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ON SOME VERSION OF RANDOM VARIABLES

ALEXANDER KHARAZISHVILI

Abstract. The notion of a generalized random variable is introduced in terms of extensions of a

given probability measure. Some properties of generalized random variables are considered.

Let Ω be an uncountable set and let P be a continuous probability measure on Ω, i.e., P vanishes
at all singletons in Ω. Denoting S = dom(P ), we thus have a probability space (Ω,S, P ) such that
P ({ω}) = 0 for every ω ∈ Ω.

Let f : Ω → R be a function, where R is the real line.
We shall say that f is a generalized random variable (or a quasi-random variable, or a weak random

variable) if there exists a measure P ′ on Ω which extends P and for which f becomes a random variable.
Accordingly, for a natural number n > 0, we shall say that a mapping F : Ω → Rn is a generalized

random vector if there exists a measure P ′ on Ω which extends P and for which F becomes a random
vector (the latter means that F is a measurable mapping from (Ω,dom(P ′), P ′) into (Rn,B(Rn)),
where B(Rn) denotes, as usual, the Borel σ-algebra of Rn).

Example 1. Clearly, if a probability P is defined on the family of all subsets of Ω, then any function
f : Ω → R is a random variable (hence, a quasi-random variable). In this case, the concept of a
generalized random variable becomes superfluous. However, such a case is very problematic, because,
as is known, the statement that dom(P ) always differs from the family of all subsets of Ω does not
contradict the axioms of the contemporary ZFC set theory.

Example 2. Every real-valued function f on Ω whose range is at most countable (i.e., every real-
valued step-function f) can be considered as a generalized random variable on Ω. Indeed, let

ran(f) = {r0, r1, . . . , rk, . . .}
and let Ωk = f−1(rk) for each natural number k. Then the family {Ωk : k = 0, 1, . . .} forms a
partition of Ω and, in view of the result obtained in [1], there exists a measure P ′ on Ω such that P ′

extends P and all sets Ωk become P ′-measurable. This immediately implies that f turns out to be
a P ′-measurable function and so, f is a generalized random variable. Observe that the real-valued
step-functions on Ω form an algebra of functions and, simultaneously, a lattice of functions. This
circumstance is sometimes useful in applications. However, the above-mentioned family is not closed
under the standard limit operations of analysis.

The argument presented in Example 2 works for mappings F : Ω → Rn, where n is a nonzero
natural number. Namely, if the range of F is at most countable, then F can be considered as a
generalized random vector.

In connection with Example 2, it makes sense to formulate the following statement which slightly
strengthens the result of [1].

Theorem 1. Let (Ω,S, P ) be a probability space and let {Ai : i ∈ I} be a family of subsets of Ω such
that P (Ai ∩Aj) = 0 for any two distinct indices i and j from I.

Then there exists a probability P ′ on Ω which extends P and for which all sets Ai (i ∈ I) are
P ′-measurable.

Example 3. Let Ω be an uncountable set and let P be a probability on Ω such that, for every set
A ⊂ Ω with card(A) < card(Ω), one has P (A) = 0. Observe that if card(Ω) is not cofinal with card(N),
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where N denotes the set of all natural numbers, then such P can always be defined. According to one
of Sierpiński’s results (see, e.g., [10]), there exists a family {Ai : i ∈ I} of subsets of Ω satisfying the
following relations:

(1) card(I) > card(Ω);
(2) card(Ai) = card(Ω) for each index i ∈ I;
(3) card(Ai ∩Aj) < card(Ω) for any two distinct indices i and j from I.
In view of Theorem 1, there exists a probability measure P ′ on Ω which extends P and for which

all sets Ai (i ∈ I) become P ′-measurable.

Clearly, for a vector function F : Ω → Rn, the following two assertions are equivalent:
(i) F is a random vector in the standard sense;
(ii) all functions prk ◦ F , where k = 1, 2, . . . , n, are random variables in the standard sense.
For the concept of generalized random vectors, the above-mentioned equivalence fails to be true

(cf. Theorem 3 below). At the same time, it can easily be seen that if F : Ω → Rn is a generalized
random vector, then all functions prk ◦ F , where k = 1, 2, . . . , n, are generalized random variables.

In the sequel, we shall say that a function f : Ω → R is absolutely nonmeasurable if f is not a
generalized random variable for the trivial continuous probability measure P0 on Ω, whose domain
consists of all countable and co-countable subsets of Ω.

In other words, the absolute nonmeasurability of f : Ω → R means that there exists no nonzero
σ-finite measure µ on Ω, vanishing at all singletons of Ω and such that f is measurable with respect
to µ (cf. [2, 5, 6]).

In [2], a certain characterization of absolutely nonmeasurable real-valued functions was given (see
also [5, 6]). This characterization is based on the notion of an absolute null subset of R.

Recall that a set X ⊂ R is absolute null (of universal measure zero) if for any σ-finite continuous
Borel measure ν on R, one has ν∗(X) = 0, where ν∗ denotes the outer measure produced by ν.

There are very nontrivial examples of uncountable absolute null subsets of R (see, for instance,
[5, 7–9]). In particular, any Luzin set in R is absolute null. The existence of Luzin subsets of R or
of generalized Luzin subsets of R needs additional set-theoretic hypotheses (cf. [7–9]). On the other
hand, the existence of an uncountable absolute null sets in R can be established within ZFC theory
(see, e.g., [5], where a slightly more general result is presented).

Theorem 2. For a function f : Ω → R, these two assertions are equivalent:
(1) f is absolutely nonmeasurable;
(2) ran(f) is an absolute null subset of R and the set f−1(t) is at most countable for every point

t ∈ R.

The proof of Theorem 2 is not difficult and can be found in [5] and [6].
Suppose that a natural number n ≥ 2 and a vector function F : Ω → Rn are given. This F can be

written as F = (f1, f2, . . . , fn), where each fi is a real-valued function on Ω. Obviously, F produces
exactly n vector functions F1, F2, . . . , Fn, where

Fi = (f1, f2, . . . , fi−1, fi+1, . . . , fn) (i = 1, 2, . . . , n).

Using Theorem 2, one can obtain the following statement.

Theorem 3. Assume Martin’s Axiom (MA). Let Ω = [0, 1] and let P be the standard probability
Lebesgue measure on [0, 1].

There exists a vector function F : [0, 1] → Rn such that:
(1) any Fi (i = 1, 2, . . . , n) is a random vector with respect to some measure Pi which extends P ;
(2) the real-valued function f1 + f2 + · · · + fn associated with F is injective and its range is a

generalized Luzin subset of R (so, this function is absolutely nonmeasurable).
Consequently, every Fi (i = 1, 2, . . . , n) is a generalized random vector, but F itself is not a gener-

alized random vector.

Note that a result similar to Theorem 3 is formulated and proved in [5, Chapter 17]. Moreover,
the mentioned result does not need any additional set-theoretical axioms so, it is provable within the
ZFC set theory.
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Observe that if F : Ω → Rn is a random vector and G : Ω → Rn is a generalized random vector,
then their sum

F +G = (f1 + g1, f2 + g2, . . . , fn + gn)

and their product

F ·G = (f1 · g1, f2 · g2, . . . , fn · gn)
are generalized random vectors.

A function h : Rn → Rm is called universally measurable if, for every Borel subset B of Rm, the
pre-image h−1(B) belongs to the domain of the completion of any σ-finite Borel measure on Rn.

If h is universally measurable and F : Ω → Rn is a generalized random vector, then the composition
h ◦ F : Ω → Rm is also a generalized random vector.

Remark 1. In [3] and [4], the notion of an almost measurable function f : Ω → R was introduced
and examined, where Ω = [0, 1] and P is the standard probability Lebesgue measure on Ω. It was
also proved in those works that any almost measurable function turns out to be a generalized random
variable.

In the analogous manner, the concept of an almost measurable vector function F : Ω → Rn can be
defined and it can be proved that such F is a generalized random vector.

Theorem 4. Let Ω = [0, 1] and let P be again the standard Lebesgue probability measure on Ω. Under
MA, there exists a vector function

G : Ω → RN

satisfying the following relations:
(1) for any nonempty finite set K ⊂ N, the vector function prK ◦G is a generalized random vector;
(2) for any infinite set K ⊂ R, the vector function prK ◦G is absolutely nonmeasurable, i.e., there

exists no continuous probability measure P ′ on Ω, for which prK ◦ G becomes a measurable mapping
acting from (Ω,dom(P ′), P ′) into (RK ,B(RK)).

Remark 2. The proof of the existence of G is based on the fact that under MA every generalized
Luzin subset of R is of universal measure zero. Moreover, taking into account Example 2, one can
additionally assert in the formulation of Theorem 4 that:

(a) the vector function G is injective;
(b) for each natural number n, the range of the function prn ◦G is finite;
(c) all functions prn ◦ G, where n ∈ N, are measurable with respect to some countably generated

σ-algebra of subsets of Ω, which contains dom(P ) and does not admit any continuous probability
measure.
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Państwowe Wydawnictwo Naukowe, Warsaw 1958.



146 A. KHARAZISHVILI

(Received 18.02.2023)

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 Merab Aleksidze II
Lane, Tbilisi 0193, Georgia

I. Vekua Institute of Applied Mathematics, 2 University Str., Tbilisi 0186, Georgia
Email address: kharaz2@yahoo.com


