ (i)) is trivial.
((i) ⇒ (iii)) Let {1} be a primely filter. Then based on Theorem 3.3, x− → y− ∈ {1} or y− →

x− ∈ {1}, for all x, y ∈ A. Hence x− ≤ y− or y− ≤ x−, for all x, y ∈ A.
((iii) ⇒ (i)) Let x− ≤ y− or y− ≤ x−, for all x, y ∈ A. Then x− → y− ∈ {1} or y− → x− ∈ {1},

for all x, y ∈ A. Therefore {1} is a primely filter of A. □

Proposition 3.6. Let A be a BL-algebra. Then the following conditions are equivalent:
(i) F is a primely filter of A;
(ii) {1/F} is a primely filter of A/F ;
(iii) all filters of A/F are primely filters.

Proof. ((i) ⇒ (ii)) Let F be a primely filter and (x/F ∧y/F )− ∈ {1/F}, for all x/F, y/F ∈ A/F . Then
(x ∧ y)− ∈ F . According to the hypothesis, x− ∈ F or y− ∈ F , so x−/F ∈ {1/F} or y−/F ∈ {1/F}.
Thus {1/F} is a primely filter of A/F .

((ii) ⇒ (i)) Let {1/F} be a primely filter and (x∧y)− ∈ F , for x, y ∈ A. Then (x∧y)−/F ∈ {1/F}.
So x−/F ∈ {1/F} or y−/F ∈ {1/F}. Hence x− ∈ F or y− ∈ F . Therefore F is a primely filter of A.

((ii) ⇒ (iii)) According to Theorem 3.4, the proof is clear.
((iii) ⇒ (ii)) The proof is easy. □

Based on Theorem 3.4:

Corollary 3.7. Let F be a primely filter of a BL-algebra A. Then the following conditions are hold:
(i) (F : x) is a primely filter, for x ∈ A− F ;
(ii) Rad(F ) is a primely filter of A;
(iii) D(F ) is a primely filter of A.

Proposition 3.8. Let F and G be two proper filters of a BL-algebra A such that F ⊆ G. Then G is
a primely filter of A if and only if G/F is a primely filter of a BL-algebra A.

Proposition 3.9. Let F1 and F2 be two primely filters of a BL-algebra A such that D(F1) = D(F2).
Then F1 ∩ F2 is a primely filter.

Proof. Let F1 and F2 be two primely filters and (x∧ y)− ∈ F1 ∩F2, for x, y ∈ A. Then (x∧ y)− ∈ F1.
According to the hypothesis, x− ∈ F1 or y− ∈ F1. If x− ∈ F1 ⊆ D(F1) = D(F2). Then x− ∈ F2,
hence x− ∈ F1∩F2. Similarly, if y− ∈ F1, then y− ∈ F1∩F2. Therefore F1∩F2 is a primely filter. □

Recall that the union of two arbitrary filters is not a filter. In fact, if {Fi : i ∈ I} is a non-empty
totally ordered set of filters, then ∪i∈IFi is a filter. So, clearly if {Fi : i ∈ I} is a non-empty totally
ordered set of primely filters, then ∪i∈IFi is a primely filter.

Proposition 3.10. Let F be a primely filter of an MV-algebra A. Then F = (F : x), for all x ∈ A−F .

Proof. Let F be a primely filter of an MV-algebra A and x ∈ A − F . It is clear that F ⊆ (F : x).
Now, let y ∈ (F : x). Then (x− ∧ y−)− = x−− ∨ y−− = x ∨ y ∈ F . According to the hypothesis,
x−− ∈ F or y−− ∈ F , and so, x ∈ F or y ∈ F . As x ∈ A − F , then y ∈ F . Hence (F : x) ⊆ F .
Therefore the proof is completed. □

In the following, we give the relations between primely filters and some other filters in BL-algebras.

Proposition 3.11. (i) In any BL-algebra, every prime filter is a primely filter.
(ii) In any BL-algebra, every maximal filter is a primely filter.

Proof. (i) Let F be a prime filter and (x ∧ y)− ∈ F , for x, y ∈ A. Then x− ∨ y− ∈ F . So, according
to the hypotheses, x− ∈ F or y− ∈ F . Thus F is a primely filter.

(ii) Based on part(i), the proof is clear. □
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The following example shows that the converse of Proposition 3.11 is not generally true.

Example 3.12. Let A = {0, a, b, c, 1}, where 0 < c < a, b < 1. If the operations ∗ and → are defined
as follows:

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a c c a
b 0 c b c b
c 0 c c c c
1 0 a b c 1

and

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b b 1
b 0 a 1 a 1
c 0 1 1 1 1
1 0 a b c 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [11]. It is easy to check that F = {1} is a primely filter, while
is not a prime filter, since a → b /∈ F and b → a /∈ F .

The following corollary is a straightforward consequence of [16, Proposition 7] and Proposition 3.11.

Corollary 3.13. Any proper filter of a BL-algebra can be extended to a primely filter.

Based on [16, Proposition 7] and Proposition 3.11(i), we have the following

Corollary 3.14. Let F and P be two proper filters of a BL-algebra A. Then for any a ∈ A−F, there
exists a primely filter P such that F ⊆ P and a /∈ P .

Recall that a non-unit element m ∈ A is said to be a comolecule of A if whenever m ≤ x, y ≤ 1,
then x ∨ y < 1 [1].

The following corollary is a straightforward consequence of Proposition 3.11(i) and [1, Theorem
4.3].

Corollary 3.15. Let A be a BL-algebra and Comol(A) = A− {1}. Then ⊥ [m) is a primely filter.

Proposition 3.16. Let F be a primely filter of a BL-algebra A. Then the following conditions hold:
(i) D(F ) is a prime filter;
(ii) D(F ) is a primary filter;
(iii) A/D(F ) is a local BL-algebra.

Proof. (i) Let F be a primely filter and x ∨ y ∈ D(F ), for x, y ∈ A. Then according to the definition
of D(F ), (x ∨ y)−− ∈ F . As (x ∨ y)−− = (x− ∧ y−)− ∈ F and F is a primely filter, so, x−− ∈ F or
y−− ∈ F . Hence x ∈ D(F ) or y ∈ D(F ). Thus D(F ) is a prime filter.

(ii) Let F be a primely filter. Then according to part(i) and [13, Theorem 3.1(3)], D(F ) is a primary
filter of A.

(iii) Based on part(i), the proof is clear. □

Proposition 3.17. Let F be a primely and normal filter of a BL-algebra A. Then F is a primary
filter.

Proof. Let F be a primely and normal filter. Then according to [2, Theorem 3.25], F = D(F ). Hence
based on Proposition 3.16, F is a primary filter. □

Open Problem: If F is a normal and primary filter of a BL-algera, then is F a primely filter?

Recall that a BL-algebra A is an MV-algebra if for all x ∈ A, x−− = x [7].

Proposition 3.18. Let F be a primely filter of an MV-algebra A. Then the following conditions hold:
(i) F is a prime filter;
(ii) F is a primary filter.

Proof. (i) Let F be a primely filter of an MV-algebra A and x ∨ y ∈ F , for x, y ∈ A. Then x ∨ y =
x−− ∨ y−− = (x− ∧ y−)− ∈ F . As F is a primely filter, (x−)− ∈ F or (y−)− ∈ F . According to the
hypothesis, x ∈ F or y ∈ F . Therefore F is a prime filter.

(ii) The proof based on [13, Theorem 3.1(3)] and part(i), is clear. □
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Recall that a BL-algebra A is a semi-G-algebra if for all x ∈ A, (x2)− = x− [5].

Proposition 3.19. Let F be a primely and fantastic filter of a semi-G-algebra A. Then the following
conditions hold:

(i) F is an obstinate filter;
(ii) F is a prime filter;
(iii) F is a primary filter;
(iv) F is a maximal filter.

Proof. (i) Let F be a fantastic and primely filter of a semi-G-algebrs A. Also, assume that x, y /∈ F ,
for x, y ∈ A. Based on [5, Proposition 4.4], x ∧ x− = 0, equivalenty (x ∧ x−)− = 1 ∈ F , for all x ∈ A.
As F is a primely filter, x− ∈ F or x−− ∈ F . If x−− ∈ F , as F is a fantastic filter so, x ∈ F , which is
a contradiction. Hence x− ∈ F . It is known that x− = x → 0 ≤ x → y and, so, x → y ∈ F . Similarly,
y → x ∈ F . Therefore F is an obstinate filter.

(ii) Let F be a fantastic and primely filter of a semi-G-algebra A. Then based on [3, part (i) and
Theorem 4.1], F is a prime filter.

(iii) Based on [13, part(ii) and Theorem 3.1], the proof is easy.
(iv) The proof based on [3, part (i) and Theorem 4.1], is clear. □

In the following example, it is shown that the condition “A is a semi-G-algebra” in Proposition
3.18 is necessary.

Example 3.20. Let A = {0, a, b, 1}, where 0 < a < b < 1. If the operations ∗ and → are defined as
follows:

∗ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

and

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [8]. Clearly, F = {1} is a primely filter and fantastic filter,
while a ∧ a− ̸= 0. Also, F is not an obstinate filter, since b /∈ F and (b−)n /∈ F .

Proposition 3.21. Every integral filter in a BL-algebra is a primely filter.

Proof. Let F be an integral filter of a BL-algebra A and (x ∧ y)− ∈ F , for x, y ∈ A. As (x ∧ y)− ≤
(x ∗ y)−, then (x ∗ y)− ∈ F . Hence according to the hypotheses, x− ∈ F or y− ∈ F . Therefore F is a
primely filter of A. □

Example 3.22. Let A = {0, a, b, 1}, where 0 < a < b < 1. If the operations ∗ and → are defined as
follows:

∗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

and

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [8]. Clearly, F1 = {1} and F2 = {b, 1} are primely filters and
not integral filters. Since (a ∗ a)− ∈ F1, F2, while a− /∈ F1, F2.

We known that every obstinate filter is an integral filter. So, according to Proposition 3.21, we
have

Proposition 3.23. Every obstinate filter in BL-algebras is a primely filter.

Remark 3.24. Consider Example 3.22. Clearly, F2 = {b, 1} is a primely filter of A and not an
obstinate filter, since a /∈ F2 and (a−)n = an = 0 /∈ F2.
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Proposition 3.25. Let F be a primely filter of a semi-G-algebra A. Then D(F ) is an obstinate filter.

Proof. Let F be a primely filter. Then according to Corollary 3.7, D(F ) is a primely filter. Now let
x /∈ D(F ). Then according to [5, Proposition 4.4], x∧x− = 0, for all x ∈ A. So, (x∧x−)− = 1 ∈ D(F ),
for all x ∈ A. Hence x− ∈ D(F ) or x−− ∈ D(F ), since D(F ) is a primely filter. If x−− ∈ D(F ), then
x−− ∈ F . Hence x ∈ D(F ), which is a contradiction. Thus x− ∈ D(F ) and so, D(F ) is an obstinate
filter. □

Proposition 3.26. Let D(F ) be an obstinate and normal filter. Then F is a primely filter.

Proof. Let D(F ) be an obstinate and normal filter. Then according to Proposition 3.23, D(F ) is a
primely filter. Hence based on [2, Theorem 3.25], F is a primely filter. □

Proposition 3.27. Let F be a primely filter of a semi-G-algebra A. Then the following conditions
hold:

(i) D(F ) is a Boolean (positive implicative) filter;
(ii) D(F ) is an implicative filter.

Proof. (i) Let F be a primely filter and x ∧ x− = 0, for all x ∈ A. As (x ∧ x−)− = 1 ∈ F , based on
the hypotheses, x− ∈ F or x−− ∈ F . So, according to the definition, D(F ), x− ∈ D(F ) or x ∈ D(F ).
Hence x ∨ x− ∈ D(F ), for all x ∈ A. Thus D(F ) is a Boolean (positive implicative) filter.

(ii) Based on part (i), the proof is clear. □

The following example shows that the converse of Proposition 3.27 is not true, in general.

Example 3.28. Let A = {0, a, b, 1}, where 0 < a, b < 1. If the operations ∗ and → are defined as
follows:

∗ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

and

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [11]. Clearly, F = {1} = D(F ) is a Boolean filter of A, while
F is not a primely filter, since a− → b− /∈ F and b− → a− /∈ F .

The following remark shows that the condition x ∧ x− = 0 is necessary in Proposition 3.27.

Remark 3.29. In Example 3.20, F = {1} is a primely filter, while a ∧ a− ̸= 0 and D(F ) = {1} is
not a Boolean filter, since a ∨ a− /∈ D(F ).

Lemma 3.30. Let F be a filter of a BL-algebra A. Then D(F ) ⊆ Rad(F ).

Proof. Let x ∈ D(F ). Then x−− ∈ F . As x−− ≤ x− → x, therefore x ∈ Rad(F ). Hence D(F ) ⊆
Rad(F ). □

The following proposition is a straightforward consequence of Proposition 3.16, Lemma 3.30 and
Theorem 3.4.

Proposition 3.31. Let F be a primely filter of a BL-algebra A. Then the following conditions hold:
(i) Rad(F ) is a prime filter;
(ii) Rad(F ) is a primary filter.

Corollary 3.32. Let F be a primely and semi-maximal filter of a BL-algebra A. Then the following
conditions hold:

(i) F is a prime filter;
(ii) F is a primary filter.

Proof. According to Proposition 3.31 and the definition of a semi-maximal filter, the proof is easy. □
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Proposition 3.33. Let F be a primely filter of a BL-algebra A. Then Rad(F : x) = Rad(F ), for
x ∈ A− F .

Proof. Let F be a primely filter. Then according to Proposition 3.31, Rad(F ) is a primary filter. So,
Rad(Rad(F )) is a maximal filter, hence Rad(F ) is a maximal filter. As Rad(F ) ⊆ Rad(F : x), for all
x ∈ A− F , so, Rad(F ) = Rad(F : x), for all x ∈ A− F . □

Proposition 3.34. Let F be a filter of a BL-algebra A. Then
(i) D(F ) is a fantastic filter;
(ii) Rad(F ) is a fantastic filter.

Proof. (i) We known that (x−− → x)−− = x−− → x−− = 1, for all x ∈ A. Hence (x−− → x)−− ∈ F ,
for all x ∈ A. So x−− → x ∈ D(F ), for all x ∈ A. Therefore D(F ) is a fantastic filter.

(ii) Based on part (i) and Lemma 3.30, the proof is clear. □

Proposition 3.35. Let F be a filter of a BL-algebra A. Then the following conditions hold:
(i) F is a primary filter if and only if Rad(F ) is a primely filter.
(ii) If F is a semi-integral filter, then Rad(F ) is a primely filter.

Proof. (i) Let F be a primary filter. Then according to [13, Theorem 3.3], Rad(F ) is a maximal filter.
Based on Proposition 3.11(ii), Rad(F ) is a primely filter. Conversely, let Rad(F ) be a primely filter.
So according to Proposition 3.31(ii), Rad(Rad(F )) is a primary filter and based on [14, Theorem
3.7(8)], Rad(F ) is a primary filter. Then according to [13, Theorem 3.3], Rad(Rad(F )) = Rad(F ) is
a maximal filter and so Rad(F ) is a maximal filter. Therefore F is a primary filter.

(ii) Let F be a semi-integral filter. Then according to [12, Lemma 2], F is a primary filter. Based
on part(i), Rad(F ) is a primely filter. □

Open Problem [12]: Is every primary filter in BL-algebras, semi-integral?

Proposition 3.36. Let F be a primely filter of a BL-algebra A. Then the following conditions hold:
(i) If N(A/F ) = {[1]}, then F is a primary filter.
(ii) If any almost top element of A/F is a trivial element, then F is a primary filter.

Proof. (i) Let F be a primely filter. Then based on [2, Proposition 3.16 and Theorem 4.8], F is a
primary filter.

(ii) Let F be a primely filter. Then based on [2, Proposition 3.16 and Theorem 4.7], F is a primary
filter. □

Proposition 3.37. Let F be a primary filter of a semi-G-algebra A. Then F is a primely filter.

Proof. Let F be a primary filter of a semi-G-algebra A. Also, assume that (x∧ y)− ∈ F , for x, y ∈ A.
As (x ∧ y)− ≤ (x ∗ y)− so, (x ∗ y)− ∈ F . According to the hypothesis, (xn)− = x− ∈ F or
(yn)− = y− ∈ F , for some n ∈ N. Hence x− ∈ F or y− ∈ F . Then F is a primely filter. □

Recall that a BL-algebra A is a SBL-algebra if for all x, y ∈ A, (x ∗ y)− = (x− ∨ y−) [6].

Proposition 3.38. Let F be a primely filter of a SBL-algebra A. Then F is a primary filter.

Proof. Let F be a primely filter of a SBL-algebra and (x ∗ y)− ∈ F , for x, y ∈ A. Then since A is
a SBL-algebra, (x ∗ y)− = (x− ∨ y−) = (x ∧ y)− ∈ F . So, according to the hypothesis, x− ∈ F or
y− ∈ F . Thus F is a primary filter. □

Corollary 3.39. Let F be a primely filter of a BL-algebra A and x∨ y = 1, for all x, y ̸= 1. Then F
is a primary filter.

Proof. Let F be a primely filter and (x ∗ y)− ∈ F , for x, y ∈ A. As x ∨ y = 1, then x ∗ y = x ∧ y.
Hence (x ∗ y)− = (x ∧ y)− = (x− ∨ y−) ∈ F . So, according to the hypothesis, x− ∈ F or y− ∈ F .
Thus F is a primary filter. □
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Proposition 3.40. Let A be a Gödel algebra and F be a filter of A. Then the following conditions
are equivalent:

(i) F is an integral filter;
(ii) F is a primely filter;
(iii) F is a semi-integral filter;
(iv) F is a primary filter.

Proof. ((i) ⇒ (ii)) The proof, according to Proposition 3.21, is clear.
((ii) ⇒ (i)) Let F be a primely filter and (x ∗ y)− ∈ F , for x, y ∈ A. Then, according to the

hypothesis, (x ∗ y)− = (x ∧ y)− ∈ F and so, x− ∈ F or y− ∈ F . Thus F is an integral filter, for
x, y ∈ A.

((i) ⇔ (iii)) Based on [12, Lemma 3], the proof is clear.
((i) ⇔ (iv)) According to [4, Theorem 4.15], the proof is clear. □

4. Primely BL-algebras

Definition 4.1. A BL-algebra A is called primely, if for x, y ∈ A, x ∧ y = 0 implies x = 0 or y = 0.

Further,we present some examples of finite and infinite primely BL-algebras.

Example 4.2. (i) Let A = {0, a, b, c, 1}, where 0 < c < a, b < 1. If the operations ∗ and → are
defined as follows:

∗ 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

and

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [13]. Clearly, A is a primely BL-algebra.
(ii) Let A = {−∞, . . . ,−1, 0, 1}. If the operations ∗ and → are defined as follows:

→ −∞ . . . −3 −2 −1 0 1
−∞ 1 . . . 1 1 1 1 1
...

... · · ·
...

...
...

...
...

−3 −∞ . . . 1 1 1 1 1
−2 −∞ . . . −2 −1 1 1 1
0 −∞ . . . −3 −2 −1 1 1
1 −∞ . . . −3 −2 −1 0 1

and

∗ −∞ . . . −3 −2 −1 0 1
−∞ −∞ . . . −∞ −∞ −∞ −∞ −∞
...

... · · ·
...

...
...

...
...

−3 −∞ . . . −6 −5 −4 −3 −3
−2 −∞ . . . −5 −4 −3 −2 −2
−1 −∞ . . . −4 −3 −2 −1 −1
0 −∞ . . . −3 −2 −1 0 0
1 −∞ . . . −3 −2 −1 0 1,

then (A,∧,∨, ∗,→, 0, 1) is a BL-algebra [9]. Clearly, A is a primely BL-algebra.
(iii) Consider Example 3.2(iii). Clearly, A is not a primely BL-algebra, since a ∧ b = 0, but a ̸= 0

and b ̸= 0.
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Theorem 4.3. Let F be a proper filter of a BL-algebra A. Then A/F is a primely BL-algebra if and
only if F is a primely filter of A.

Proof. Let A/F be a primely BL-algebra and (x ∧ y)− ∈ F , for x, y ∈ A. Then [x] ∧ [y] = [0]. Based
on the hypothesis, [x] = [0] or [y] = [0]. Hence x− ∈ F or y− ∈ F . Therefore F is a primely filter of A.
Now, assume that F is a primely filter of A and [x]∧ [y] = [0], for [x], [y] ∈ A/F . Then (x∧ y)− ∈ F .
As F is a primely filter of A, x− ∈ F or y− ∈ F . Hence [x] = [0] or [y] = [0]. Therefore A/F is a
primely BL-algebra. □

Proposition 4.4. A BL-algebra A is primely if and only if every filter of A is a primely filter.

Proof. Let A be a primely BL-algebra. Then A/{1} is a primely BL-algebra. So, according to Theorem
4.3, {1} is a primely filter of A. Therefore every filter of A is a primely filter. Now, let every filter of
A be a primely filter. Then {1} is a primely filter of A. According to Theorem 4.3, A/{1} ∼= A is a
primely BL-algebra. □

Proposition 4.5. Every linearly ordered BL-algebra is a primely BL-algebra.

Proof. Let A be a linearly ordered BL-algebra and x ∧ y = 0 for x, y ∈ A. Then, according to the
hypothesis, x ≤ y or y ≤ x. Therefore 0 = x ∧ y = x or 0 = x ∧ y = y. Thus A is a primely
BL-algebra. □

Remark 4.6. In Example 4.2(i), A is a primely BL-algebra, while it is not a linearly ordered BL-
algebra.

Proposition 4.7. Any integral BL-algebra is a primely BL-algebra.

Proof. Let x∧y = 0, for x, y ∈ A. Then as x∗y ≤ x∧y = 0, so x∗y = 0. According to the hypothesis,
x = 0 or y = 0. Therefore A is a primely BL-algebra. □

Remark 4.8. In Example 3.22, A is a primely BL-algebra, while A is not an integral BL-algebra.

Proposition 4.9. Every BL-algebra with Gödel negation is a primely BL-algebra.

Proof. Let A be a BL-algebra with Gödel negation. Then according to [4, Lemma 3.11], Ds(A) =
{x ∈ A : x− = 0} = A − {0}. Now, let x ∧ y = 0, for x, y ∈ A. Assume that x ̸= 0 and y ̸= 0.
Hence x, y ∈ Ds(A) and so x ∗ y ∈ Ds(A), since Ds(A) is a proper filter of A. As x ∗ y ≤ x ∧ y = 0,
then x ∗ y = 0, which is a contradiction, since Ds(A) is a proper filter of A. Therefore the proof is
completed. □

Remark 4.10. In Example 3.20, A is a primely BL-algebra, while A is not with a Gödel negation.

Proposition 4.11. Every special BL-algebra is a primely BL-algebra.

Proof. According to [11, Proposition 3.1] and Proposition 4.9, the proof is clear. □

Remark 4.12. In Example 3.22, A is a primely BL-algebra, while not a special BL-algebra.

Proposition 4.13. Let A be a Gödel algebra and F be a proper filter of A. Then the following
conditions are equivalent:

(i) A is an integral BL-algebra;
(ii) A is a primely BL-algebra;
(iii) A is a semi-integral BL-algebra;
(iv) A is a local BL-algebra.

Proposition 4.14. Let A be a BL-algebra and A have no any zero divisor element. Then A is a
primely BL-algebra.

Proof. Let A have no any zero divisor element and x∧ y = 0, for x, y ∈ A. Then as x ∗ y ≤ x∧ y = 0,
so, x ∗ y = 0. Therefore x = 0 or y = 0, i.e., A is a primely BL-algebra. □

Remark 4.15. Consider Example 3.20. It is clear that A is a primely BL-algebra and a is a zero
divisor element of A.
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5. Conclusions

Various logical-algebras have been proposed semantical systems of non-classical logic systems.
Among these logical algebras, BL-algebras are basic and very important algebraic structures. BL-
algebras have interesting algebraic properties and includes some significant classes of algebras such as
MV-algebras. In this paper, primely filters in BL-algebras and a new class of BL-algebras (primely
BL-algebras) are defined and characterized. The researchers have presented several different charac-
terizations and their important properties. Also, the connections between primely filters, maximal
filters, prime filters and primary filters in a BL-algebra are described.

The researchers intend to focus on applying the results of this paper to other algebraic structures.
Since this idea may be used in other algebraic structures associated with logical systems, we hope
that this article will pave the ground for further study on algebraic structures associated with logical
systems.
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