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AN APPLICATION ON AN ABSOLUTE MATRIX SUMMABILITY METHOD

ŞEBNEM YILDIZ

Abstract. The aim of this paper is to generalize a main theorem concerning absolute weighted

arithmetic mean summability factors of infinite series and Fourier series to the |A, pn; δ|k summability
method by using a quasi-f -power increasing sequence.

1. Introduction

Let
∑
an be a given infinite series with the partial sums (sn). By uαn and tαn we denote the nth

Cesàro means of order α, with α > −1, of the sequences (sn) and (nan), respectively, that is (see [9]),

uαn =
1

Aαn

n∑
v=0

Aα−1
n−vsv and tαn =

1

Aαn

n∑
v=1

Aα−1
n−vvav, (t1n = tn),

where

Aαn =
(α+ 1)(α+ 2) · · · (α+ n)

n!
= O(nα), Aα−n = 0 for n > 0.

The series
∑
an is said to be summable |C,α; δ|k, k ≥ 1, and δ ≥ 0 if (see [12])

∞∑
n=1

nδk+k−1|uαn − uαn−1|k =

∞∑
n=1

nδk−1|tαn|k <∞.

If we take δ = 0, then we get the |C,α|k summability (see [11]).
Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv

defines the sequence (wn) of the weighted arithmetic mean or, simply, the (N̄ , pn) mean of the sequence
(sn) generated by the sequence of coefficients (pn) (see [13]). The series

∑
an is said to be summable

|N̄ , pn; δ|k, k ≥ 1, and δ ≥ 0 if (see [3])

∞∑
n=1

(
Pn
pn

)δk+k−1

| wn − wn−1 |k<∞.

If we take δ = 0, then we get the
∣∣N̄ , pn∣∣k summability (see [2]) and if we take pn = 1 for all n, then

we have the |C, 1; δ|k summability.

2020 Mathematics Subject Classification. 26D15, 42A24, 40D15, 40F05, 40G99.
Key words and phrases. Summability factors; Absolute matrix summability; Fourier series; Infinite series; Hölder
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2. Known Result

A positive sequence (bn) is said to be an almost increasing sequence if there exist a positive
increasing sequence (cn) and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see
[1]). A positive sequence X = (Xn) is said to be a quasi-f -power increasing sequence if there
exists a constant K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm for all n ≥ m ≥ 1, where
f = {fn(σ, β)} =

{
nσ(logn)β , β ≥ 0, 0 < σ < 1

}
(see [20]).

If we take β = 0, then we have a quasi-σ-power increasing sequence (see [14]). Every almost
increasing sequence is a quasi-σ-power increasing sequence for any non-negative σ, but the converse
is not true for σ > 0.

For any sequence (λn) we write that ∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1. The sequence

(λn) is said to be of bounded variation, denoted by (λn) ∈ BV, if
∞∑
n=1
|∆λn| <∞ (see [18]).

For the papers related to absolute summability factors we refer the reader to [4–7, 17, 21, 23–26].
From these papers, Mazhar has obtained a result dealing with the Riesz summability by taking (Xn)
as an almost increasing sequence (see [15]) and then Bor has proved a new theorem by taking (Xn) as
a quasi -σ-power increasing sequence (see [7]). Also, the following theorem dealing with the

∣∣N̄ , pn∣∣k
summability factors of infinite series including a quasi-f-power increasing sequence, is known.

Theorem 2.1 ([8]). Let (Xn) be a quasi-f -power increasing sequence. If the sequences (Xn), (λn)
and (pn) satisfy the conditions

|λm|Xm = O(1) as m→∞, (1)
m∑
n=1

nXn|∆2λn| = O(1) as m→∞, (2)

m∑
n=1

Pn
n

= O(Pm) as m→∞,

m∑
n=1

pn
Pn

|tn|k

Xk−1
n

= O(Xm) as m→∞,

m∑
n=1

|tn|k

nXk−1
n

= O(Xm) as m→∞,

then the series
∑
anλn is summable

∣∣N̄ , pn∣∣k, k ≥ 1.

3. The Main Result

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix with nonzero diagonal en-
tries. Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, . . . .

The series
∑
an is said to be summable |A, pn; δ|k, k ≥ 1, and δ ≥ 0 if (see [16])

∞∑
n=1

(
Pn
pn

)δk+k−1

|An(s)−An−1(s)|k <∞.

In the special case, if we take anv = pv
Pn

, then the |A, pn; δ|k summability reduces to the
∣∣N̄ , pn; δ

∣∣
k

summability. If we take δ = 0 and anv = pv
Pn

, then the |A, pn; δ|k summability reduces to the
∣∣N̄ , pn∣∣k

summability. Also if we take anv = pv
Pn

and pn = 1 for all n, then |A, pn; δ|k summability reduces

to |C, 1; δ|k summability. Moreover, if we take δ = 0, the |A, pn; δ|k summability is the same as the
|A, pn|k summability (see [19]). Finally, if we take δ = 0 and pn = 1 for all n, then the |A, pn; δ|k
summability is the same as the |A|k summability (see [22]).
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The aim of this paper is to generalize Theorem 2.1 to the |A, pn; δ|k summability method for infinite
series and Fourier series by taking a quasi-f-power increasing sequence.

Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv)
as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, . . .

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . . .

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav

and

∆̄An(s) =

n∑
v=0

ânvav.

Using this notation, we have the following

Theorem 3.1. Let k ≥ 1 and 0 ≤ δ < 1/k. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, . . . ,

an−1,v ≥ anv, for n ≥ v + 1,

ann = O

(
pn
Pn

)
n−1∑
v=1

1

v
|ân,v+1| = O(ann).

Let (Xn) be a quasi-f -power increasing sequence. If the sequences (Xn), (λn) and (pn) satisfy the
conditions (1), (2) of Theorem 2.1 and the conditions

m∑
v=1

(
Pv
pv

)δk−1 |tv|k

Xk−1
v

= O(Xm) as m→∞,

m∑
v=1

(
Pv
pv

)δk |tv|k
vXk−1

v

= O(Xm) as m→∞,

m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)| = O

{(
Pv
pv

)δk−1}
as m→∞,

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1| = O

{(
Pv
pv

)δk }
as m→∞.

are satisfied, then the series
∑
anλn is |A, pn; δ|k summable.

To prove our theorem, we need the following

Lemma ([4]). Under the conditions (1) and (2) of Theorem 2.1, we have

∞∑
n=1

Xn|∆λn| <∞,

nXn|∆λn| = O(1) as n→∞.
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4. Proof of Theorem 3.1

Let (In) denote the A-transform of the series
∑
anλn. Then we have

∆̄In =

n∑
v=0

ânvavλv.

Applying Abel’s transformation to this sum, we have

∆̄In =

n−1∑
v=1

∆v

( ânvλv
v

) v∑
r=1

rar +
ânnλn
n

n∑
v=1

vav

=

n−1∑
v=1

∆v

( ânvλv
v

)
(v + 1)tv + ânnλn

n+ 1

n
tn

=

n−1∑
v=1

v + 1

v
∆v(ânv)λvtv +

n−1∑
v=1

v + 1

v
ân,v+1∆λvtv +

n−1∑
v=1

ân,v+1λv+1
tv
v

+ annλntn
n+ 1

n

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it suffices to show that
∞∑
n=1

(
Pn
pn

)δk+k−1

| In,r |k<∞, for r = 1, 2, 3, 4.

Firstly, by applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, and using
the fact that ∆v(ânv) = ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv − an−1,v, and then∑n−1
v=1 |∆v(ânv)| =

∑n−1
v=1 (an−1,v − anv) ≤ ann, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,1 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|v + 1

v
| |∆v(ânv)| |λv||tv|

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1 n−1∑
v=1

|∆v(ânv)| |λv|k|tv|k ×
{ n−1∑
v=1

|∆v(ânv)|
}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

{ n−1∑
v=1

|∆v(ânv)| |λv|k|tv|k
}

= O(1)

m∑
v=1

|λv|k−1|λv||tv|k
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv
pv

)δk−1
1

Xk−1
v

|λv||tv|k

= O(1)

m−1∑
v=1

∆|λv|
v∑
r=1

(
Pr
pr

)δk−1 |tr|k

Xk−1
r

+O(1)|λm|
m∑
v=1

(
Pv
pv

)δk−1 |tv|k

Xk−1
v

= O(1)

m−1∑
v=1

|∆λv|Xv +O(1)|λm|Xm

= O(1) as m→∞,
by virtue of the hypotheses of Theorem 3.1 and Lemma. Also, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,2 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|v + 1

v
||ân,v+1||∆λv||tv|

}k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1||∆λv||tv|
}k
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= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1||∆λv|
1

Xk−1
v

|tv|k
}
×
{ n−1∑
v=1

|ân,v+1||∆λv|Xv

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

{ n−1∑
v=1

|ân,v+1||∆λv|
1

Xk−1
v

|tv|k
}
×
{ n−1∑
v=1

|∆λv|Xv

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk { n−1∑
v=1

|ân,v+1||∆λv|
1

Xk−1
v

|tv|k
}

= O(1)

m∑
v=1

|∆λv|
1

Xk−1
v

|tv|k
m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1|

= O(1)

m∑
v=1

v|∆λv|
1

vXk−1
v

|tv|k
(
Pv
pv

)δk

= O(1)

m−1∑
v=1

∆(v|∆λv|)
v∑
r=1

(
Pr
pr

)δk |tr|k
rXk−1

r

+O(1)m|∆λm|
m∑
v=1

(
Pv
pv

)δk |tv|k
vXk−1

v

= O(1)

m−1∑
v=1

|∆(v|∆λv|)|Xv +O(1)m|∆λm|Xm

= O(1)

m−1∑
v=1

vXv|∆2λv|+O(1)

m−1∑
v=1

Xv|∆λv|+O(1)m|∆λm|Xm

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma. Furthermore, we have

m+1∑
n=2

(
Pn
pn

)δk+k−1

| In,3 |k≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

}k

≤
m+1∑
n=2

(
Pn
pn

)δk+k−1{ n−1∑
v=1

|ân,v+1||λv+1|k
|tv|k

v

}
×
{ n−1∑
v=1

1

v
|ân,v+1|

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1

ak−1
nn

n−1∑
v=1

|tv|k

v
|λv+1|k−1|λv+1||ân,v+1|

= O(1)

m∑
v=1

|tv|k

v
|λv+1|k−1|λv+1|

m+1∑
n=v+1

(
Pn
pn

)δk
|ân,v+1|

= O(1)

m∑
v=1

(
Pv
pv

)δk |tv|k
v

1

Xk−1
v

|λv+1|

= O(1)

m−1∑
v=1

∆|λv+1|
v∑
r=1

(
Pr
pr

)δk |tr|k
rXk−1

r

+O(1)|λm+1|
m∑
v=1

(
Pv
pv

)δk |tv|k
vXk−1

v

= O(1)

m−1∑
v=1

|∆λv+1|Xv+1 +O(1)|λm+1|Xm+1

= O(1)

m−1∑
v=2

|∆λv|Xv +O(1)|λm+1|Xm+1

= O(1)

m−1∑
v=1

|∆λv|Xv +O(1)|λm+1|Xm+1

= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1 and Lemma. Again, as in In,1, we have
m∑
n=1

(
Pn
pn

)δk+k−1

|In,4|k = O(1)

m∑
n=1

(
Pn
pn

)δk+k−1

aknn|λn|k|tn|k

= O(1)

m∑
n=1

(
Pn
pn

)δk−1

|λn|k−1|λn||tn|k

= O(1)

m∑
n=1

(
Pn
pn

)δk−1
1

Xk−1
n

|λn||tn|k

= O(1) as m→∞,
by virtue of the hypotheses of Theorem 3.1 and Lemma. This completes the proof of Theorem 3.1.

In a special case where δ = 0 and anv = pv
Pn

, we have Theorem 2.1. If we take δ = 0, then we have

a result dealing with the |A, pn|k summability (see [25]). Also, if we take δ = 0 and pn = 1 for all n,
then we have a result for the |A|k summability.

An Application of absolute matrix summability to the Fourier Series

Let f be a periodic function with period 2π and Lebesgue integrable over (−π, π). The trigonometric
Fourier series of f is defined as

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) =

∞∑
n=0

Cn(x),

where

a0 =
1

π

π∫
−π

f(x)dx, an =
1

π

π∫
−π

f(x) cos(nx)dx, bn =
1

π

π∫
−π

f(x) sin(nx)dx.

We write

φ(t) =
1

2
{f(x+ t) + f(x− t)} ,

φα(t) =
α

tα

t∫
0

(t− u)α−1φ(u) du, (α > 0).

It is well known that if φ1(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the
sequence (nCn(x)) (see [10]).

In [8], Bor has also obtained a new theorem including the trigonometric Fourier series about the
|N̄ , pn|k summability.

Theorem 4.1 ([8]). Let (Xn) be a quasi-f -power increasing sequence. If φ1(t) ∈ BV(0, π), and the
sequences (pn), (λn) and (Xn) satisfy the conditions of Theorem 2.1, then the series

∑
Cn(x)λn is

summable |N̄ , pn|k, k ≥ 1.

Now, we generalize Theorem 4.1 to Theorem 4.2 for the |A, pn; δ|k summability method.

Theorem 4.2. Let A be a positive normal matrix as in Theorem 3.1. Let (Xn) be a quasi-f -power in-
creasing sequence. If φ1(t) ∈ BV(0, π), and the sequences (pn), (λn) and (Xn) satisfy all the conditions
of Theorem 3.1, then the series

∑
Cn(x)λn is summable |A, pn; δ|k, k ≥ 1 and 0 ≤ δ < 1/k.

5. Applications

It is noted that if we take δ = 0 and anv = pv
Pn

in Theorem 4.2, then we get Theorem 4.1, and
also, if we take β = 0, then we have new theorem on a quasi-σ-power increasing sequence. If we take
anv = pv

Pn
and pn = 1 for all n, then we have a theorem on the |C, 1; δ|k summability factors of Fourier

series. If we take δ = 0, then we have a result dealing with the |A, pn|k summability factors of Fourier
series (see [25]). Finally, if we take δ = 0 and pn = 1 for all n, then we obtain a theorem on the |A|k
summability factors of Fourier series.
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