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AN APPLICATION ON AN ABSOLUTE MATRIX SUMMABILITY METHOD

SEBNEM YILDIZ

Abstract. The aim of this paper is to generalize a main theorem concerning absolute weighted
arithmetic mean summability factors of infinite series and Fourier series to the | A, pp; §|x summability
method by using a quasi- f-power increasing sequence.

1. INTRODUCTION

Let Y a, be a given infinite series with the partial sums (s,). By u& and t& we denote the nth
Cesaro means of order «, with a > —1, of the sequences (s,) and (na,), respectively, that is (see [9]),

a _ IR a—1 a _ 1 ¢ a—1 1 _
ul = Ao UZ:OATHUSU and to = T ;Anﬂ,vav, (t, =tn),
where
1 2)...
AY = (at+D)(a+2)---(at+n) =0(n%), A%, =0 for n>0.

n!
The series Y a,, is said to be summable |C, o; 4|, k> 1, and § > 0 if (see [12])

00 0o
Z n5k+k71|u$§ _ u%_1|k _ Zn5k71|t2|k < 0.
n=1 n=1

If we take 6 = 0, then we get the |C, o], summability (see [11]).
Let (py) be a sequence of positive numbers such that

n
Pn:va—H)o as n—oo, (P,=p_;=0, i>1).
v=0

The sequence-to-sequence transformation

1 n
Wy, = Fn UZ:OPUSU

defines the sequence (w,, ) of the weighted arithmetic mean or, simply, the (N, p,,) mean of the sequence
(5n) generated by the sequence of coefficients (p,,) (see [13]). The series ) ay, is said to be summable
IN,pn; 0|k, k> 1, and 6 > 0 if (see [3])

0o Ok+k—1

P,
g <n> | Wy, — w1 |F< 0.
o1 \Pn

If we take § = 0, then we get the ’N,pn|k summability (see [2]) and if we take p, =1 for all n, then
we have the |C, 1; §|; summability.
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2. KNOWN RESULT

A positive sequence (b,) is said to be an almost increasing sequence if there exist a positive
increasing sequence (c,) and two positive constants M and N such that Me¢, < b, < Ne¢, (see
[1]). A positive sequence X = (X,) is said to be a quasi-f-power increasing sequence if there
exists a constant K = K(X,f) > 1 such that Kf, X, > f.X,, for all n > m > 1, where
f={falo,8)} = {n(logn)?, > 0,0 < o < 1} (see [20]).

If we take 8 = 0, then we have a quasi-o-power increasing sequence (see [14]). Every almost
increasing sequence is a quasi-o-power increasing sequence for any non-negative o, but the converse
is not true for o > 0.

For any sequence (\,) we write that A2\, = A\, — A\,11 and AN, = A\, — \,y1. The sequence

&)
(An) is said to be of bounded variation, denoted by (A,,) € BV, if > |AM,| < oo (see [18]).
n=1

For the papers related to absolute summability factors we refer the reader to [4-7,17,21,23-26].
From these papers, Mazhar has obtained a result dealing with the Riesz summability by taking (X,,)
as an almost increasing sequence (see [15]) and then Bor has proved a new theorem by taking (X,,) as
a quasi -o-power increasing sequence (see [7]). Also, the following theorem dealing with the ’N s Pn
summability factors of infinite series including a quasi-f-power increasing sequence, is known.

s

Theorem 2.1 ([8]). Let (X,,) be a quasi-f-power increasing sequence. If the sequences (X,), (An)
and (py,) satisfy the conditions

[Am|Xm =O(1) as m — oo, (1)
> nXa|A%M\ | =0(1) as m— oo, (2)
P,
— as m — oo,
n
i p— =0(Xp) as m— oo
n=1 P ’
ZnXk : =0(X;m) as m— oo,

then the series Y an\, is summable |N,pn|k, k>1.

3. THE MAIN RESULT

Let A = (any) be a normal matrix, i.e., a lower triangular matrix with nonzero diagonal en-
tries. Then A defines the sequence-to-sequence transformation, mapping the sequence s = (s,) to

As = (A, (s)), where
:Zanv8v7 n:(),l,....
=0

The series ) ay, is said to be summable |A,p,;6|,, kK > 1, and § > 0 if (see [16])

oo

P Sk+k—1
> () 4n(s) = Ap_1(s)[" < o0,
n=1

Pn

In the special case, if we take an, = 5=, then the [A4, p,; 4|, summability reduces to the ‘N Dn; 6‘1@
summability. If we take § = 0 and a,, = %>, then the |A, p,; 0|, summability reduces to the ’N pn‘ .
summability. Also if we take a,, = %’1 and pn = 1 for all n, then |A, p,;d|, summability reduces
to |C,1;0], summability. Moreover, if we take § = 0, the |A, py;d|, summability is the same as the
|A, pp|, summability (see [19]). Finally, if we take 6 = 0 and p,, = 1 for all n, then the |A, p,;d|,
summability is the same as the |A[, summability (see [22]).
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The aim of this paper is to generalize Theorem 2.1 to the |A, p,; d|x summability method for infinite
series and Fourier series by taking a quasi-f-power increasing sequence.

Given a normal matrix A = (a,,), we associate two lower semimatrices A = (@, ) and A= (Gnw)
as follows:

n
Ay :Zam, n,v=0,1,...
1=
and
Gop = Qoo = @00, CGny = Gny — Gn-1,0, N =1,2,....

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then we have

n n
An(s) - Zanvsv - Z@nvav
v=0 v=0
and
n
AA,(s) = de,av.
v=0

Using this notation, we have the following

Theorem 3.1. Let k> 1 and 0 < § < 1/k. Let A = (any) be a positive normal matriz such that

ano =1, n=0,1,...,

Apn—1,v Z Ay, for n 2 v+ ]-v

Pn
nn — 0=
n—1

1.
Z E|an,v+1| = O(ann).

v=1

Let (X,) be a quasi- f-power increasing sequence. If the sequences (X,,), (A\,) and (p,,) satisfy the
conditions (1), (2) of Theorem 2.1 and the conditions

m ok—1 k
<Pv> [t =0(X,,) as m — oo,

=\ x5!
m 5k
P, tol®
Z () | k|71 =0(X,,) as m — oo,
v=1 by v Xy
m+1 ok Sk—1
P, . P,
> <> |A ()| = 0{ <> } as  m — oo,
neot1 \Pn Pv
mil s p ook P\
Z — |Gnvt1] =09 | — as  m — oo.
ne—ot1 n Do

are satisfied, then the series ) a, A, is |A, py; ], summable.
To prove our theorem, we need the following

Lemma ([4]). Under the conditions (1) and (2) of Theorem 2.1, we have
D XulA,| < 0,

n=1

nXp|AXy| =0(1) as n— .
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4. PROOF OF THEOREM 3.1

Let (I,) denote the A-transform of the series > apA,. Then we have

AIn = i Gy Ay
v=0

Applying Abel’s transformation to this sum, we have

AI, —ZA (am U)Zra,« dnn Zvav

— An’u)\’u ~ 1
= E Av(a )(v—i— 1)t, +a,m)\nitn
v n

U+1 v+1, n+1
= v) vty no+1 8Nty no+1 Ay nn)\ti
D S it S b

v=1
— in,1 + In,2 + InS + In,4-

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it suffices to show that

oo

P Sk+k—1
> (") | I, |F< 00, for r=1,2,34.
Pn

Firstly, by applying Holder’s inequality with indices k& and k', where k& > 1 and % + % =1, and using

the fact that Ay(Gny) = Gny — Gnot1 = Gno — Gn-1,0 — Gnp+1 + Gn—1,041 = Gny — Gn_1,, and then
-1 R -1

ZZ:1 ‘Av(anv” = Z::l (anfl,v - anv) S App, WE have

m—+1 Sk+k—1 m—+1 Sk+k—1 k
P, P, v+1
3 <) ISy () {Z| Ao oIt |}
2 Pn 2 Pn

m—+1 P Sk+k—1n—1 k—1
—omy_ (3 > )| { Z Al }
n=2
m+1 P Ok+k—1
—om > () {ZA )l 0}
n=2

Pn

m m+1 P Sk
=0 Y I it Y- (2) " 1asan)

n=v+1

Sk—1 1
S (B) s
m—1 ok—1 k m ok—1 k
| ()" L

Al + O(1)| A\, —
MY a |Z< 2 o) X)) wn

=01) S AN X, + O(1) [ Am| X

M i

=0(1) as m — oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma. Also, we have

m+1 Sk+k—1 m—+1 Sk+k—1 k
P, P, v+1
3 () Lol S (p) {Z| lim s AN It |}

Pn oy

—om 3 ()" 1{Z|am+1|m e}
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m+1 P Sk+k—1 n—1 n—1 k—1
oy (=) { S lwealand gl o S lanalianx, )

n=2 Dn v=1 v=1

m+1 P Sk+k—1 n—1 n—1 k—1
—om Y () d Tlansallaniglnl b x { S anx, )

n=2 n v=1 v=1

m-+1 P ok n—1
—o Y (52) { Elansllanig=lel*}

n=2 Dn v=1

m m+1 ok

P, R
DI AU ( ) i
n=v+1 Dn

" 1 P\ °F

=0(1 Ay | ——|t, k()
();vl 'wdf 7|t b
m—1 v ok m Sk
P, [t|* (Pv> [ty
=01 A(v|AN, +O0(1)m|AN, v
UDIRE ');(m) e ommianI 3 (1) B

m—1
=0(1) ) [A@[AN]Xy + O(1)m|AN,] X

v=1

m—1 m—1
=0(1) Y 0X AN+ 0(1) Y Xo|AX] + O(1)m| ANy | X,

v=1 v=1

=0(1) as m — oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma. Furthermore, we have

m+1 P Sk+k—1 m+1 P Sk+k—1 |t| k
-n ]n k< -n o )\U vl
S () ke S () St
m+1 Sk+k—1 n—1 |t ‘ n—1 1 k—1
=S (2) S et B X Sl

v=1
m+1 P Sk+k—1 |t |
—om S () e S
n=2 n v=1
m m+1 ok
|t ]* - P\
WY == o Al D0 () lanwenl
v=1 n=v+1 n
Z( )L
k—1 +1
= voxyt
m—1 ok ‘t ‘k m P, ok |tv‘k
=0 T — + O(1) |\ —
WY ahalY () Jem 0wy (3) 55
m—1
= 0(1) | )‘U+1|Xv+1 + O(l)p\m-‘rl‘Xm—i-l
v=1
m—1
=0(1) |AX | Xy + O(1)[Am 1] Xt
v=2
m—1
=0(1) ) [AM|Xy + O)[Ams1] Xins1
v=1

=0(1) as m — oo,
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by virtue of the hypotheses of Theorem 3.1 and Lemma. Again, as in I,, 1, we have

m Sk+k—1 m Sk+k—1
P, P,
3 () Lo =omY (p) WG

Pn n

n=1 n=1
m P Sk—1
=0y () PP
n=1 Dn
m P Sk—1 1
—omy () Ll
n=1 n n

=0(1) as m — oo,

by virtue of the hypotheses of Theorem 3.1 and Lemma. This completes the proof of Theorem 3.1.

In a special case where § = 0 and a,, = P , we have Theorem 2.1. If we take § = 0, then we have
a result dealing with the |A, p,|, summability (see [25]). Also, if we take § = 0 and p, = 1 for all n,
then we have a result for the |A[, summability.

An Application of absolute matrix summability to the Fourier Series

Let f be a periodic function with period 27 and Lebesgue integrable over (—7, 7). The trigonometric
Fourier series of f is defined as

1 oo ) (o)
f(z) ~ 540 + nz::l(an cosnx + by, sinnx) = Z Cp(x)
where - .
1 1
ag = — / fl@)dz, a,=— /f(sc) cos(nz)dx /f sin(nzx)
™ T
We write

O;b/t—ua Yo(u) du, (a>0).

It is well known that if ¢ (t) € BV(0,7), then t,(x) = O(1), where ¢, (z) is the (C,1) mean of the
sequence (nCy(z)) (see [10]).

In [8], Bor has also obtained a new theorem including the trigonometric Fourier series about the
|N, pn|s summability.

Theorem 4.1 ([8]). Let (X,) be a quasi-f-power increasing sequence. If ¢1(t) € BV(0,7), and the
sequences (pn), (An) and (X,) satisfy the conditions of Theorem 2.1, then the series ) Cy(x)A, is
summable |N,p, |k, k > 1.

Now, we generalize Theorem 4.1 to Theorem 4.2 for the |A, p,;d|r summability method.

Theorem 4.2. Let A be a positive normal matriz as in Theorem 3.1. Let (X,,) be a quasi-f-power in-
creasing sequence. If ¢1(t) € BV(0,7), and the sequences (pn), (An) and (X,) satisfy all the conditions
of Theorem 3.1, then the series Y Cy,(x)\, is summable |A, p,;0|k, k> 1and 0 <6 < 1/k.

5. APPLICATIONS

It is noted that if we take § = 0 and a,, = %> in Theorem 4.2, then we get Theorem 4.1, and

also, if we take § = 0, then we have new theorem on a quasi-o-power increasing sequence. If we take
Any = %’Z and p,, = 1 for all n, then we have a theorem on the |C, 1; 4|, summability factors of Fourier
series. If we take 6 = 0, then we have a result dealing with the |A, p,|r summability factors of Fourier
series (see [25]). Finally, if we take 6 = 0 and p,, = 1 for all n, then we obtain a theorem on the |A|j
summability factors of Fourier series.
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