AN APPLICATION ON AN ABSOLUTE MATRIX SUMMABILITY METHOD

ŞEBNEM YILDIZ

Abstract. The aim of this paper is to generalize a main theorem concerning absolute weighted arithmetic mean summability factors of infinite series and Fourier series to the $|A, p_n; \delta|_k$ summability method by using a quasi-f-power increasing sequence.

1. INTRODUCTION

Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . By u_n^{α} and t_n^{α} we denote the nth Cesàro means of order α , with $\alpha > -1$, of the sequences (s_n) and (na_n) , respectively, that is (see [9]),

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v \quad \text{and} \quad t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v, \quad (t_n^1 = t_n),$$

where

$$A_{n}^{\alpha} = \frac{(\alpha+1)(\alpha+2)\cdots(\alpha+n)}{n!} = O(n^{\alpha}), \quad A_{-n}^{\alpha} = 0 \quad \text{for} \quad n > 0.$$

The series $\sum a_n$ is said to be summable $|C, \alpha; \delta|_k$, $k \ge 1$, and $\delta \ge 0$ if (see [12])

$$\sum_{n=1}^{\infty} n^{\delta k+k-1} |u_n^{\alpha} - u_{n-1}^{\alpha}|^k = \sum_{n=1}^{\infty} n^{\delta k-1} |t_n^{\alpha}|^k < \infty.$$

If we take $\delta = 0$, then we get the $|C, \alpha|_k$ summability (see [11]).

Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$

The sequence-to-sequence transformation

$$w_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (w_n) of the weighted arithmetic mean or, simply, the (\bar{N}, p_n) mean of the sequence (s_n) generated by the sequence of coefficients (p_n) (see [13]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n; \delta|_k, k \ge 1$, and $\delta \ge 0$ if (see [3])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \mid w_n - w_{n-1} \mid^k < \infty.$$

If we take $\delta = 0$, then we get the $|\bar{N}, p_n|_k$ summability (see [2]) and if we take $p_n = 1$ for all n, then we have the $|C, 1; \delta|_k$ summability.

²⁰²⁰ Mathematics Subject Classification. 26D15, 42A24, 40D15, 40F05, 40G99.

Key words and phrases. Summability factors; Absolute matrix summability; Fourier series; Infinite series; Hölder inequality; Minkowski inequality.

Ş. YILDIZ

2. KNOWN RESULT

A positive sequence (b_n) is said to be an almost increasing sequence if there exist a positive increasing sequence (c_n) and two positive constants M and N such that $Mc_n \leq b_n \leq Nc_n$ (see [1]). A positive sequence $X = (X_n)$ is said to be a quasi-f-power increasing sequence if there exists a constant $K = K(X, f) \geq 1$ such that $Kf_nX_n \geq f_mX_m$ for all $n \geq m \geq 1$, where $f = \{f_n(\sigma, \beta)\} = \{n^{\sigma}(logn)^{\beta}, \beta \geq 0, 0 < \sigma < 1\}$ (see [20]).

If we take $\beta = 0$, then we have a quasi- σ -power increasing sequence (see [14]). Every almost increasing sequence is a quasi- σ -power increasing sequence for any non-negative σ , but the converse is not true for $\sigma > 0$.

For any sequence (λ_n) we write that $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1}$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. The sequence (λ_n) is said to be of bounded variation, denoted by $(\lambda_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty$ (see [18]). For the papers related to absolute summability factors we refer the reader to [4–7, 17, 21, 23–26].

For the papers related to absolute summability factors we refer the reader to [4-7, 17, 21, 23-26]. From these papers, Mazhar has obtained a result dealing with the Riesz summability by taking (X_n) as an almost increasing sequence (see [15]) and then Bor has proved a new theorem by taking (X_n) as a quasi $-\sigma$ -power increasing sequence (see [7]). Also, the following theorem dealing with the $|\bar{N}, p_n|_k$ summability factors of infinite series including a quasi-f-power increasing sequence, is known.

Theorem 2.1 ([8]). Let (X_n) be a quasi-*f*-power increasing sequence. If the sequences (X_n) , (λ_n) and (p_n) satisfy the conditions

$$|\lambda_m|X_m = O(1) \quad as \quad m \to \infty, \tag{1}$$

$$\sum_{n=1}^{m} nX_n |\Delta^2 \lambda_n| = O(1) \quad as \quad m \to \infty,$$

$$\sum_{n=1}^{m} \frac{P_n}{P_n} = O(P_m) \quad as \quad m \to \infty,$$
(2)

$$\sum_{n=1}^{m} \frac{p_n}{P_n} \frac{|t_n|^k}{X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty,$$
$$\sum_{n=1}^{m} \frac{|t_n|^k}{nX_n^{k-1}} = O(X_m) \quad as \quad m \to \infty,$$

then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

3. The Main Result

Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix with nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v, \quad n = 0, 1, \dots$$

The series $\sum a_n$ is said to be summable $|A, p_n; \delta|_k$, $k \ge 1$, and $\delta \ge 0$ if (see [16])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left|A_n(s) - A_{n-1}(s)\right|^k < \infty.$$

In the special case, if we take $a_{nv} = \frac{p_v}{P_n}$, then the $|A, p_n; \delta|_k$ summability reduces to the $|\bar{N}, p_n; \delta|_k$ summability. If we take $\delta = 0$ and $a_{nv} = \frac{p_v}{P_n}$, then the $|A, p_n; \delta|_k$ summability reduces to the $|\bar{N}, p_n|_k$ summability. Also if we take $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all n, then $|A, p_n; \delta|_k$ summability reduces to $|C, 1; \delta|_k$ summability. Moreover, if we take $\delta = 0$, the $|A, p_n; \delta|_k$ summability is the same as the $|A, p_n|_k$ summability (see [19]). Finally, if we take $\delta = 0$ and $p_n = 1$ for all n, then the $|A, p_n; \delta|_k$ summability is the same as the $|A|_k$ summability (see [22]).

The aim of this paper is to generalize Theorem 2.1 to the $|A, p_n; \delta|_k$ summability method for infinite series and Fourier series by taking a quasi-f-power increasing sequence.

Given a normal matrix $A = (a_{nv})$, we associate two lower semimatrices $\bar{A} = (\bar{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ as follows:

$$\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots$$

and

$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \dots$$

It may be noted that \overline{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then we have

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v = \sum_{v=0}^n \bar{a}_{nv} a_v$$

and

$$\bar{\Delta}A_n(s) = \sum_{v=0}^n \hat{a}_{nv} a_v.$$

Using this notation, we have the following

Theorem 3.1. Let $k \ge 1$ and $0 \le \delta < 1/k$. Let $A = (a_{nv})$ be a positive normal matrix such that

$$\overline{a}_{n0} = 1, \ n = 0, 1, \dots,$$
$$a_{n-1,v} \ge a_{nv}, \text{ for } n \ge v+1,$$
$$a_{nn} = O\left(\frac{p_n}{P_n}\right)$$
$$\sum_{v=1}^{n-1} \frac{1}{v} |\hat{a}_{n,v+1}| = O(a_{nn}).$$

Let (X_n) be a quasi-f-power increasing sequence. If the sequences (X_n) , (λ_n) and (p_n) satisfy the conditions (1), (2) of Theorem 2.1 and the conditions

$$\sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k-1} \frac{|t_v|^k}{X_v^{k-1}} = O(X_m) \quad \text{as} \quad m \to \infty,$$
$$\sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k} \frac{|t_v|^k}{vX_v^{k-1}} = O(X_m) \quad \text{as} \quad m \to \infty,$$
$$\sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta_v(\hat{a}_{nv})| = O\left\{\left(\frac{P_v}{p_v}\right)^{\delta k-1}\right\} \quad \text{as} \quad m \to \infty,$$
$$\sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\hat{a}_{n,v+1}| = O\left\{\left(\frac{P_v}{p_v}\right)^{\delta k}\right\} \quad \text{as} \quad m \to \infty.$$

are satisfied, then the series $\sum a_n \lambda_n$ is $|A, p_n; \delta|_k$ summable. To prove our theorem, we need the following

Lemma ([4]). Under the conditions (1) and (2) of Theorem 2.1, we have

$$\begin{split} &\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| < \infty, \\ & n X_n |\Delta \lambda_n| = O(1) \quad as \quad n \to \infty. \end{split}$$

4. Proof of Theorem 3.1

Let (I_n) denote the A-transform of the series $\sum a_n \lambda_n$. Then we have

$$\bar{\Delta}I_n = \sum_{v=0}^n \hat{a}_{nv} a_v \lambda_v.$$

Applying Abel's transformation to this sum, we have

$$\begin{split} \bar{\Delta}I_n &= \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv}\lambda_v}{v}\right) \sum_{r=1}^v ra_r + \frac{\hat{a}_{nn}\lambda_n}{n} \sum_{v=1}^n va_v \\ &= \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv}\lambda_v}{v}\right) (v+1)t_v + \hat{a}_{nn}\lambda_n \frac{n+1}{n}t_n \\ &= \sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_v (\hat{a}_{nv})\lambda_v t_v + \sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n,v+1}\Delta\lambda_v t_v + \sum_{v=1}^{n-1} \hat{a}_{n,v+1}\lambda_{v+1} \frac{t_v}{v} + a_{nn}\lambda_n t_n \frac{n+1}{n} \\ &= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}. \end{split}$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it suffices to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \mid I_{n,r} \mid^k < \infty, \quad \text{for} \quad r = 1, 2, 3, 4.$$

Firstly, by applying Hölder's inequality with indices k and k', where k > 1 and $\frac{1}{k} + \frac{1}{k'} = 1$, and using the fact that $\Delta_v(\hat{a}_{nv}) = \hat{a}_{nv} - \hat{a}_{n,v+1} = \bar{a}_{nv} - \bar{a}_{n-1,v} - \bar{a}_{n,v+1} + \bar{a}_{n-1,v+1} = a_{nv} - a_{n-1,v}$, and then $\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| = \sum_{v=1}^{n-1} (a_{n-1,v} - a_{nv}) \leq a_{nn}$, we have

$$\begin{split} &\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \mid I_{n,1} \mid^k \leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left\{\sum_{v=1}^{n-1} |\frac{v+1}{v}| \left|\Delta_v(\hat{a}_{nv})\right| \left|\lambda_v\right| |t_v|\right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \left|\lambda_v\right|^k |t_v|^k \times \left\{\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})|\right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} a_{nn}^{k-1} \left\{\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \left|\lambda_v\right|^k |t_v|^k\right\} \\ &= O(1) \sum_{v=1}^{m} |\lambda_v|^{k-1} |\lambda_v| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k-1} \frac{1}{X_v^{k-1}} |\lambda_v| |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_v| \sum_{r=1}^{v} \left(\frac{P_r}{p_r}\right)^{\delta k-1} \frac{|t_r|^k}{X_r^{k-1}} + O(1) |\lambda_m| \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k-1} \frac{|t_v|^k}{X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_m| X_m \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma. Also, we have

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,2}|^k \le \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left\{\sum_{v=1}^{n-1} |\frac{v+1}{v}| |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v| \right\}^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left\{\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v| \right\}^k$$

$$\begin{split} &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left\{ \sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta\lambda_v| \frac{1}{X_v^{k-1}} |t_v|^k \right\} \times \left\{ \sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta\lambda_v| X_v \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} a_{nn}^{k-1} \left\{ \sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta\lambda_v| \frac{1}{X_v^{k-1}} |t_v|^k \right\} \times \left\{ \sum_{v=1}^{n-1} |\Delta\lambda_v| X_v \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} \left\{ \sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta\lambda_v| \frac{1}{X_v^{k-1}} |t_v|^k \right\} \\ &= O(1) \sum_{v=1}^{m} |\Delta\lambda_v| \frac{1}{X_v^{k-1}} |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\hat{a}_{n,v+1}| \\ &= O(1) \sum_{v=1}^{m} v |\Delta\lambda_v| \frac{1}{vX_v^{k-1}} |t_v|^k \left(\frac{P_v}{p_v}\right)^{\delta k} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v|\Delta\lambda_v|) \sum_{r=1}^{v} \left(\frac{P_r}{p_r}\right)^{\delta k} \frac{|t_r|^k}{rX_r^{k-1}} + O(1)m|\Delta\lambda_m| \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k} \frac{|t_v|^k}{vX_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta(v|\Delta\lambda_v|)| X_v + O(1)m|\Delta\lambda_m| X_m \\ &= O(1) \sum_{v=1}^{m-1} v X_v |\Delta^2\lambda_v| + O(1) \sum_{v=1}^{m-1} X_v |\Delta\lambda_v| + O(1)m|\Delta\lambda_m| X_m \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma. Furthermore, we have

$$\begin{split} &\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \mid I_{n,3} \mid^k \leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left\{\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}| \frac{|t_v|}{v}\right\}^k \\ &\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} \left\{\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}|^k \frac{|t_v|^k}{v}\right\} \times \left\{\sum_{v=1}^{n-1} \frac{1}{v} |\hat{a}_{n,v+1}|\right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} a_{nn}^{k-1} \sum_{v=1}^{n-1} \frac{|t_v|^k}{v} |\lambda_{v+1}|^{k-1} |\lambda_{v+1}| |\hat{a}_{n,v+1}| \\ &= O(1) \sum_{v=1}^{m} \frac{|t_v|^k}{v} |\lambda_{v+1}|^{k-1} |\lambda_{v+1}| \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\hat{a}_{n,v+1}| \\ &= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k} \frac{|t_v|^k}{v} \frac{1}{X_v^{k-1}} |\lambda_{v+1}| \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_{v+1}| \sum_{r=1}^{v} \left(\frac{P_r}{p_r}\right)^{\delta k} \frac{|t_r|^k}{rX_r^{k-1}} + O(1) |\lambda_{m+1}| \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{\delta k} \frac{|t_v|^k}{vX_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=2}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_{m+1}| X_{m+1} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_v| X_v + O(1) |\lambda_v| X_v + O(1) |\lambda_v| X_v \\ &= O(1) \sum_{v=1}^{m-1} |A |X_v| X_v + O(1) |X_v| X_v \\ &= O(1) \sum_{v=1}^{m-1} |X_v| X_v + O(1) |X_v| X_v$$

Ş. YILDIZ

by virtue of the hypotheses of Theorem 3.1 and Lemma. Again, as in $I_{n,1}$, we have

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |I_{n,4}|^k = O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} a_{nn}^k |\lambda_n|^k |t_n|^k$$
$$= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k-1} |\lambda_n|^{k-1} |\lambda_n| |t_n|^k$$
$$= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{X_n^{k-1}} |\lambda_n| |t_n|^k$$
$$= O(1) \text{ as } m \to \infty,$$

by virtue of the hypotheses of Theorem 3.1 and Lemma. This completes the proof of Theorem 3.1.

In a special case where $\delta = 0$ and $a_{nv} = \frac{p_v}{P_n}$, we have Theorem 2.1. If we take $\delta = 0$, then we have a result dealing with the $|A, p_n|_k$ summability (see [25]). Also, if we take $\delta = 0$ and $p_n = 1$ for all n, then we have a result for the $|A|_k$ summability.

An Application of absolute matrix summability to the Fourier Series

Let f be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. The trigonometric Fourier series of f is defined as

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} C_n(x).$$

where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

We write

$$\phi(t) = \frac{1}{2} \left\{ f(x+t) + f(x-t) \right\},$$

$$\phi_{\alpha}(t) = \frac{\alpha}{t^{\alpha}} \int_{0}^{t} (t-u)^{\alpha-1} \phi(u) \, du, \quad (\alpha > 0).$$

It is well known that if $\phi_1(t) \in \mathcal{BV}(0,\pi)$, then $t_n(x) = O(1)$, where $t_n(x)$ is the (C,1) mean of the sequence $(nC_n(x))$ (see [10]).

In [8], Bor has also obtained a new theorem including the trigonometric Fourier series about the $|\bar{N}, p_n|_k$ summability.

Theorem 4.1 ([8]). Let (X_n) be a quasi-*f*-power increasing sequence. If $\phi_1(t) \in \mathcal{BV}(0,\pi)$, and the sequences (p_n) , (λ_n) and (X_n) satisfy the conditions of Theorem 2.1, then the series $\sum C_n(x)\lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

Now, we generalize Theorem 4.1 to Theorem 4.2 for the $|A, p_n; \delta|_k$ summability method.

Theorem 4.2. Let A be a positive normal matrix as in Theorem 3.1. Let (X_n) be a quasi-f-power increasing sequence. If $\phi_1(t) \in \mathcal{BV}(0,\pi)$, and the sequences (p_n) , (λ_n) and (X_n) satisfy all the conditions of Theorem 3.1, then the series $\sum C_n(x)\lambda_n$ is summable $|A, p_n; \delta|_k$, $k \ge 1$ and $0 \le \delta < 1/k$.

5. Applications

It is noted that if we take $\delta = 0$ and $a_{nv} = \frac{p_v}{P_n}$ in Theorem 4.2, then we get Theorem 4.1, and also, if we take $\beta = 0$, then we have new theorem on a quasi- σ -power increasing sequence. If we take $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all n, then we have a theorem on the $|C, 1; \delta|_k$ summability factors of Fourier series. If we take $\delta = 0$, then we have a result dealing with the $|A, p_n|_k$ summability factors of Fourier series (see [25]). Finally, if we take $\delta = 0$ and $p_n = 1$ for all n, then we obtain a theorem on the $|A|_k$ summability factors of Fourier series.

Acknowledgement

The author expresses her thanks to the referee for his/her comments for the improvement of this paper.

References

- N. K. Bari, S. B. Stečkin, Best approximations and differential properties of two conjugate functions. (Russian) Trudy Moskov. Mat. Ob. 5 (1956), 483–522.
- 2. H. Bor, On two summability methods. Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 147–149.
- H. Bor, On local property of |N, p_n; δ|_k summability of factored Fourier series. J. Math. Anal. Appl. 179 (1993), no. 2, 646–649.
- 4. H. Bor, Quasimonotone and almost increasing sequences and their new applications. *Abstr. Appl. Anal.* 2012, Art. ID 793548, 6 pp.
- 5. H. Bor, On absolute weighted mean summability of infinite series and Fourier series. *Filomat* **30** (2016), no. 10, 2803–2807.
- H. Bor, Some new results on absolute Riesz summability of infinite series and Fourier series. Positivity 20 (2016), no. 3, 599–605.
- 7. H. Bor, An application of power increasing sequences to infinite series and Fourier series. *Filomat* **31** (2017), no. 6, 1543–1547.
- H. Bor, Absolute weighted arithmetic mean summability factors of infinite series and trigonometric Fourier series. Filomat 31 (2017), no. 15, 4963–4968.
- 9. E. Cesàro, Sur la multiplication des sèries. Bull. Sci. Math. 14 (1890), 114-120.
- K. K. Chen, Functions of bounded variation and the Cesaro means of a Fourier series. Acad. Sinica Science Record 1(1945), 283–289.
- T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3) 7 (1957), 113–141.
- T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. (3) 8 (1958), 357–387.
- 13. G. H. Hardy, *Divergent Series*. Oxford, at the Clarendon Press, 1949.
- 14. L. Leindler, A new application of quasi power increasing sequences. Publ. Math. Debrecen 58 (2001), no. 4, 791–796.
- 15. S. M. Mazhar, Absolute summability factors of infinite series. Kyungpook Math. J. 39 (1999), no. 1, 67–73.
- H. S. Özarslan, H. N. Öğdük, Generalizations of two theorems on absolute summability methods. Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 13, 7 pp.
- H. S. Özarslan, Ş. Yıldız, A new study on the absolute summability factors of Fourier series. J. Math. Anal. 7 (2016), no. 2, 31–36.
- 18. M. Stieglitz, H. Tietz, Matrix transformationen quasikonvexer Folgen. Hokkaido Math. J. 49 (2020), no. 3, 481–508.
- W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV. Indian J. Pure Appl. Math. 34 (2003), no. 11, 1547–1557.
- W. T. Sulaiman, Extension on absolute summability factors of infinite series. J. Math. Anal. Appl. 322 (2006), no. 2, 1224–1230.
- 21. W. T. Sulaiman, On the absolute Riesz summability. J. Comput. Anal. Appl. 13 (2011), no. 5, 843–849.
- 22. N. Tanovi-Miller, On strong summability. Glasnik Mat. Ser. III 14(34) (1979), no. 1, 87–97.
- Ş. Yildiz, A matrix application on absolute weighted arithmetic mean summability factors of infinite series. *Tbilisi Math. J.* 11 (2018), no. 2, 59–65.
- 24. Ş. Yildiz, A new result for weighted arithmetic mean summability factors of infinite series involving almost increasing sequenes. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), no. 2, 1611–1620.
- Ş. Yildiz, An absolute matrix summability of infinite series and Fourier series. Bol. Soc. Parana. Mat. (3) 38 (2020), no. 7, 49–58.
- Ş. Yildiz, A matrix application of power increasing sequences to infinite series and Fourier series. Ukrainian Math. J. 72 (2020), no. 5, 730–740.

(Received 03.02.2021)

DEPARTMENT OF MATHEMATICS, KIRŞEHIR AHI EVRAN UNIVERSITY, KIRŞEHIR, TURKEY *E-mail address*: sebnemyildiz@ahievran.edu.tr