
Transactions of A. Razmadze
Mathematical Institute
Vol. 176 (2022), issue 2, 207–216

ON (p, q)-EIGENVALUES OF SUBELLIPTIC OPERATORS ON HOMOGENEOUS

LIE GROUPS

PRASHANTA GARAIN1 AND ALEXANDER UKHLOV2∗

Abstract. In this article, we study the nonlinear Dirichlet (p, q)-eigenvalue problem for subelliptic

operators defined by the left-invariant vector which satisfy the Hörmander condition. We prove both

the solvability of the eigenvalue problem and the existence of the minimizer of the corresponding
variational problem.

1. Introduction

In this article, we consider the Dirichlet (p, q)-eigenvalue problem, 1 < p < ν, 1 < q < p∗=νp(ν−p)
for subelliptic operators

−divH

(
|∇H u|p−2∇H u

)
= λ‖u‖p−qLq(Ω)|u|

q−2u in Ω, u = 0 on ∂Ω, (1.1)

where ∇H u = (X11u, . . . ,X1n1
u) is the horizontal (weak) subgradient of u defined by left-invariant

vector fields X11, . . . , X1n1
which satisfy the Hörmander condition [19]. Since the vector fields X11u,

. . . ,X1n1
satisfy the Hörmander condition, they generate a Lie algebra V , and we consider Ω as a

bounded domain on a corresponding stratified homogeneous Lie group G. The number ν is called
the homogeneous dimension of G. Note that the Kohn–Laplace operator ∆H = divH∇H induced by
left-invariant vector fields on Heisenberg group Hn is a subelliptic operator which plays an important
role in physics.

The eigenvalue problems for subelliptic operators defined by the left-invariant vector which sat-
isfy the Hörmander condition were considered first in [11]. Remark that in the recent decades the
eigenvalue problems for p-sub-Laplace operators

−divH

(
|∇H u|p−2∇H u

)
= λ|u|p−2u in Ω, u = 0 on ∂Ω,

were intensively studied, for example, in [4, 23,31].
The eigenvalue problem (in the commutative case, G = Rn) traces back to the works of Lord

Rayleigh [28], where the author established the variational formulation of this problem in the linear
case (p = q = 2) which is based on the Dirichlet integral

‖u‖2
W 1,2

0 (Ω)
=

∫
Ω

|∇u|2 dx.

We note also classical works [26, 27] devoted to eigenvalues of linear elliptic operators and their
connections with the problems of continuum mechanics.

The non-linear commutative case p = q 6= 2 was investigated by many authors as a typical non-
linear eigenvalue boundary value problem in Euclidean domains of Rn (see, for example, [1,2,15,16,18],
for extensive references we refer to [21]). In the case p 6= q, the non-linear eigenvalue boundary value
problems in domains Ω ⊂ Rn were considered in [9, 14, 15, 24]. Unfortunately, standard methods of
the non-linear spectral theory of elliptic operators (see, for example [14]), do not work in the case
of subelliptic operators. Therefore in the present work we adapted the inverse iteration method,
which was suggested in [10]. On the base of this adapted method we study the non-linear eigenvalue
boundary value problem for subelliptic operators.
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In the present work, we consider the Dirichlet (p, q)-eigenvalue problem (1.1) in the weak formula-

tion: a function u solves the eigenvalue problem, iff u ∈W 1,p
0 (Ω) and∫

Ω

|∇H u|p−2∇H u∇H v dx = λ‖u‖p−qLq(Ω)

∫
Ω

|u|q−2uv dx (1.2)

for all v ∈ W 1,p
0 (Ω). In this case, we refer to λ as an eigenvalue and to u as the corresponding

eigenfunction.
We prove the solvability of the Dirichlet (p, q)-eigenvalue problem (1.1) (see Theorem 3.1 and

Theorem 3.2). Indeed, in Theorem 3.2, we have considered the following minimizing problem given
by

λ = inf
u∈W 1,p

0 (Ω): ‖u‖Lq(Ω)=1

∫
Ω

|∇H u|p dx

and proved the existence of a function v ∈W 1,p
0 (Ω), ‖v‖Lq(Ω) = 1, such that

λ =

∫
Ω

|∇H v|p dx.

Moreover, we observe that v is an eigenfunction corresponding to λ and its associated eigenfunctions
are precisely the scalar multiple of those vectors at which λ is reached. Finally, in Theorem 3.3, we
establish some qualitative properties of the eigenfunctions of (1.1).

2. Homogeneous Lie Groups and Sobolev Spaces

Recall that a stratified homogeneous group [13], or, in another terminology, a Carnot group [25]
is a connected simply connected nilpotent Lie group G whose Lie algebra V is decomposed into the
direct sum V1⊕ · · · ⊕ Vm of vector spaces such that dimV1 > 2, [V1, Vi] = Vi+1 for 1 6 i 6 m− 1 and
[V1, Vm] = {0}. Let X11, . . . , X1n1

be left-invariant basis vector fields of V1. Since they generate V , for
each i, 1 < i 6 m, one can choose a basis Xik in Vi, 1 6 k 6 ni = dimVi, consisting of commutators

of order i−1 of fields X1k ∈ V1. We identify the elements g of G with the vectors x ∈ RN , N =
m∑
i=1

ni,

x = (xik), 1 6 i 6 m, 1 6 k 6 ni by means of exponential map exp(
∑
xikXik) = g. Dilations δt

defined by the formula

δtx = (tixik)16i6m, 16k6nj

= (tx11, . . . , tx1n1 , t
2x21, . . . , t

2x2n2 , . . . , t
mxm1, . . . , t

mxmnm),

are automorphisms of G for each t > 0. The Lebesgue measure dx on RN is the bi-invariant Haar
measure on G (which is generated by the Lebesgue measure by means of the exponential map), and

d(δtx) = tν dx, where the number ν =
m∑
i=1

ini is called the homogeneous dimension of the group G.

The measure |E| of a measurable subset E of G is defined by |E| =
∫
E

dx.

The system of basis vectors X1, X2, . . . , Xn1
of the space V1 satisfies the Hörmander hypoellipticity

condition [19].
Euclidean space Rn with the standard structure is an example of an abelian group: the vector fields

∂/∂xi, i = 1, . . . , n, have no non-trivial commutation relations and form the basis of the corresponding
Lie algebra. One example of a non-abelian stratified group is the Heisenberg group Hn. The non-
commutative multiplication is defined as

hh′ = (x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ − 2xy′ + 2yx′),

where x, x′, y, y′ ∈ Rn, z, z′ ∈ R. The left-translation Lh(·) is defined as Lh(h′) = hh′. The left-
invariant vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂z
, Yi =

∂

∂yi
− 2xi

∂

∂z
, i = 1, . . . , n, Z =

∂

∂z
,
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constitute the basis of the Lie algebra V of the Heisenberg group Hn. All non-trivial relations are
only of the form [Xi, Yi] = −4Z, i = 1, . . . , n, and all other commutators vanish.

The Lie algebra of the Heisenberg group Hn has dimension 2n + 1 and splits into the direct sum
V = V1 ⊕ V2. The vector space V1 is generated by the vector fields Xi, Yi, i = 1, . . . , n, and the space
V2 is the one-dimensional center which is spanned by the vector field Z.

Recall that a homogeneous norm on the group G is a continuous function | · | : G→ [0,∞) that is
C∞-smooth on G \ {0} and has the following properties:

(a) |x| = |x−1| and |δt(x)| = t|x|;
(b) |x| = 0 if and only if x = 0;
(c) there exists a constant τ0 > 0 such that |x1x2| 6 τ0(|x1|+ |x2|) for all x1, x2 ∈ G.
The homogeneous norm on the group G defines a homogeneous (quasi)metric

ρ(x, y) = |y−1x|.

Recall that a continuous map γ : [a, b] → G is called a continuous curve on G. This continuous
curve is rectifiable if

sup

{ m∑
k=1

∣∣ (γ(tk))
−1
γ(tk+1)

∣∣} <∞,

where the supremum is taken over all partitions a = t1 < t2 < · · · < tm = b of the segment [a, b]. The
rectifiable curve is called a horizontal rectifiable curve if its tangent vector γ̇(t) lies in the horizontal

tangent space V1, i.e., there exist functions ai(t), t ∈ [a, b], such that
n1∑
1
a2
i ≤ 1 and

γ̇(t) =

n1∑
i=1

ai(t)X1i(γ(t)).

The length l(γ) of a horizontal rectifiable curve γ : [a, b]→ G can be calculated by the formula

l(γ) =

b∫
a

〈γ̇(t), γ̇(t)〉
1
2
0 dt =

b∫
a

( n∑
i=1

|ai(t)|2
) 1

2

dt,

where 〈·, ·〉0 is the inner product on V1. The result of [5] implies that one can connect two arbitrary
points x, y ∈ G by a horizonal rectifiable curve. The Carnot-Carathéodory distance d(x, y) is the
infimum of the lengths over all horizontal rectifiable curves with endpoints x and y in G. The Hausdorff
dimension of the metric space (G, d) coincides with the homogeneous dimension ν of the group G.

2.1. Sobolev spaces on Carnot groups. Let G be a Carnot group with one-parameter dilatation
group δt, t > 0, and a homogeneous norm ρ, and let E be a measurable subset of G. The Lebesgue
space Lp(E), p ∈ [1,∞], is the space of pth-power integrable functions f : E → R with the standard
norm

‖f‖Lp(E) =

(∫
E

|f(x)|p dx
) 1
p

, 1 ≤ p <∞, (2.1)

and ‖f‖L∞(E) = esssupE |f(x)| for p = ∞. We denote by Lploc(E) the space of functions f : E → R
such that f ∈ Lp(F ) for each compact subset F of E.

Let Ω be an open set in G. The (horizontal) Sobolev space W 1,p(Ω), 1 6 p 6 ∞, consists of the
functions f : Ω → R which are locally integrable in Ω, having the weak derivatives X1if along the
horizontal vector fields X1i, i = 1, . . . , n1, and the finite norm

‖f‖W 1,p(Ω) = ‖f‖Lp(Ω) + ‖∇H f‖Lp(Ω),

where ∇H f = (X11f, . . . ,X1n1f) is the horizontal subgradient of f . If f ∈W 1,p(U) for each bounded

open set U such that U ⊂ Ω, then we say that f belongs to the class W 1,p
loc (Ω).

The Sobolev space W 1,p
0 (Ω) is defined to be the closure of C∞c (Ω) under the norm

‖f‖W 1,p
0 (Ω) = ‖f‖Lp(Ω) + ‖∇H f‖Lp(Ω).
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For the following result, refer to [12,29,30,32].

Lemma 2.1. The space W 1,p
0 (Ω) is a real separable and uniformly convex Banach space.

The following embedding result follows from [8, (2.8)] and [12], [17, Theorem 8.1], see also
[3, Theorem 2.3]. We denote by p∗ = νp/(ν − p).

Lemma 2.2. Let Ω ⊂ G be a bounded domain and 1 ≤ p < ν. Then W 1,p
0 (Ω) is continuously embedded

in Lq(Ω) for every 1 ≤ q ≤ p∗. Moreover, the embedding is compact for every 1 ≤ q < p∗.

Hence, in the case 1 ≤ p < ν, we can consider the Sobolev space W 1,p
0 (Ω) as Banach spaces with

the norm

‖f‖W 1,p
0 (Ω) = ‖∇H f‖Lp(Ω). (2.2)

Next, we state the following result, which follows from [6, Theorem 9.14] on bounded, continuous,
coercive and monotone operators on Banach spaces.

Theorem 2.3. Let V be a real separable reflexive Banach space and V ∗ be the dual of V . Assume
that A : V → V ∗ is a bounded, continuous, coercive and monotone operator. Then A is surjective,
i.e., given any f ∈ V ∗, there exists u ∈ V such that A(u) = f . If A is strictly monotone, then A is
also injective.

3. Dirichlet (p, q)-eigenvalue Problems

We assume that 1 < p < ν, 1 < q < p∗ and the spaces Lq(Ω) and W 1,p
0 (Ω) are endowed with the

norms (2.1) and (2.2), respectively, unless otherwise mentioned. In this article, we study the non-linear
eigenvalue problem defined the vector fields satisfying the Hörmander hypoellipticity condition [19].

Let 1 < p < ν, λ ∈ R, and consider the following subelliptic equation:

−divH (|∇H u|p−2∇H u) = λ‖u‖p−qLq(Ω)|u|
q−2u in Ω, u = 0 on ∂Ω, (3.1)

where 1 < q < p∗ = νp
ν−p . We say that (λ, u) ∈ R×W 1,p

0 (Ω) \ {0} is an eigenpair of (3.1) if for every

v ∈W 1,p
0 (Ω), we have ∫

Ω

|∇H u|p−2∇H u∇H v dx = λ‖u‖p−qLq(Ω)

∫
Ω

|u|q−2uv dx. (3.2)

Moreover, we refer to λ as an eigenvalue and to u as the corresponding eigenfunction.

3.1. Main results. Let us formulate in this section the main results of the present work which are
stated as follows.

Theorem 3.1. Let 1 < p < ν and 1 < q < p∗. Then the following properties hold:

(a) There exists a sequence {wn}n∈N ⊂ W 1,p
0 (Ω) ∩ Lq(Ω) such that ‖wn‖Lq(Ω) = 1 and for every

v ∈W 1,p
0 (Ω), we have∫

Ω

|∇H wn+1|p−2∇H wn+1∇H v dx = µn

∫
Ω

|wn|q−2wnv dx, (3.3)

where

µn ≥ λ := inf

{∫
Ω

|∇H u|p dx : u ∈W 1,p
0 (Ω) ∩ Lq(Ω), ‖u‖Lq(Ω) = 1

}
.

(b) Moreover, the sequences {µn}n∈N and {‖wn+1‖pW 1,p
0 (Ω)

}n∈N given by (3.3) are nonincreasing and

converge to the same limit µ, which is bounded below by λ. Further, there exists a subsequence {nj}j∈N
such that both {wnj}j∈N and {wnj+1

}j∈N converge in W 1,p
0 (Ω) to the same limit w ∈W 1,p

0 (Ω)∩Lq(Ω)
with ‖w‖Lq(Ω) = 1, and (µ,w) is an eigenpair of (3.1).
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Theorem 3.2. Let 1 < p < ν and 1 < q < p∗. Suppose {un}n∈N ⊂ W 1,p
0 (Ω) ∩ Lq(Ω) such that

‖un‖Lq(Ω) = 1 and lim
n→∞

‖un‖pW 1,p
0 (Ω)

= λ.

Then there exists a subsequence {unj}j∈N which converges weakly in W 1,p
0 (Ω) to u ∈ W 1,p

0 (Ω) ∩
Lq(Ω) with ‖u‖Lq(Ω) = 1 such that λ =

∫
Ω

|∇H u|p dx. Moreover, (λ, u) is an eigenpair of (3.1) and any

associated eigenfunction of λ are precisely the scalar multiple of those vectors at which λ is reached.

Our final main result concerns the following qualitative properties of the eigenfunctions of (3.1).

Theorem 3.3. Let 1 < p < ν and 1 < q < p∗. Assume that λ > 0 is an eigenvalue of problem (3.1)

and u ∈ W 1,p
0 (Ω) \ {0} is a corresponding eigenfunction. Then (a) u ∈ L∞(Ω). (b) Moreover, if u

is nonnegative in Ω, then u > 0 in Ω. Further, for every ω b Ω, there exists a positive constant c
depending on ω such that u ≥ c > 0 in ω.

4. Auxiliary Results

In this section, we establish some auxiliary results that are crucial to prove our main results. To
this end, we define the operators A : W 1,p

0 (Ω)→ (W 1,p
0 (Ω))∗ by

〈Av,w〉 = 〈div
(
|∇H v|p−2∇H v

)
, w〉 =

∫
Ω

|∇H v|p−2∇H v∇H w dx (4.1)

and B : Lq(Ω)→ (Lq(Ω))∗ by

〈B(v), w〉 =

∫
Ω

|v|q−2vw dx. (4.2)

The symbols (W 1,p
0 (Ω))∗ and (Lq(Ω))∗ denote the dual of W 1,p

0 (Ω) and Lq(Ω), respectively. First, we
have the following result.

Lemma 4.1. (i) The operators A defined by (4.1) and B defined by (4.2) are continuous. (ii) More-
over, A is bounded, coercive and monotone.

Proof. (i)Continuity: We only prove the continuity of A, since the continuity of B would follow

similarly. To this end, suppose {vn}n∈N ⊂W 1,p
0 (Ω) such that vn → v in the norm of W 1,p

0 (Ω). Thus,
up to a subsequence {vnj}j∈N, it follows that ∇H vnj → ∇H v pointwise almost everywhere in Ω. We
observe that ∥∥|∇H vnj |p−2∇H vnj

∥∥
L

p
p−1 (Ω)

≤ ‖∇H vnj‖
p−1

W 1,p
0 (Ω)

≤ C,

for some constant C > 0, which is independent of n. Therefore

|∇H vnj |p−2∇H vnj ⇀ |∇H v|p−2∇H v

weakly in L
p
p−1 (Ω). Since the weak limit is independent of the choice of the subsequence, it follows

that
|∇H vn|p−2∇H vn ⇀ |∇H v|p−2∇H v

weakly in L
p
p−1 (Ω). As a consequence, we have

〈Avn, w〉 → 〈Av,w〉,

for every w ∈W 1,p
0 (Ω). Thus A is a continuous operator.

(ii) Boundedness: Using Hölder’s inequality, we have

‖Av‖(W 1,p
0 (Ω))∗ = sup

‖w‖
W

1,p
0 (Ω)

≤1

|〈Av,w〉| ≤ ‖v‖p−1

W 1,p
0 (Ω)

‖w‖W 1,p
0 (Ω) ≤ ‖v‖

p−1

W 1,p
0 (Ω)

.

Thus A is bounded.
Coercivity: We observe that

〈Av, v〉 =

∫
Ω

|∇H v|p dx = ‖v‖p
W 1,p

0 (Ω)
.



212 P. GARAIN AND A. UKHLOV

Since p > 1, the operator A is a coercive operator.
Monotonicity: Recall the following algebraic inequality from [7, Lemma 2.1]: there exists a constant
C = C(p) > 0 such that

〈|a|p−2a− |b|p−2b, a− b〉 ≥ C(p)(|a|+ |b|)p−2|a− b|2, 1 < p <∞, (4.3)

for any a, b ∈ RN .
Hence for every v, w ∈W 1,p

0 (Ω), we have

〈Av −Aw, v − w〉 =

∫
Ω

〈|∇H v|p−2∇H v − |∇H w|p−2∇H w,∇H (v − w)〉 dx

=

∫
Ω

〈|∇H v|p−2∇H v − |∇H w|p−2∇H w,∇H v −∇H w〉 dx

≥ C(p)

∫
Ω

(|∇H v|+ |∇H w|)p−2|∇H v −∇H w|2 dx ≥ 0.

Thus A is a monotone operator. �

Lemma 4.2. The operators A defined by (4.1) and B defined by (4.2) satisfy the following properties:

(H1) A(tv) = |t|p−2tA(v) ∀t ∈ R and ∀v ∈W 1,p
0 (Ω).

(H2) B(tv) = |t|q−2tB(v) ∀t ∈ R and ∀v ∈ Lq(Ω).

(H3) 〈A(v), w〉 ≤ ‖v‖p−1

W 1,p
0 (Ω)

‖w‖W 1,p
0 (Ω) for all v, w ∈W 1,p

0 (Ω), where the equality holds if and only if

v = 0 or w = 0 or v = tw for some t > 0.

(H4) 〈B(v), w〉 ≤ ‖v‖q−1
Lq(Ω)‖w‖Lq(Ω) for all v, w ∈ Lq(Ω), where the equality holds if and only if v = 0

or w = 0 or v = tw for some t ≥ 0.

(H5) For every w ∈ Lq(Ω) \ {0}, there exists u ∈W 1,p
0 (Ω) \ {0} such that

〈A(u), v〉 = 〈B(w), v〉 ∀ v ∈W 1,p
0 (Ω).

Proof. (H1) Follows by the definition of A.

(H2) Follows by the definition of B.

(H3) First, using Cauchy–Schwartz inequality and then by Hölder’s inequality with exponents p
p−1

and p, we obtain

〈Av,w〉 =

∫
Ω

|∇H v|p−2∇H v∇H w dx ≤
∫
Ω

|∇H v|p−1|∇H w| dx

≤ ‖v‖p−1

W 1,p
0 (Ω)

‖w‖W 1,p
0 (Ω).

If v = 0 or w = 0, then the equality 〈Av,w〉 = ‖v‖p−1

W 1,p
0 (Ω)

‖w‖W 1,p
0 (Ω) holds. So, we assume this equality

such that both v 6= 0 and w 6= 0. Then the equality of Cauchy–Schwartz and Hölder’s inequality hold
simultaneously. That is, at one end (due to the equality of the Cauchy–Schwartz inequality), we get∫

Ω

|∇H v|p−2∇H v∇H w dx =

∫
Ω

|∇H v|p−1|∇H w| dx,

which gives |∇H v|p−2∇H v∇H w = |∇H v|p−1|∇H w| and hence ∇H v(x) = c(x)∇H w(x) for almost
every x ∈ Ω for some c(x) ≥ 0. Also, due to the equality in Hölder’s inequality, we have∫

Ω

|∇H v|p−2∇H v∇H w dx = ‖v‖p−1

W 1,p
0 (Ω)

‖w‖W 1,p
0 (Ω),
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which gives |∇H v| = t|∇H w| in Ω for some constant t > 0. Therefore c(x) = t in Ω. Hence
∇H v = t∇H w in Ω and therefore v = tw in Ω for some t > 0. Thus (H3) holds.

(H4) This property can be verified similarly as in (H3).

(H5) Note that by Lemma 2.1, it follows that W 1,p
0 (Ω) is a separable and reflexive Banach space. By

Lemma 4.1, the operator A : W 1,p
0 (Ω)→ (W 1,p

0 (Ω))∗ is bounded, continuous, coercive and monotone.

By Lemma 2.2, we have W 1,p
0 (Ω) is continuously embedded in Lq(Ω). Therefore B(w)∈(W 1,p

0 (Ω))∗

for every w ∈ Lq(Ω) \ {0}.
Hence by Theorem 2.3, for every w ∈ Lq(Ω) \ {0}, there exists u ∈W 1,p

0 (Ω) \ {0} such that

〈A(u), v〉 = 〈B(w), v〉 ∀v ∈W 1,p
0 (Ω).

Hence the property (H5) holds. This completes the proof. �

The next result is useful to prove the boundedness of the eigenfunctions of (3.1).

Lemma 4.3. Let Ω ⊂ G be such that |Ω| < ∞ and 1 < p < ν, 1 < r < p∗ = νp
ν−p . Then for every

u ∈W 1,p
0 (Ω), there exists a positive constant C = C(r, p, ν) such that(∫

Ω

|u|r dx
) 1
r

≤ C|Ω|
1
r−

1
p+ 1

ν

(∫
Ω

|∇H u|p dx
) 1
p

. (4.4)

Proof. Proceeding as in [22, Corollary 1.57], we set

s =

{
1, if rν ≤ ν + r
νr
ν+r , if νr > ν + r.

Then 1 ≤ s ≤ p, s < ν and s∗ = νs
ν−s ≥ r. Using Hölder’s inequality along with Lemma 2.2, we obtain

‖u‖Lr(Ω) ≤ ‖u‖Ls∗ (Ω)|Ω|
1
r−

1
s+ 1

ν ≤ C‖∇H u‖Ls(Ω)|Ω|
1
r−

1
s+ 1

ν

≤ C‖∇H u‖Lp(Ω)|Ω|
1
r−

1
p+ 1

ν . (4.5)

Hence the proof is complete. �

5. Proof of the Main Results

Proof of Theorem 3.1.
(a) First, we recall the definition of the operators A : W 1,p

0 (Ω) → (W 1,p
0 (Ω))∗ from (4.1) and

B : Lq(Ω)→ (Lq(Ω))∗ from (4.2), respectively. Then, noting the property (H5) from Lemma 4.2 and
proceeding along the lines of the proof in [10, page 579 and pages 584− 585], the result follows.

(b) Note that by Lemma 2.1, W 1,p
0 (Ω) is a uniformly convex Banach space and by Lemma 2.2,

W 1,p
0 (Ω) is compactly embedded in Lq(Ω). Next, using Lemma 4.1-(i), the operators A : W 1,p

0 (Ω)→
(W 1,p

0 (Ω))∗ and B : Lq(Ω)→ (Lq(Ω))∗ are continuous and by Lemma 4.2, the properties (H1)− (H5)
hold. Noting these facts, the result follows from [10, page 579, Theorem 1]. �

Proof of Theorem 3.2. The proof follows due to the same reasoning as in the proof of Theorem 3.1-(b)
except that here we apply [10, page 583, Proposition 2] in place of [10, page 579, Theorem 1]. �

Proof of Theorem 3.3.
(a) Due to the homogeneity of equation (3.1), without loss of generality, we assume that ‖u‖Lq(Ω) =1.

Let k ≥ 1 and set L(k) := {x ∈ Ω : u(x) > k}. Choosing v = (u− k)+ as a test function in (3.2), we
obtain ∫

L(k)

|∇H u|p dx = λ

∫
L(k)

|u|q−2u(u− k) dx ≤ λ
∫

L(k)

|u|q−1(u− k) dx. (5.1)

We prove the result in the following two cases:
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Case I. Let q ≤ p, then since k ≥ 1, over the set L(k), we have |u|q−1 ≤ |u|p−1. Therefore from
(5.1), we have ∫

L(k)

|∇H u|p dx ≤ λ
∫

L(k)

|u|p−1(u− k) dx

≤ λ
∫

L(k)

(2p−1(u− k)p + 2p−1kp−1(u− k)) dx, (5.2)

where to obtain the last inequality above, we have used the inequality (a+ b)p−1 ≤ 2p−1(ap−1 + bp−1)
for a, b ≥ 0. Using Sobolev’s inequality (4.4) with r = p in (5.2), we obtain

(1− Sλ2p−1|L(k)|
p
ν )

∫
L(k)

(u− k)p dx ≤ λS2p−1kp−1|L(k)|
p
ν

∫
L(k)

(u− k) dx, (5.3)

where S > 0 is the Sobolev constant. Note that ‖u‖L1(Ω) ≥ k|L(k)| and therefore for every k ≥ k0 =

(2pSλ)
ν
p ‖u‖L1(Ω), we have Sλ2p−1|L(k)|

p
ν ≤ 1

2 . Using this fact in (5.3), for every k ≥ max{k0, 1}, we
get ∫

L(k)

(u− k)p dx ≤ λS2pkp−1|L(k)|
p
ν

∫
L(k)

(u− k) dx. (5.4)

Using Hölder’s inequality and estimate (5.4), we obtain∫
L(k)

(u− k) dx ≤ (λS2p)
1
p−1 k|L(k)|1+ p

ν(p−1) . (5.5)

Noting (5.5), by [20, Lemma 5.1], we get u ∈ L∞(Ω).

Case II. Let q > p, then using the inequality (a+ b)q−1 ≤ 2q−1(aq−1 + bq−1) for a, b ≥ 0 in (5.1),
we get ∫

L(k)

|∇H u|p dx ≤ λ
∫

L(k)

(2q−1(u− k)q + 2q−1kq−1(u− k)) dx. (5.6)

Now, using Sobolev’s inequality (4.4) with r = q in estimate (5.6), we obtain( ∫
L(k)

(u− k)q dx

) p
q

≤ Sλ|L(k)|p(
1
q−

1
p+ 1

ν )

∫
L(k)

(2q−1(u− k)q + 2q−1kq−1(u− k)) dx, (5.7)

where S > 0 is the Sobolev constant. Since
∫

L(k)

(u− k)q dx ≤ ‖u‖qLq(Ω) = 1 and q > p, the quantity in

the left-hand side of (5.7) can be estimated from below as( ∫
L(k)

(u− k)q dx

) p
q

=

( ∫
L(k)

(u− k)q dx

) p−q
q +1

≥
∫

L(k)

(u− k)q dx. (5.8)

Using (5.8) in (5.7), we get (
1− Sλ2q−1|L(k)|p(

1
q−

1
p+ 1

ν )
) ∫
L(k)

(u− k)q dx

≤ Sλ2q−1kq−1|L(k)|p(
1
q−

1
p+ 1

ν )

∫
L(k)

(u− k) dx. (5.9)
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Let α = p( 1
q −

1
p + 1

ν ), which is positive, since 1 < q < p∗. Choosing k1 = (Sλ2q)
1
α ‖u‖L1(Ω), due to

the fact that k|L(k)| ≤ ‖u‖L1(Ω), we obtain for every k ≥ k1 that Sλ2q−1|L(k)|α ≤ 1
2 . Using this

property in (5.9), we have ∫
L(k)

(u− k)q dx ≤ Sλ2qkq−1|L(k)|α
∫

L(k)

(u− k) dx. (5.10)

By Hölder’s inequality and estimate (5.10), we arrive at∫
L(k)

(u− k) dx ≤ (λS2q)
1
q−1 k|L(k)|1+ α

q−1 . (5.11)

Noting (5.11), by [20, Lemma 5.1], we get u ∈ L∞(Ω).

(b) By [29, Theorem 5], the result follows. �
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