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INTEGRAL EQUATION METHOD FOR A ROBIN-TYPE TRACTION

PROBLEM IN A PERIODIC DOMAIN

MATTEO DALLA RIVA1, GENNADY MISHURIS2 AND PAOLO MUSOLINO3∗

Abstract. In this note, we consider a Robin-type traction problem for a linearly elastic body
occupying an infinite periodically perforated domain. After proving the uniqueness of the solution

we use periodic elastic layer potentials to show that the solution can be written as the sum of a

single layer potential, a constant function and a linear function of the space variable. The density of
the periodic single layer potential and the constant are identified as the unique solutions of a certain

integral equation.

1. Introduction

The analysis of problems for perforated plates and other porous materials started at the beginning
of the 20th century (see, e.g., [4, 23–25, 49]) and, at least in the first stage of development, was
mainly dedicated to problems with classic boundary conditions of Dirichlet and Neumann types (see
Mityushev et al. [44] for a thorough review). Recent advances in material sciences, however, brought
the attention to problems with different kinds of boundary conditions, and even to problems with
boundary conditions of nonlinear type.

One example comes from the employment of porous coating, or interfacial coatings in the case
of inclusions, that are used to produce metamaterials with properties that are not typically present
in nature and to enhance desirable characteristics, such as the corrosion resistance, biocompatibil-
ity, biodegradation, and so on. When the thickness of the coating is negligibly smaller than the
characteristic size of the pores, while its material properties (elastic, thermal, magneto-electric, etc.)
are, in a sense, weaker/softer in comparison with those of the main composite material (matrix), the
corresponding mathematical problems may degenerate into periodic boundary value problems with
conditions of Robin type (see [3,5,30,39,41–43,50,52]). To the best of our knowledge, these problems
seem to be rarely considered in literature, and, therefore, we show in this note how we can effectually
employ an integral equations approach.

Indeed, integral equation methods have proven to be a very useful tool to deal with problems that
are relevant in the applications. The literature is massive and a complete list of applications may
range from scattering theory and inverse problems (as, for example, in Ammari and Kang [1], Castro
et al. [6], Colton and Kress [8], Kirsch and Hettlich [29]), to elasticity and thermoelasticity (as in
Duduchava [16], Duduchava et al. [17,18], Kupradze et al. [32]), fluid mechanics (for example in Kohr
et al. [31]), and to the composite materials (see also Chkadua et al. [7], Duduchava et al. [19]).

In addition, the study of composite materials often boils down to the analysis of boundary value
problems in periodic domains (see, e.g., Milton [40, Ch. 1], Movchan et al. [46]). In dimension 2, these
problems can be tackled with complex variable techniques (see, e.g., Kapanadze et al. [26,27], Drygaś,
et al. [15], Gluzman et al. [22], Kapanadze et al. [28], Mityushev et al. [45]). In higher dimensions,
complex variable techniques are in general not an option, but integral equation methods provide an
effective alternative.

We now describe the problem of this note: We consider a linearly elastic body that occupies an
infinite periodically perforated domain. On the boundary of the body we set a Robin-type traction
condition, which prescribes a linear relation between the traction applied to the boundary and the
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displacement of the boundary points. After introducing the corresponding system of differential
equations and boundary conditions, we will analyze it by means of the integral equation method. We
start by introducing the geometric setting. We fix once for all

n ∈ N \ {0, 1} , (q11, . . . , qnn) ∈]0,+∞[n .

Here N denotes the set of natural numbers including 0. We denote by Q the fundamental periodicity
cell defined by

Q ≡ Πn
j=1]0, qjj [ (1)

and by νQ the outward unit normal to ∂Q, where it exists. We denote by q the diagonal matrix
defined by

q ≡


q11 0 . . . 0
0 q22 . . . 0
. . . . . . . . . . . .
0 0 . . . qnn

 . (2)

We will define our periodically perforated domain, by removing from Rn congruent copies of a bounded
domain of class Cm,α. Therefore, we fix once and for all

m ∈ N \ {0} , α ∈]0, 1[ .

Then we assume that

ΩQ is a bounded open subset of Rn of class Cm,α such that ΩQ ⊆ Q,

and we define the periodic domains

S[ΩQ] ≡
⋃

z∈Zn

(qz +ΩQ) = qZn +ΩQ , S[ΩQ]
− ≡ Rn \ S[ΩQ] .

We now introduce a Robin boundary value problem in S[ΩQ]
− for the Lamé equations. To do so,

we denote by T the function from ]1− (2/n),+∞[×Mn(R) to Mn(R) defined by

T (ω,A) ≡ (ω − 1)(trA)In + (A+At) ∀ω ∈]1− (2/n),+∞[ , A ∈Mn(R) .

HereMn(R) denotes the space of n×n matrices with real entries, In denotes the n×n identity matrix,
trA and At denote the trace and the transpose matrix of A, respectively. We note that (ω − 1) plays
the role of the ratio between the first and second Lamé constants and that the classical linearization
of the Piola Kirchoff tensor equals the second Lamé constant times T (ω, ·) (cf., e.g., Kupradze et
al. [32]). Then we consider also the following assumptions:

Let B ∈Mn(R).
Let a, b ∈ Cm−1,α(∂ΩQ,Mn(R)) be such that:

• det a(x) ̸= 0 for all x ∈ ∂ΩQ,

• ξta−1(x)b(x)ξ ≤ 0 for all x ∈ ∂ΩQ, ξ ∈ Rn and det

∫
∂ΩQ

a−1b dσ ̸= 0,

• there exists x0 ∈ ∂ΩQ such that det b(x0) ̸= 0.

Let g ∈ Cm−1,α(∂ΩQ,Rn).

As we shall see the conditions on a and b play a crucial role for the existence and uniqueness of a
solution. Then we take

ω ∈]1− (2/n),+∞[ ,

and we consider the following Robin boundary value problem
div T (ω,Du) = 0 in S[ΩQ]

− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−,∀j ∈ {1, . . . , n},
a(x)T (ω,Du(x))νΩQ

(x) + b(x)u(x) = g(x) ∀x ∈ ∂ΩQ ,

(3)
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where {e1, . . . , en} denotes the canonical basis of Rn and νΩQ
denotes the outward unit normal to

∂ΩQ.
The aim of this note is to prove that the solution to problem (3) exists and is unique, then to

convert problem (3) into an equivalent integral equation, and finally to show that the solution can
be written as the application of a specific integral operator to a density function that is the solution
of a certain boundary integral equation. The long term goal is to provide some tools that can be
used to analyze perturbation problems for the Lamé equations in periodic domains by means of the
so-called Functional Analytic Approach (see [11]). Indeed, the Functional Analytic Approach has been
largely used to study periodic problems for the Laplace equations, also in connection to the analysis
of effective properties (see, e.g., [12, 14, 37, 38]), but the application to perturbation problems for the
Lamé equations in periodic domains is more limited (see the papers [13] and [20]). In particular,
although several techniques are available for the analysis of this type of problems, in this note we
develop the tools we wish to use to carry out the analysis done in [48] for the analysis of degenerating
boundary conditions in the case of a (non-periodic) mixed problem for the Laplace equation. More
precisely, with the results of the present note we wish to study the asymptotic behavior of the solution
of a problem like (3) where the coefficient in front of u tends to 0.

2. Some Notation

We denote the norm on a normed space X by ∥ · ∥X . Let X and Y be normed spaces. We equip the
space X ×Y with the norm defined by ∥(x, y)∥X×Y ≡ ∥x∥X +∥y∥Y for all (x, y) ∈ X ×Y, while we use
the Euclidean norm for Rn. We denote by L(X ,Y) the space of linear and continuous maps from X
to Y, equipped with its usual norm of the uniform convergence on the unit sphere of X . We denote by
I the identity operator. The inverse function of an invertible function f is denoted f (−1), as opposed
to the reciprocal of a real-valued function g, or the inverse of a matrix B, which are denoted g−1 and
B−1, respectively. If B is a matrix, then Bij denotes the (i, j) entry of B. If x ∈ Rn, then xj denotes
the j-th coordinate of x and |x| denotes the Euclidean modulus of x. A dot “·” denotes the inner
product in Rn. For all R > 0 and all x ∈ Rn we denote by Bn(x,R) the ball {y ∈ Rn : |x− y| < R}.
If S is a subset of Rn, then S denotes the closure of S and ∂S denotes the boundary of S. If we
further assume that S is measurable then |S| denotes the n-dimensional measure of S. Let q be as in
definition (2). Let P be a subset of Rn such that x+ qz ∈ P for all x ∈ P and for all z ∈ Zn. We say
that a function f on P is q-periodic if

f(x+ qz) = f(x) ∀x ∈ P , ∀z ∈ Zn .

Let O be an open subset of Rn. Let k ∈ N. The space of k times continuously differentiable real-valued
functions on O is denoted by Ck(O,R), or more simply by Ck(O). If f ∈ Ck(O) then ∇f denotes the

gradient
(

∂f
∂x1

, . . . , ∂f
∂xn

)
which we think as a column vector. Let r ∈ N \ {0}. Let f ≡ (f1, . . . , fr) ∈(

Ck(O)
)r
. Then Df denotes the Jacobian matrix

(
∂fs
∂xl

)
(s,l)∈{1,...,r}×{1,...,n}

. Let η≡(η1, . . . , ηn)∈Nn,

|η| ≡ η1 + · · ·+ ηn. Then D
ηf denotes ∂|η|f

∂x
η1
1 ...∂xηn

n
. The subspace of Ck(O) of those functions f whose

derivatives Dηf of order |η| ≤ k can be extended with continuity to O is denoted Ck(O). Let
β ∈]0, 1[. The subspace of Ck(O) whose functions have k-th order derivatives that are uniformly
Hölder continuous in O with exponent β is denoted Ck,β(O) (cf., e.g., Gilbarg and Trudinger [21]). If

f ∈ C0,β(O), then its β-Hölder constant |f : O|β is defined as sup
{

|f(x)−f(y)|
|x−y|β : x, y ∈ O, x ̸= y

}
. The

subspace of Ck(O) of those functions f such that f|(O∩Bn(0,R))
∈ Ck,β((O ∩ Bn(0, R))) for all R ∈

]0,+∞[ is denoted Ck,β
loc (O). Let S ⊆ Rr. Then Ck,β(O,S) denotes

{
f ∈

(
Ck,β(O)

)r
: f(O) ⊆ S

}
.

Then we set

Ck
b (O,Rn) ≡ {u ∈ Ck(O,Rn) : Dηu is bounded for all η ∈ Nn with |η| ≤ k} ,
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and we equip Ck
b (O,Rn) with its usual norm

∥u∥Ck
b (O,Rn) ≡

∑
η∈Nn , |η|≤k

sup
x∈Ω

|Dηu(x)| .

We define

Ck,β
b (O,Rn) ≡ {u ∈ Ck,β(O,Rn) : Dηu is bounded for all η ∈ Nn with |η| ≤ k} ,

and we equip Ck,β
b (O,Rn) with its usual norm

∥u∥Ck,β
b (O,Rn) ≡

∑
η∈Nn , |η|≤k

sup
x∈O

|Dηu(x)|+
∑

η∈Nn , |η|=k

|Dηu : O|β .

Let O be a bounded open subset of Rn. Then Ck(O) and Ck,β(O) equipped with their usual norm
are well known to be Banach spaces (cf., e.g., Troianiello [51, §1.2.1]). We say that a bounded open
subset O of Rn is of class Ck or of class Ck,β , if its closure is a manifold with boundary imbedded
in Rn of class Ck or Ck,β , respectively (cf., e.g., Gilbarg and Trudinger [21, §6.2]). For standard
properties of functions in Schauder spaces, we refer the reader to Gilbarg and Trudinger [21] and
to Troianiello [51] (see also Lanza de Cristoforis [33, §2, Lemma 3.1, 4.26, Theorem 4.28], Lanza de
Cristoforis and Rossi [35, §2]). If M is a manifold imbedded in Rn of class Ck,β with k ≥ 1, then we
can define the Schauder spaces also on M by exploiting the local parametrization. In particular, if O
is a bounded open set of class Ck,β with k ≥ 1, then we can consider the space Cl,β(∂O) on ∂O with
l ∈ {0, . . . , k} and the trace operator from Cl,β(O) to Cl,β(∂O) is linear and continuous. Now let Q
be as in definition (1). If SQ is an arbitrary subset of Rn such that SQ ⊆ Q, then we define

S[SQ] ≡
⋃

z∈Zn

(qz + SQ) = qZn + SQ , S[SQ]
− ≡ Rn \ S[SQ] .

We note that if Rn \ SQ is connected, then S[SQ]
− is also connected. If ΩQ is an open subset of

Rn such that ΩQ ⊆ Q, then we denote by Ck
q (S[ΩQ],Rn), Ck,β

q (S[ΩQ],Rn), Ck
q (S[ΩQ]−,Rn), and

Ck,β
q (S[ΩQ]−,Rn) the subsets of the q-periodic functions belonging to Ck

b (S[ΩQ],Rn), to Ck,β
b (S[ΩQ],

Rn), to Ck
b (S[ΩQ]−,Rn), and to Ck,β

b (S[ΩQ]−,Rn), respectively.

We regard Ck
q (S[ΩQ],Rn), Ck,β

q (S[ΩQ],Rn), Ck
q (S[ΩQ]−,Rn), and Ck,β

q (S[ΩQ]−,Rn) as Banach sub-

spaces of Ck
b (S[ΩQ],Rn), of Ck,β

b (S[ΩQ],Rn), of Ck
b (S[ΩQ]−,Rn), and of Ck,β

b (S[ΩQ]−,Rn), respec-
tively.

3. Preliminaries of Periodic Potential Theory for the Lamé equations

In order to construct the solution of problem (3), we will exploit a periodic version of potential
theory for the Lamé equations and we begin by introducing some notation and tools.

We start by denoting by Sn the function from Rn \ {0} to R defined by

Sn(x) ≡

{
1
sn

log |x| ∀x ∈ Rn \ {0}, if n = 2 ,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,

where sn denotes the (n−1)-dimensional measure of ∂Bn(0, 1). Sn is well-known to be a fundamental
solution of the Laplace operator ∆ =

∑n
j=1 ∂

2
xj
.

We denote by Γn,ω(·) the matrix valued function from Rn \{0} toMn(R) that takes x to the matrix
Γn,ω(x) with (i, j) entry defined by

Γj
n,ω,i(x) ≡

ω + 2

2(ω + 1)
δi,jSn(x)−

ω

2(ω + 1)

1

sn

xixj
|x|n

∀(i, j) ∈ {1, . . . , n}2 ,

where δi,j = 1 if i = j, and δi,j = 0 if i ̸= j. It is well known that Γn,ω is a fundamental solution of
the operator

L[ω] ≡ ∆+ ω∇div .

We observe that the classical operator of linearized homogenous isotropic elastostatics equals L[ω]
times the second constant of Lamé, and that L[ω]u = div T (ω,Du) for all regular vector valued
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functions u, and that the classical fundamental solution of the operator of linearized homogenous
and isotropic elastostatics equals Γn,ω times the reciprocal of the second constant of Lamé (cf., e.g.,
Kupradze et al. [32]). We find also convenient to set

Γj
n,ω ≡

(
Γj
n,ω,i

)
i∈{1,...,n} ,

which we think as a column vector for all j ∈ {1, . . . , n}.
To construct periodic elastic layer potentials, we need to use a periodic fundamental solution for the

Lamé equations. In the following theorem (see [13, Theorem 3.1]) we introduce a periodic analog of the
fundamental solution of L[ω] (cf., e.g., Ammari and Kang [1, Lemma 9.21], Ammari et al. [2, Lemma
3.2]). To do so we need the following notation. We denote by S(Rn,C) the Schwartz space of complex
valued rapidly decreasing functions. S ′(Rn,C) denotes the space of complex tempered distributions
and Mn

(
S ′(Rn,C)

)
denotes the set of n× n matrices with entries in S ′(Rn,C). If y ∈ Rn and f is a

function defined in Rn, we set τyf(x) ≡ f(x− y) for all x ∈ Rn. If u ∈ S ′(Rn,C), then we set

< τyu, f >≡< u, τ−yf > ∀f ∈ S(Rn,C) .

Finally, L1
loc(Rn) denotes the space of (equivalence classes of) locally summable measurable functions

from Rn to R.

Theorem 3.1. Let Γq
n,ω ≡ (Γq,k

n,ω,j)(j,k)∈{1,...,n}2 be the element of Mn

(
S ′(Rn,C)

)
with (j, k) entry

defined by

Γq,k
n,ω,j ≡

∑
z∈Zn\{0}

1

4π2|Q||q−1z|2
[
− δj,k +

ω

ω + 1

(q−1z)j(q
−1z)k

|q−1z|2
]
E2πiq−1z

∀(j, k) ∈ {1, . . . , n}2 ,
where E2πiq−1z is the function from Rn to C defined by

E2πiq−1z(x) ≡ e2πi(q
−1z)·x ∀x ∈ Rn

for all z ∈ Zn. Then the following statements hold.
(i)

τqllelΓ
q,k
n,ω,j = Γq,k

n,ω,j ∀l ∈ {1, . . . , n} ,
for all (j, k) ∈ {1, . . . , n}2.

(ii)

L[ω]Γq
n,ω =

∑
z∈Zn

δqzIn − 1

|Q|
In in Mn

(
S ′(Rn,C)

)
,

where δqz denotes the Dirac measure with mass at qz for all z ∈ Zn.
(iii) Γq

n,ω is real analytic from Rn \ qZn to Mn(R).
(iv) The difference Γq

n,ω − Γn,ω can be extended to a real analytic function from (Rn \ qZn) ∪ {0}
to Mn(R) which we denote by Rq

n,ω. Moreover

L[ω]Rq
n,ω =

∑
z∈Zn\{0}

δqzIn − 1

|Q|
In

in the sense of distributions.

(v) Γq,k
n,ω,j is real valued and is in L1

loc(Rn), for all (j, k) ∈ {1, . . . , n}2.
(vi) Γq

n,ω(x) = Γq
n,ω(−x) for all x ∈ Rn \ qZn.

Remark 3.2. We observe that constructions similar to that of Theorem 3.1 have been used in [47]
for a periodic fundamental solution of the Laplace equation, in [34] for the Helmholtz equation, and
in Luzzini [36] for the heat equation.

Now that we have defined a periodic analog of the fundamental solution for the Lamé equations,
we find convenient to set

Γq,j
n,ω ≡

(
Γq,j
n,ω,i

)
i∈{1,...,n} , Rq,j

n,ω ≡
(
Rq,j

n,ω,i

)
i∈{1,...,n} ,
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which we think as column vectors for all j ∈ {1, . . . , n}.
We are now in the position to introduce the periodic single layer potential. To define it, it is

sufficient to replace in the definition of the standard single layer potential for the Lamé equation the
fundamental solution Γn,ω with its periodic analog Γq

n,ω. So, if µ ∈ C0,α(∂ΩQ,Rn), then we denote
by vq[ω, µ] the periodic single layer potential, namely the function from Rn to Rn defined by

vq[ω, µ](x) ≡
∫

∂ΩQ

Γq
n,ω(x− y)µ(y) dσy ∀x ∈ Rn .

We note here that the fundamental solution Γq
n,ω takes values in Mn(R) (cf. Theorem 3.1 (ii) and

(iii)). We also find convenient to set

W ∗
q [ω, µ](x) ≡

∫
∂ΩQ

n∑
l=1

µl(y)T (ω,DΓq,l
n,ω(x− y))νΩQ

(x) dσy ∀x ∈ ∂ΩQ . (4)

In order to use the periodic single layer potential vq[ω, µ] to solve problem (3), in the following
theorem we present some properties of vq[ω, µ] (see [13, Theorem 3.2]).

Theorem 3.3. The following statements hold.
(i) If µ ∈ C0,α(∂ΩQ,Rn), then vq[ω, µ] is q-periodic and

L[ω]vq[ω, µ](x) = − 1

|Q|

∫
∂ΩQ

µdσ

for all x ∈ Rn \ ∂S[ΩQ].

(ii) If µ ∈ Cm−1,α(∂ΩQ,Rn), then the function v+q [ω, µ] ≡ vq[ω, µ]|S[ΩQ]
belongs to Cm,α

q (S[ΩQ],Rn)

and the operator that takes µ to v+q [ω, µ] is continuous from Cm−1,α(∂ΩQ,Rn) to Cm,α
q (S[ΩQ],Rn).

(iii) If µ ∈ Cm−1,α(∂ΩQ,Rn), then the function v−q [ω, µ] ≡ vq[ω, µ]|S[ΩQ]−
belongs to

Cm,α
q (S[ΩQ]−,Rn) and the operator that takes µ to v−q [ω, µ] is continuous from Cm−1,α(∂ΩQ,Rn)

to Cm,α
q (S[ΩQ]−,Rn).

(iv) The operator that takes µ to W ∗
q [ω, µ] is continuous from Cm−1,α(∂ΩQ,Rn) to itself, and we

have

T
(
ω,Dv±q [ω, µ](x)

)
νΩQ

(x) = ∓1

2
µ(x) +W ∗

q [ω, µ](x) ∀x ∈ ∂ΩQ ,

for all µ ∈ Cm−1,α(∂ΩQ,Rn).
(v) We have ∫

∂ΩQ

W ∗
q [ω, µ] dσ =

(
1

2
− |ΩQ|

|Q|

) ∫
∂ΩQ

µdσ .

To solve problem (3) we will need to exploit some properties of the auxiliary operator 1
2I+W

∗
q [ω, ·].

Therefore, we recall the following result of [13, Proposition 3.4].

Proposition 3.4. The operator 1
2I+W

∗
q [ω, ·] is a linear homeomorphism from the space Cm−1,α(∂ΩQ,

Rn) to itself.

In the following proposition, we recall the representation formula of [13, Proposition 3.5] for a

periodic function u defined on the set S[ΩQ]− and such that L[ω]u = 0. To do so we need to introduce
the following set of functions with zero integral on ∂ΩQ:

Cm−1,α(∂ΩQ,Rn)0 ≡
{
f ∈ Cm−1,α(∂ΩQ,Rn) :

∫
∂ΩQ

f dσ = 0

}
.

Then we are in the position to formulate the following result, which states that any function
u ∈ Cm,α

q (S[ΩQ]−,Rn) such that L[ω]u(x) = 0 for all x ∈ S[ΩQ]
− can be represented as the sum of a

periodic single layer potential and a constant.
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Proposition 3.5. Let u ∈ Cm,α
q (S[ΩQ]−,Rn). Assume that

L[ω]u(x) = 0 ∀x ∈ S[ΩQ]
− .

Then there exists a unique pair (µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0 × Rn such that

u(x) = v−q [ω, µ](x) + c ∀x ∈ S[ΩQ]− .

4. Existence and Uniqueness for the Solution of Problem (3)

In this section, we prove existence and uniqueness for the solution of problem (3). First, we
start with this uniqueness result for the solution of an homogeneous Robin problem with periodicity
condition (i.e., with B = 0).

Proposition 4.1. Let u ∈ Cm,α
q (S[ΩQ]−,Rn) be such that

L[ω]u = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) ∀x ∈ S[ΩQ]−,∀j ∈ {1, . . . , n},
a(x)T (ω,Du(x))νΩQ

(x) + b(x)u(x) = 0 ∀x ∈ ∂ΩQ .

(5)

Then u(x) = 0 for all x ∈ S[ΩQ]−.

Proof. By the periodicity of u we have
∫
∂Q

utT (ω,Du)νQ dσ = 0. Moreover, the third condition in

(5) implies that

T (ω,Du(x))νΩQ
(x) = −a−1(x)b(x)u(x) ∀x ∈ ∂ΩQ.

Thus the Divergence Theorem implies that

0 ≤
∫

Q\ΩQ

tr
(
T (ω,Du)Dtu

)
dx = −

∫
∂ΩQ

utT (ω,Du)νΩQ
dσ =

∫
∂ΩQ

uta−1bu dσ ≤ 0 ,

since, by assumption on a, b, we have

ut(x)a−1(x)b(x)u(x) ≤ 0 ∀x ∈ ∂ΩQ .

Then tr
(
T (ω,Du)Dtu

)
= 0 in Q \ ΩQ, and by arguing as in [9, Proposition 2.1], we can prove that

there exist a skew symmetric matrix A ∈Mn(R) and c ∈ Rn, such that

u(x) = Ax+ c ∀x ∈ Q \ ΩQ .

By the periodicity of u, we have

Aqek = u(qek)− u(0) = 0 ∀k ∈ {1, . . . , n} .

Accordingly, A = 0. Hence, u(x) = c for all x ∈ Q \ ΩQ, and thus, by periodicity, u(x) = c for all

x ∈ S[ΩQ]−. Then again by the third condition in (5) we deduce that

0 + b(x)c = 0 ∀x ∈ ∂ΩQ ,

and thus, in particular

b(x0)c = 0 ,

which together with det b(x0) ̸= 0 implies c = 0. □

In Proposition 4.3 below, we show that the operator

(µ, c) 7→ 1

2
µ+W ∗

q [ω, µ]|∂ΩQ
+ a−1b

(
vq[ω, µ] + c

)
is a linear homeomorphism from Cm−1,α(∂ΩQ,Rn)0 × Rn to Cm−1,α(∂ΩQ,Rn) (cf. definition (4)).
As we shall see, such operator appears if we want to solve a periodic Robin boundary value problem
for the Lamé equations in terms of a single layer potential plus a costant. However, before prov-
ing Proposition 4.3, we need the following intermediate step, which is the periodic counterpart of
[13, Proposition 4.4].
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Lemma 4.2. Let D ≡ (dij(·))(i,j)∈{1,...,n}2 ∈ Cm−1,α(∂ΩQ,Mn(R)) be such that the matrix∫
∂ΩQ

D(y) dσy ≡
( ∫
∂ΩQ

dij(y) dσy

)
(i,j)∈{1,...,n}2

is invertible. Then the operator from Cm−1,α(∂ΩQ,Rn)0 × Rn to Cm−1,α(∂ΩQ,Rn) that takes
(µ, c) to the function

1

2
µ+W ∗

q [ω, µ] +Dc

is a linear homeomorphism.

Proof. We start by denoting by H the linear operator from Cm−1,α(∂ΩQ,Rn)0 ×Rn to Cm−1,α(∂ΩQ,
Rn) defined by

H[µ, c] ≡ 1

2
µ+W ∗

q [ω, µ] +Dc ,

for all (µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0 × Rn. By Theorem 3.3, H is a linear and continuous operator
from Cm−1,α(∂ΩQ,Rn)0 × Rn to Cm−1,α(∂ΩQ,Rn). To prove the lemma, we need to show that
H is a linear homeomorphism. Thus, by the Open Mapping Theorem, it suffices to prove that it
is a bijection. So let ψ ∈ Cm−1,α(∂ΩQ,Rn). We need to prove that there exists a unique pair
(µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0 × Rn such that

1

2
µ(x) +W ∗

q [ω, µ](x) +D(x)c = ψ(x) ∀x ∈ ∂ΩQ . (6)

We first prove uniqueness. Let us assume that the pair (µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0×Rn solves equation
(6). By integrating both sides of equation (6), and by the identity∫

∂ΩQ

(1
2
µ(x) +W ∗

q [ω, µ](x)
)
dσx =

(
1− |ΩQ|

|Q|

) ∫
∂ΩQ

µ(x) dσx (7)

(cf. Theorem 3.3 (v)), we obtain( ∫
∂ΩQ

D(x) dσx

)
c =

∫
∂ΩQ

ψ(x) dσx ,

and thus

c =

( ∫
∂ΩQ

D(x) dσx

)−1 ∫
∂ΩQ

ψ(x) dσx . (8)

As a consequence, by Proposition 3.4, µ is the unique solution in Cm−1,α(∂ΩQ,Rn) of equation

1

2
µ(x) +W ∗

q [ω, µ](x) = ψ(x)−D(x)

( ∫
∂ΩQ

D(y) dσy

)−1 ∫
∂ΩQ

ψ(y) dσy ∀x ∈ ∂ΩQ . (9)

We also note that by equality (7) the unique solution of equation (9) is in the space Cm−1,α(∂ΩQ,Rn)0.
Hence uniqueness follows. In order to prove existence, it suffices to observe that the pair (µ, c) ∈
Cm−1,α(∂ΩQ,Rn)0 ×Rn identified by equations (8), (9) solves equation (6) (cf. Proposition 3.4). □

We are now ready to prove the following.

Proposition 4.3. The operator from Cm−1,α(∂ΩQ,Rn)0 ×Rn to Cm−1,α(∂ΩQ,Rn) that takes a pair
(µ, c) to

1

2
µ+W ∗

q [ω, µ] + a−1b
(
vq[ω, µ]|∂ΩQ

+ c
)

(10)

is a linear homeomorphism.
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Proof. We first note that by Lemma 4.2 the operator from Cm−1,α(∂ΩQ,Rn)0×Rn to Cm−1,α(∂ΩQ,Rn)
that takes a pair (µ, c) to

1

2
µ+W ∗

q [ω, µ] + a−1bc

is a linear homeomorphism. Moreover, vq[ω, ·]|∂ΩQ
maps continuously Cm−1,α(∂ΩQ,Rn)0 into

Cm,α(∂ΩQ,Rn), which is compactly embedded into Cm−1,α(∂ΩQ,Rn). Therefore, the operator in
(10) is a compact perturbation of a Fredholm operator of index 0, and thus is itself a Fredholm opera-
tor of index 0. By the Open Mapping Theorem, in order to prove that the operator in (10) is a linear
homeomorphism, it suffices to show that it is a bijection. Also, by the Fredholm theory, to show that
it is surjective, it is enough to prove the injectivity. To do so, we verify that if

1

2
µ+W ∗

q [ω, µ] + a−1b
(
vq[ω, µ]|∂ΩQ

+ c
)
= 0 , (11)

then (µ, c) = (0, 0). So let (µ, c) be such that (11) holds. Then the function v−q [ω, µ] + c is a solution

of boundary value problem (5), and thus Proposition 4.1 implies that v−q [ω, µ] + c = 0 in S[ΩQ]−.
Finally, Proposition 3.5 implies that (µ, c) = (0, 0). □

We are now ready to prove our main result on the solvability of the Robin boundary value problem.

Theorem 4.4. There exists a unique function u ∈ Cm,α
loc (S[ΩQ]−,Rn) such that

L[ω]u = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−,∀j ∈ {1, . . . , n},
a(x)T (ω,Du(x))νΩQ

(x) + b(x)u(x) = g(x) ∀x ∈ ∂ΩQ .

(12)

Moreover,

u(x) = v−q [ω, µ](x) + c+Bq−1x ∀x ∈ S[ΩQ]− , (13)

where (µ, c) is the unique pair in Cm−1,α(∂ΩQ,Rn)0 × Rn such that

1

2
µ(x) +W ∗

q [ω, µ](x) + a−1(x)b(x)
(
vq[ω, µ]|∂ΩQ

(x) + c
)

= a−1(x)g(x)− T (ω,Bq−1)νΩQ
(x)− a−1(x)b(x)Bq−1x ∀x ∈ ∂ΩQ . (14)

Proof. We first consider uniqueness. So let u′, u′′ be two solutions in Cm,α
loc (S[ΩQ]−,Rn) of problem

(12). Then we set

ũ ≡ u′ − u′′ ,

and we note that
L[ω]ũ = 0 in S[ΩQ]

− ,

ũ(x+ qej) = ũ(x) ∀x ∈ S[ΩQ]−,∀j ∈ {1, . . . , n},
a(x)T (ω,Dũ(x))νΩQ

(x) + b(x)ũ(x) = 0 ∀x ∈ ∂ΩQ .

Accordingly, Proposition 4.1 implies that ũ = 0 and thus u′ = u′′.
We now turn to prove existence. We first note that if u# ∈ Cm,α

q (S[ΩQ]−,Rn) is such that
L[ω]u# = 0 in S[ΩQ]

− ,

u#(x+ qej) = u#(x) ∀x ∈ S[ΩQ]−,∀j ∈ {1, . . . , n},
a(x)T (ω,Du#(x))νΩQ

(x) + b(x)u#(x)

= g(x)− a(x)T (ω,Bq−1)νΩQ
(x)− b(x)Bq−1x ∀x ∈ ∂ΩQ ,

(15)

then the function

x 7→ u#(x) +Bq−1x

is a solution of problem (12). Therefore, in order to prove that the function in (13) solves problem
(12), it suffices to show that

v−q [ω, µ] + c (16)
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solves problem (15), where (µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0×Rn is such that (14) holds. We first note that
Proposition 4.3 ensures the existence and uniqueness of a pair (µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0×Rn which
solves (14). Accordingly, by Theorem 3.3, we immediately verify that the function in (16) satisfies the
first two conditions of problem (12). Moreover, by a straightforward computation we also verify that
equation (14) implies the validity of the third condition of problem (12) (see Theorem 3.3). Thus the
proof is complete. □

5. A remark on a Nonlinear Robin-type Traction Problem

In this section, we show how the integral equation method of the previous sections can be exploited
in order to solve a nonlinear Robin-type traction boundary value problem in a periodic domain. To
do so, we consider a function G ∈ C0(∂ΩQ × Rn,Rn) such that the non-autonomous composition
operator FG defined by

FG[v](x) = G(x, v(x)) ∀x ∈ ∂ΩQ ,∀v ∈ C0(∂ΩQ,Rn) ,

maps Cm−1,α(∂ΩQ,Rn) to itself. Then we introduce the problem
L[ω]u = 0 in S[ΩQ]

− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−,∀j ∈ {1, . . . , n},
T (ω,Du(x))νΩQ

(x) = G(x, u(x)) ∀x ∈ ∂ΩQ .

(17)

In the theorem below, we show an integral equation formulation of the nonlinear problem (17).

Theorem 5.1. The map from Cm−1,α(∂ΩQ,Rn)0 × Rn to Cm,α
loc (S[ΩQ]−,Rn) that takes a pair

(µ, c) to the function

v−q [ω, µ](x) + c+Bq−1x ∀x ∈ S[ΩQ]− , (18)

is a bijection from the set of solutions in Cm−1,α(∂ΩQ,Rn)0 × Rn such that

1

2
µ(x) +W ∗

q [ω, µ](x)

= G
(
x, vq[ω, µ]|∂ΩQ

(x) + c+Bq−1x
)
− T (ω,Bq−1)νΩQ

(x) ∀x ∈ ∂ΩQ , (19)

to the set of functions u ∈ Cm,α
loc (S[ΩQ]−,Rn) which solve problem (17).

Proof. Assume that the function u ∈ Cm,α
loc (S[ΩQ]−,Rn) solve problem (17). Then by Lemma 3.5,

there exists a unique pair (µ, c) in Cm−1,α(∂ΩQ,Rn)0 × Rn such that u equals the functions defined
by (18). Then a simple computation based on Theorem 3.3, shows that the pair (µ, c) must solve
equation (19). Conversely, one can easily show that if the pair (µ, c) of Cm−1,α(∂ΩQ,Rn)0×Rn solves
equation (19), then the function defined in (18) is a solution of problem (17). □

By Theorem 5.1 we can convert the nonlinear boundary value problem (17) into the nonlinear
integral equation (19). Then, by arguing as in [10, Theorem 8], we can show that under suitable
growth conditions equation (19) admits (at least) a solution (µ, c) in Cm−1,α(∂ΩQ,Rn)0 × Rn. As a
consequence, we can deduce the existence of (at least) a solution of problem (17).
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per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INdAM). P. M. also acknowledges the support of the grant “Challenges in
Asymptotic and Shape Analysis - CASA” of the Ca’ Foscari University of Venice. Part of the work
was done while P.M. was visiting Martin Dutko at Rockfield Software Limited. P. M. wishes to
thank Martin Dutko for valuable discussions and Rockfield Software Limited for the kind hospitality.
G. M. acknowledges also Ser Cymru Future Generation Industrial Fellowship number AU224 – 80761.
G. M. thanks the Royal Society for the Wolfson Research Merit Award.



INTEGRAL EQUATION METHOD FOR A ROBIN-TYPE TRACTION PROBLEM 359

References

1. H. Ammari, H. Kang, Polarization and Moment Tensors. With applications to inverse problems and effective

medium theory. Applied Mathematical Sciences, 162. Springer, New York, 2007.

2. H. Ammari, H. Kang, M. Lim, Effective parameters of elastic composites. Indiana Univ. Math. J. 55 (2006), no. 3,
903–922.

3. Y.A. Antipov, O. Avila-Pozos, T. Kolaczkowski, A. B. Movchan, Mathematical model of delamination cracks on
imperfect interfaces. Internat. J. Solids Structures 38 (2001), 6665–6697.

4. R. Bailey, R. Hicks, Behavior of perforated plates under plane stress. J. Mech. Engng Sci. 2 (1960), no. 2, 143–165.

5. Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two
anisotropic media. J. Mech. Phys. Solids 54 (2006), no. 4, 708–734.

6. L. P. Castro, R. Duduchava, D. Kapanadze, Electromagnetic scattering by cylindrical orthotropic waveguide irises.

Georgian Math. J. 18 (2011), no. 1, 99–120.
7. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Localized direct segregated boundary-domain integral equations for

variable coefficient transmission problems with interface crack. Mem. Differential Equations Math. Phys. 52 (2011),

17–64.
8. D. L. Colton, R. Kress, Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics (New

York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983.

9. M. Dalla Riva, M. Lanza de Cristoforis, A singularly perturbed nonlinear traction boundary value problem for
linearized elastostatics. A functional analytic approach. Analysis (Munich) 30 (2010), 67–92.

10. M. Dalla Riva, M. Lanza de Cristoforis, Hypersingularly perturbed loads for a nonlinear traction boundary value
problem. A functional analytic approach. Eurasian Math. J. 1 (2010), no. 2, 31–58.

11. M. Dalla Riva, M. Lanza de Cristoforis, P. Musolino, Singularly Perturbed Boundary Value Problems: a Functional

Analytic Approach. Springer Nature, 2021.
12. M. Dalla Riva, P. Luzzini, P. Musolino, R. Pukhtaievych, Dependence of effective properties upon regular pertur-

bations. In: Mechanics and Physics of Structured Media, pp. 271–301, Elsevier, 2022.

13. M. Dalla Riva, P. Musolino, A singularly perturbed nonlinear traction problem in a periodically perforated domain:
a functional analytic approach. Math. Methods Appl. Sci. 37 (2014), no. 1, 106–122.

14. M. Dalla Riva, P. Musolino, R. Pukhtaievych, Series expansion for the effective conductivity of a periodic dilute

composite with thermal resistance at the two-phase interface. Asymptot. Anal. 111 (2019), no. 3-4, 217–250.
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