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ABSOLUTELY NEGLIGIBLE SETS AND THEIR ALGEBRAIC SUMS

MARIAM BERIASHVILI1, MARIKA KHACHIDZE2 AND ALEKS KIRTADZE3

Abstract. For invariant (quasi-invariant) σ-finite measures on an uncountable group, the behaviour
of absolutely negligible sets with respect to the algebraic sums is studied.

In the paper by Sierpiński [8], it was proved that there exist two subsets X and Y of R such that
λ(X) = λ(Y ) = 0 and X + Y = R, where λ is the standard Lebesgue measure on the real line R.

The above-mentioned result can be extended to a wide class of uncountable topological groups
equipped with σ-finite invariant (quasi-invariant) Borel measures (in this connection, cf., also [7].

It is reasonable to ask whether similar statements hold in more general situations when no topology
is considered on a given group. Namely, it is natural to pose the following question:

Let (G, ·) be an uncountable group equipped with a nonzero σ-finite G-invariant (G-quasiinvariant)
measure µ and let I(µ) be a σ-ideal of all µ-measure zero sets.

Do there exist two sets X ∈ I(µ) and Y ∈ I(µ) whose algebraic sum X · Y is equal to G?
The formulation of the question posed above should be replaced by another one. Namely, the

following problem is of interest from the measure-theoretical point of view.
Let (G, ·) be an uncountable group and let µ be a nonzero σ-finite left G-invariant (left G-

quasiinvariant) measure on G.
Does there exist a left G-invariant (left G-quasiinvariant) measure µ′ on G extending µ and such

that for some sets X ∈ I(µ′) and Y ∈ I(µ′), the relation

X · Y = G

is satisfied?
Let us introduce one notion from the general theory of invariant (quasi-invariant) measures, which

plays a crucial role in our further constructions.
Let (G, ·) be an arbitrary group and let X be a subset of G. We say that X is G-absolutely

negligible in G if for every σ-finite left G-invariant (respectively, left G-quasi-invariant) measure µ on
G, there exists a left G-invariant (respectively, left G-quasi-invariant) measure µ′ on G extending µ
and satisfying the relation µ′(X) = 0.

Example 1. In 1914, S. Mazurkiewicz presented transfinite constructions of a subset A of the Eu-
clidian plane R2, having the following extraordinary property: every straight line in R2 meets A at
exactly two points. The descriptive structure of a Mazurkiewicz set turned out to be rather compli-
cated. In general, one cannot assert that a Mazurkiewicz set is necessarily nonmeasurable with respect
to a standard Lebesgue measure in the Euclidean plane λ2 measure. Indeed, there are Mazurkiewicz
subsets of the plane which have λ2 -measure zero. Moreover, there exists a Mazurkiewicz set which is
λ2-thick. In general:

• there exists a Mazurkiewicz set which is absolutely negligible with respect to M(R2);
• there exists a Mazurkiewicz set which is not-absolutely negligible with respect to M(R2)

(see [4]).

Example 2. In 1905, Hamel considered R as a vector space over the field Q of all rational numbers
and proved the existence of a basis in this space (a Hamel basis). It is known that every Hamel basis
of the space Rn is an absolutely negligible subset of Rn [1, 4].
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The following lemma is true.

Lemma 1. Let (G1, ·) and (G2, ·) be two groups, φ : G1 −→ G2 be a surjective homomorphism and
let Y be a G2-absolutely negligible subset of G2. Then the set X = φ−1(Y ) is G1-absolutely negligible
in G1.

Various properties of absolutely negligible sets are considered in [2, 3, 5].
In the above-mentioned question, for an uncountable commutative group (G,+), the following

statements are valid.

Theorem 1. For any uncountable commutative group (G,+), there exist two G-absolutely negligible
sets X and Y in G such that X + Y = G.

Remark 1. It immediately follows from Theorem 1 that if (G,+) is an arbitrary uncountable com-
mutative group, then there exists a G-absolutely negligible subset Z of G such that

Z + Z = G.

Theorem 2. Let (G,+) be an uncountable commutative group and let µ be a σ-finite G-invariant
(respectively, G-quasi-invariant) measure on G. There exists a G-invariant (respectively, G-quasi-
invariant) extension µ′ of µ such that

µ′(X) = µ′(Y ) = 0, X + Y = G,

for some G-absolutely negligible subsets A and B of G which do not depend on µ.

For an uncountable group (G, ·) the following statements are valid.

Theorem 3. Let (G, ·) be an uncountable group such that

(card(G))ω = card(G).

Then there exist two G-absolutely negligible sets X and Y in G for which

X · Y = G.

The proofs of the above-mentioned statements can be found in [5].

Theorem 4. Let (G, ·) be an arbitrary group such that

G = G′ ×G′′, (G′ ∩G′′ = {e}),
where G′ and G′′ are the subgroups of G and card(G′) = ω1. Let µ be a nonzero σ-finite G-quasi-
invariant measure on G. Then for each uncountable set X ⊂ G′, there exist a G-quasi-invariant
measure µ′ on G extending µ and a set Y ∈ I(µ′) for which we have

X · Y = G /∈ I(µ′).

In particular, if X ∈ I(µ′), then G is representable in the form of algebraic product of two µ′-measure
zero sets.

For the proof of Theorem 4, see [6].
Let (G, ·) be an arbitrary uncountable group.

Lemma 2. Let (H,⊗) be an uncountable group (commutative or noncommutative) and let µ be a
nonzero σ-finite H-invariant measure on H. If

φ : G → H

is a surjective homomorphism and there exist a nonzero σ-finite H-left invariant measure µ′ ⊃ µ and
two sets X ∈ I(µ′) and Y ∈ I(µ′) on H such that

X ⊗ Y = H,

then there exist the measures ν and ν′ on G and two sets X ′ ∈ I(ν′) and Y ′ ∈ I(ν′) on G for which
the following relations are satisfied:

(a) ν′ ⊃ ν;
(b) X ′ · Y ′ = G;
(c) ν and ν′ are G-left invariant measures on G.
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From the above lemma, we readily obtain the following statement.

Theorem 5. Let (G, ·) and (H, ·) be arbitrary uncountable groups and let

φ : G → H

be a surjective homomorphism. Let µ be a nonzero σ-finite H-left invariant measure on H. If there
exist a nonzero σ-finite H-left invariant (H-left-quasi-invariant) measure µ′ ⊃ µ on H and two abso-
lutely negligible sets X and Y such that X · Y = H, then there exist nonzero σ-finite G-left invariant
(G-left-quasi-invariant) measures ν and ν′ satisfying the following relations:

(1) ν′ is a nonzero σ-finite G-left invariant (G-left-quasi-invariant) measure on G;
(2) ν′ ⊃ ν;
(3) there exist two absolutely negligible sets X ′ and Y ′ such that X ′ · Y ′ = G.

Remark 2. If (G, ·) is an uncountable commutative group, then the existence of two absolutely
negligible sets X and Y such that X + Y = G is guaranteed by Theorem 2.
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