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Abstract. Janashia–Lagvilava algorithm is a relatively new method of matrix spectral factorization.

In our previous publications on this topic, we demonstrated that the algorithm is capable to compete

with other existing methods of factorization. In the present paper, we provide further refinements
of the algorithm emphasizing that it might have a significant advantage in many scenarios arising

in practical applications.

1. Introduction

Spectral factorization plays a prominent role in a wide range of applications in Communications,
System Theory, Control Engineering and so on. It is the process by which a positive definite matrix-
valued function S on the unit circle T = {t ∈ C : |t| = 1} is expressed in the form

S(t) = S+(t)
(
S+(t)

)∗
,

for a certain matrix-valued function S+ which can be extended analytically into the open unit disc.
It is assumed that the entries of S are integrable functions, Sij ∈ L1(T), and therefore the entries of
S+ are square integrable functions i.e. S+

ij belong to the Hardy space of analytic functions H2.
In the scalar case arising for single input and single output systems, the factorization problem is

relatively easy, and several classical algorithms exist to tackle it (see the survey paper [20]) together
with the reliable information on their software implementations [11]. Matrix spectral factorization
(MSF) which arises for multidimensional systems is essentially more difficult. Therefore, starting
with Wiener’s original efforts [21] to create a sound computational method of MSF, dozens of different
algorithms have appeared in the literature (see the survey papers [18, 20] and references therein; for
more recent results, see [2,13]). Of course, the problem remains hard and none of existing algorithms
claim to factorize arbitray matrix within any accuracy in reasonable time.

A different approach to the solution of the MSF problem, without imposing any additional restric-
tion on S, besides the necessary and sufficient condition∫

T

log detS(t) dt > −∞

for the existence of spectral factorization, was originally developed by Janashia and Lagvilava in [14]
for 2 × 2 matrices. This approach was subsequently extended to matrices of arbitrary size in [15].
The effective numerical implementation of the method was proposed in [7] where three different
algorithms of MSF were described suitable for different situations. It was illustrated in [7] by numerical
simulations that Janashia–Lagvilava algorithm is comparable in accuracy and speed with Wilson
algorithm [22] which is widely used nowadays in neuroscience [3, 12]. However, this comparison has
been performed under the assumption that the exact result was known beforehand. Of course, this
condition is not fulfilled in practical situations.

In the present paper, we provide further improvements and ramifications of existing implemen-
tations of Janashia–Lagvilava algorithm which reveal significant advantages of the method in many
scenarios encountered in practical applications. In particular, we demonstrate that Janashia–Lagvilava
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method is capable to identify the difficulties of the factorization of a given matrix and react adequately
according to the needs and requirements of the applier. Consequently, the algorithm can make trade-
offs between the available time and desired accuracy which exist in the solution of every practical
problem.

2. General Description of Janashia–Lagvilava Method

In this section we outline Janashia–Lagvilava matrix spectral factorization method. The details
can be found in [7, 15].

For a positive definite r× r matrix function S(t) = [Sij ]i,j=1r with integrable determinant, at first
lower-upper triangular factorization is performed,

S(t) = M(t)M∗(t). (1)

Here

M(t) =


f+
1 (t) 0 · · · 0 0

ξ21(t) f+
2 (t) · · · 0 0

...
...

...
...

...
ξr−1,1(t) ξr−1,2(t) · · · f+

r−1(t) 0
ξr1(t) ξr2(t) · · · ξr,r−1(t) f+

r (t)

 , (2)

where ξij ∈ L2(T) and diagonal entries f+
i are stable analytic functions.

Next, each ξij is approximated in L2-norm by its Fourier series:

ξij(t) ≈
∑∞

n=−N
cn{ξij}tn =: ξ

[N ]
ij (t) (3)

and (2) is approximated by

MN (t) =



f+
1 (t) 0 · · · 0 0

ξ
[N ]
21 (t) f+

2 (t) · · · 0 0
...

...
...

...
...

ξ
[N ]
r−1,1(t) ξ

[N ]
r−1,2(t) · · · f+

r−1(t) 0

ξ
[N ]
r1 (t) ξ

[N ]
r2 (t) · · · ξ

[N ]
r,r−1(t) f+

r (t)

 . (4)

Then SN = MNM∗
N , which obviously approximates (1) in L1-norm, is factorized explicitly:

SN (t) = S+
N (t)

(
S+
N (t)

)∗
.

In particular, S+
N is represented as

S+
N (t) = MN (t)U2(t)U3(t) . . .Ur(t), (5)

where each Um, m = 2, 3, . . . , r, has the form

Um(t) =

(
Um(t) 0

0 Ir−m

)
. (6)

In (6), Um, m = 2, 3, . . . , r, are unitary matrix functions of special structure which are closely related
to so called wavelet matrices (see [6,16]). They are constructed recurrently with respect to m, relying
on coefficients cn{ξij}, n = −N, . . . ,−1, in (3), by solving corresponding N × N linear system of
algebraic equations. The convergence

S+
N → S+ (7)

in L2-norm is proved in [5].
For practical applications, the most valuable advantage of the proposed method over the existing

algorithms is that it is not of iterative type. The single tuning parameter N , which determines the
level of approximation in (7), can be selected well in advance of main computations directly after
performing (1). Accordingly, no convergence estimations or stopping rules are required afterwards.

Other advantages of the method are highlighted in the following sections.
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3. Factorization of Singular Matrices

It is well known that all spectral factorization methods encounter severe difficulties in the cases
where the underlying power spectral density matrix S is singular at some points on the unit circle,
i.e., detS(t0) = 0 for some t0 ∈ T. This flaw is in the nature of the problem, as spectral factorization
is unstable for singular functions even in the scalar case (see [8]). On the other hand, in practical
applications, one should always expect that S is singular since the related processes whose behaviour
characterizes S are in most cases unstable. Of course, Janashia–Lagvilava method also works more
efficiently in the non-singular cases, where the factorization is stable (see [1,5,9]), than in the singular
case. However, as numerical simulations confirm, the method actually reduces the difficulty of singular
matrix spectral factorization to the problem of scalar spectral factorization for singular functions. This
is not a panacea, as numerical spectral factorization is still difficult in the singular scalar case, however,
this reduction is rather promising, as the existing formula for factorization of positive functions

f+(z) = exp

(
1

4π

∫
T

t+ z

t− z
log f(t) dt

)
, (8)

no analogue of which exists in the matrix case, rises a hope that the performance of current methods
of spectral factorization will be improved along with technological improvements more significantly in
the scalar case than in the matrix case. In addition, in many situations encountered in practice, e.g.
in the construction of certain wavelets and multiwavelets, the functions appearing on the diagonal in
the representation (1) have a simple form and can be factorized easily.

To demonstrate the above claim, we consider the following matrix

S(t) =

(
− 1

64 t
−2 + 17

32 − 1
64 t

2 1
256 t

−4 − 3
256 t

−2 + 1
2 t

−1 + 3
256 − 1

256 t
2

− 1
256 t

−2 + 3
256 + 1

2 t−
3

256 t
2 + 1

256 t
4 1

1024 t
−4 + 3

256 t
−2 + 243

512 + 3
256 t

2 + 1
1024 t

4

)
(9)

whose spectral factorization is required for the construction of certain multiwavelets.1 The determinant
of (9) is

detS(t) =
1

4096
(t−2 − 1)2(t2 − 1)2, (10)

so S is singular. The exact factorization S(t) = S+(t)
(
S+(t)

)∗
of (9), where

S+(t) =

(
2
5 + 2

5 t−
1
10 t

2 13
40 − 3

10 t+
3
40 t

2

1
40 + 2

5 t+
7
20 t

2 − 1
10 t

3 + 1
40 t

4 − 3
160 + 13

40 t−
21
80 t

2 + 3
40 t

3 − 3
160 t

4

)
has been achieved by elementary methods described in [4] and hence no specific algorithm was used.
However, the exact answer helps to perform a detailed analysis when the different numerical methods
are applied.

Since S11(t) = − 1
64 t

−2 + 17
32 − 1

64 t
2 is not singular, it can be factorized within a machine accuracy

using the formula (8) and FFT. The determinant (10) can also be easily factorized manually. Therefore,
the triangular factor (2) for (9) has the form

M(t) =

(
S+
11(t) 0

S21(t)/S
+
11(t) (t2 − 1)2/64S+

11(t)

)
.

Consequently, in this way, a machine accuracy can be achieved by the Janashia–Lagvilava method. In

particular, one can take N ≈ 40 in the Fourier approximation of M21(t), S21(t)/S
+
11(t) ≈

∞∑
n=−N

cnt
n,

in order to obtain more than 100 correct digits in S+(t) by using the MultiPrecision Computation
(MPC) toolbox of Matlab.

Another striking example of factorization of singular matrices by the Janashia–Lagvilava method
is

S(t) =

(
− 1−4α̃

64 t−3 + 1+4α
64 t−1 + 1 + 1+4α

64 t− 1−4α̃
64 t3 α̃

16 t
−3 − α

16 t
−1 + α

16 t−
α̃
16 t

3

− α̃
16 t

−3 + α
16 t

−1 − α
16 t+

α̃
16 t

3 1−4α̃
64 t−3 − 1+4α

64 t−1 + 1− 1+4α
64 t+ 1−4α̃

64 t3

)
1We are grateful to Prof. Vasil Kolev, Bulgarian Academy of Sciences, for providing this example.
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with determinant

detS(t) =
8α̃− 1

4096
(t+ 1)4(t− 1)4(t+ i)2(t− i)2, (11)

where α = 4 +
√
15 and α̃ = 4−

√
15. The accurate spectral factorization of (11) is required for the

construction of the so-called SA4 multiwavelet [17]. Although the exact answer S+(t) is not available
in this case, its coefficients exhibit certain symmetry and therefore the number of correct digits can be
identified in the approximated result Ŝ+(t) by comparing the corresponding coefficients. (It should be

carefully noticed that the estimation of ∥S − Ŝ+(Ŝ+)∗∥∞ can be misleading in obtaining the number

of correct digits in Ŝ+).

As authors of [17] report, 5-8 correct digits in coefficients of Ŝ+ can be obtained by traditional
methods, while they are making the additional efforts to increase this number to 11. However, the
Janashia–Lagvilava method, factorizing again (11) manually, can achieve the machine accuracy in
computation of S+, say, more than 100 correct digits by using the Matlab MPC toolbox.

Of course, this very high accuracy drops drastically if we avoid the exact factorization of the de-
terminant and use the existing numerical methods for scalar factorization. However, the results are
anyway better than the ones obtained by other methods. Furthermore, the convergence of iterative
methods of spectral factorization is proved under the natural theoretical assumption that all interme-
diate terms in the iteration are stable. However, in actual computations, if S is singular, some terms
of the iteration may develop zeros inside the unit circle due to round-off errors. This might cause a
fluctuation or even divergence of consequent terms. On the other hand, proposed algorithm preserves
convergent properties even in the case where the diagonal entries in (4) are approximated in unstable
way due to round-off errors (see Theorem 5 in [10]). In addition, the stable factorization is easier in
the scalar case because of formula (8).

In conclusion, the claim that the Janashia–Lagvilava method reduces the complexity of matrix
spectral factorization to the complexity of scalar spectral factorization is justified.

4. Factorization of Noisy Matrices

In many applications where the estimation of an unknown signal is required, a power spectral
density matrix S, which has to be factorized, is constructed from empirical observations. Such a
procedure is always subject to numerical errors and instead of theoretically existing exact values of
S, we obtain its noisy version Ŝ. (If, in addition, S is singular, Ŝ may occur not to be even positive
semi-definite on T. How to deal with such a situation is described in [10].) Usually, in such cases, the
spectral factor S+ provides a probabilistic answer to the imposed estimation problem. Under these
circumstances, we intend to identify a rough approximation of Ŝ+ in the shortest possible time.

Mathematically we can formulate the following general optimization problem: for a given posi-
tive definite matrix function S(t) and small ε > 0, find a causal stable Ŝ+ with minimal possible
computations such that

∥S(t)− Ŝ+(t)
(
Ŝ+(t)

)∗∥ < ε.

The Janashia–Lagvilava method can tackle the problem by replacing S with its smooth (non-

singular) approximation Ŝ, so that ∥S − Ŝ∥ < ε/2 and set

∥Ŝ(t)−MN (t)M∗
N (t)∥ <

ε

2

with minimal possibleN in the triangular factorization (4). Since, for relatively smallN , the triangular
matrix MN (t) can be promptly converted into S+

N (t) by formula (5), the method has the potential to
be adjusted to specific applications.

5. Factorization of Large Matrices

Current neuroscience research might involve factorization of matrices as large as the order of 1000.
Entries of these matrices are functions defined on the unit circle as discrete values of high-frequency res-
olution. Numerical spectral factorization of such matrices is indeed a challenging problem. Janashia–
Lagvilava’s method can contribute significantly to the solution of this problem.



ON THE SPECTRAL FACTORIZATION 365

First of all, we would mention that for such large matrices the modification of the JLE-algorithms
1-3 presented in [7] is necessary. This modification was proposed and utilized in [19] and we will
label it as JLE-algorithm 4. This algorithm produces the triangular factorization (2) by pointwise
Cholesky factorization in frequency domain, followed by multiplication with the diagonal unitary
matrix D = diag(u1, u2, . . . , ur), where |uk| = 1 for k = 1, 2, . . . , r, which makes diagonal entries
in M(t) causal. Then M(t) is transformed into the time domain by IFFT, it is approximated by
MN (t), and then returned back to the frequency domain by FFT. Next, recursively with respect to
m = 2, 3, . . . , r, the m-th row of MNU2, . . . ,Um−1 is computed (in time domain), the unitary matrix
function (6) is constructed (in time domain) and it is post multiplied by MNU2 . . .Um−1 (in frequency
domain) to obtain MNU2 . . .Um−1 ·Um. As it is noticed already in [19], in these procedures, the most
time-consuming step is the last multiplication in the frequency domain as it has to be performed r−1
times. However, we can perform these multiplications in the time domain at least in the beginning for
some U2U3 · · ·Uk and then switch to the frequency domain. In addition, as numerical simulations
confirm, to achieve the desired accuracy, it is frequently sufficient to compute M (i.e. to perform
the pointwise Cholesky factorization and make diagonal entries analytic) with high resolution while
continuing multiplications by Uk with lower resolution.

The main advantage of the Janashia–Lagvilava method is that while processing such large data, the
method can analyze the intermediate results and provide a user with corresponding recommendations
for optimization of the process. For example, if an r × r matrix is too large and “heavily” singular,
then the factorization of this matrix within acceptable accuracy might be impossible. This negative
result might be revealed after a few days of computations by other iterative algorithms losing all
the time and getting no necessary information. The user-friendly design of JLE-algorithm 4 can
identify this problem within hours and recommend increasing the resolution for obtaining a satisfactory
result. Furthermore, JLE-4 can extract as much information as possible even without increasing the
resolution. Namely, it can satisfactorily factorize the maximal possible principle m × m submatrix
of the original matrix, where m < r. It might not necessarily be the leading principal submatrix.
A slightly modified JLE-4 automatically searches for the maximal possible m for which the m × m
submatrix (with the same indexed columns and rows) can be factorized. This modification consists
of optimal rearrangement of columns and rows during the Cholesky factorization. Of course, if r × r
spectral density matrix is designed in order to extract some useful information from its spectral
factor (mostly for connectivity analysis between the different channels), the factorization of its m×m
submatrix for m close to r will contain a large portion of the necessary information.

6. Conclusions

Properties of the Janashia–Lagvilava method described in this paper were identified by intensive
numerical simulations carried out mostly during theoretical research. In the real signal processing
applications of the algorithm, when data arrival and transfer of the results are incorporated, further
characteristics of the method can be investigated which is the task of future research.
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