AN APPLICATION ON AN ABSOLUTE MATRIX SUMMABILITY METHOD

ŞEBNEM YILDIZ

Abstract

The aim of this paper is to generalize a main theorem concerning absolute weighted arithmetic mean summability factors of infinite series and Fourier series to the $\left|A, p_{n} ; \delta\right|_{k}$ summability method by using a quasi- f-power increasing sequence.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$. By u_{n}^{α} and t_{n}^{α} we denote the nth Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and ($n a_{n}$), respectively, that is (see [9]),

$$
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \quad \text { and } \quad t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \quad\left(t_{n}^{1}=t_{n}\right)
$$

where

$$
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha ; \delta|_{k}, k \geq 1$, and $\delta \geq 0$ if (see [12])

$$
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha}\right|^{k}<\infty
$$

If we take $\delta=0$, then we get the $|C, \alpha|_{k}$ summability (see [11]).
Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right)
$$

The sequence-to-sequence transformation

$$
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(w_{n}\right)$ of the weighted arithmetic mean or, simply, the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [13]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$, and $\delta \geq 0$ if (see [3])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty
$$

If we take $\delta=0$, then we get the $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [2]) and if we take $p_{n}=1$ for all n, then we have the $|C, 1 ; \delta|_{k}$ summability.

[^0]
2. Known Result

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [1]). A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi- f-power increasing sequence if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left\{f_{n}(\sigma, \beta)\right\}=\left\{n^{\sigma}(\log n)^{\beta}, \beta \geq 0,0<\sigma<1\right\}$ (see [20]).

If we take $\beta=0$, then we have a quasi- σ-power increasing sequence (see [14]). Every almost increasing sequence is a quasi- σ-power increasing sequence for any non-negative σ, but the converse is not true for $\sigma>0$.

For any sequence $\left(\lambda_{n}\right)$ we write that $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. The sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty$ (see [18]).

For the papers related to absolute summability factors we refer the reader to [4-7,17, 21, 23-26]. From these papers, Mazhar has obtained a result dealing with the Riesz summability by taking (X_{n}) as an almost increasing sequence (see [15]) and then Bor has proved a new theorem by taking (X_{n}) as a quasi $-\sigma$-power increasing sequence (see [7]). Also, the following theorem dealing with the $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series including a quasi-f-power increasing sequence, is known.

Theorem 2.1 ([8]). Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If the sequences $\left(X_{n}\right)$, $\left(\lambda_{n}\right)$ and $\left(p_{n}\right)$ satisfy the conditions

$$
\begin{align*}
\left|\lambda_{m}\right| X_{m} & =O(1) \quad \text { as } \quad m \rightarrow \infty \tag{1}\\
\sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right| & =O(1) \quad \text { as } \quad m \rightarrow \infty \tag{2}\\
\sum_{n=1}^{m} \frac{P_{n}}{n} & =O\left(P_{m}\right) \quad \text { as } \quad m \rightarrow \infty \\
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}} & =O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \\
\sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n X_{n}^{k-1}} & =O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3. The Main Result

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix with nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots
$$

The series $\sum a_{n}$ is said to be summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$, and $\delta \geq 0$ if (see [16])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty
$$

In the special case, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then the $\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to the $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability. If we take $\delta=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then the $\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to the $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also if we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all n, then $\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to $|C, 1 ; \delta|_{k}$ summability. Moreover, if we take $\delta=0$, the $\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as the $\left|A, p_{n}\right|_{k}$ summability (see [19]). Finally, if we take $\delta=0$ and $p_{n}=1$ for all n, then the $\left|A, p_{n} ; \delta\right|_{k}$ summability is the same as the $|A|_{k}$ summability (see [22]).

The aim of this paper is to generalize Theorem 2.1 to the $\left|A, p_{n} ; \delta\right|_{k}$ summability method for infinite series and Fourier series by taking a quasi-f-power increasing sequence.

Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots
$$

and

$$
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then we have

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v}
$$

and

$$
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v}
$$

Using this notation, we have the following
Theorem 3.1. Let $k \geq 1$ and $0 \leq \delta<1 / k$. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{aligned}
\bar{a}_{n 0} & =1, n=0,1, \ldots, \\
a_{n-1, v} & \geq a_{n v}, \text { for } n \geq v+1, \\
a_{n n} & =O\left(\frac{p_{n}}{P_{n}}\right) \\
\sum_{v=1}^{n-1} \frac{1}{v}\left|\hat{a}_{n, v+1}\right| & =O\left(a_{n n}\right) .
\end{aligned}
$$

Let $\left(X_{n}\right)$ be a quasi- f-power increasing sequence. If the sequences $\left(X_{n}\right),\left(\lambda_{n}\right)$ and $\left(p_{n}\right)$ satisfy the conditions (1), (2) of Theorem 2.1 and the conditions

$$
\begin{aligned}
& \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \\
& \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \\
& \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=O\left\{\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\right\} \quad \text { as } m \rightarrow \infty \\
& \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right|=O\left\{\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\right\} \quad \text { as } \quad m \rightarrow \infty .
\end{aligned}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is $\left|A, p_{n} ; \delta\right|_{k}$ summable.
To prove our theorem, we need the following
Lemma ([4]). Under the conditions (1) and (2) of Theorem 2.1, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right| & <\infty \\
n X_{n}\left|\Delta \lambda_{n}\right| & =O(1) \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

4. Proof of Theorem 3.1

Let $\left(I_{n}\right)$ denote the A-transform of the series $\sum a_{n} \lambda_{n}$. Then we have

$$
\bar{\Delta} I_{n}=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \lambda_{v}
$$

Applying Abel's transformation to this sum, we have

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{v=1}^{n} v a_{v} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right)(v+1) t_{v}+\hat{a}_{n n} \lambda_{n} \frac{n+1}{n} t_{n} \\
& =\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v}+a_{n n} \lambda_{n} t_{n} \frac{n+1}{n} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it suffices to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

Firstly, by applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, and using the fact that $\Delta_{v}\left(\hat{a}_{n v}\right)=\hat{a}_{n v}-\hat{a}_{n, v+1}=\bar{a}_{n v}-\bar{a}_{n-1, v}-\bar{a}_{n, v+1}+\bar{a}_{n-1, v+1}=a_{n v}-a_{n-1, v}$, and then $\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{v=1}^{n-1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{n n}$, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 1}\right|^{k} \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left\{\sum_{v=1}^{n-1}\left|\frac{v+1}{v}\right|\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \times\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right\} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1} \frac{1}{X_{v}^{k-1}}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k-1} \frac{\left|t_{r}\right|^{k}}{X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma. Also, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 2}\right|^{k} \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left\{\sum_{v=1}^{n-1}\left|\frac{v+1}{v}\left\|\hat{a}_{n, v+1}\right\| \Delta \lambda_{v} \| t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\left\|\Delta \lambda_{v}\right\| t_{v}\right|\right\}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right| \frac{1}{X_{v}^{k-1}}\left|t_{v}\right|^{k}\right\} \times\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right| X_{v}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right| \frac{1}{X_{v}^{k-1}}\left|t_{v}\right|^{k}\right\} \times\left\{\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right| X_{v}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right| \frac{1}{X_{v}^{k-1}}\left|t_{v}\right|^{k}\right\} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| \frac{1}{X_{v}^{k-1}}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{1}{v X_{v}^{k-1}}\left|t_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v X_{v}\left|\Delta^{2} \lambda_{v}\right|+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma. Furthermore, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 3}\right|^{k} \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right\}^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right|^{k} \frac{\left|t_{v}\right|^{k}}{v}\right\} \times\left\{\sum_{v=1}^{n-1} \frac{1}{v}\left|\hat{a}_{n, v+1}\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1} \frac{\left|t_{v}\right|^{k}}{v}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v} \frac{1}{X_{v}^{k-1}\left|\lambda_{v+1}\right|} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v+1}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} \frac{\left|t_{r}\right|^{k}}{r X_{r}^{k-1}}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) \sum_{v=2}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma. Again, as in $I_{n, 1}$, we have

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|I_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{X_{n}^{k-1}}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma. This completes the proof of Theorem 3.1.
In a special case where $\delta=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, we have Theorem 2.1. If we take $\delta=0$, then we have a result dealing with the $\left|A, p_{n}\right|_{k}$ summability (see [25]). Also, if we take $\delta=0$ and $p_{n}=1$ for all n, then we have a result for the $|A|_{k}$ summability.

An Application of absolute matrix summability to the Fourier Series

Let f be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. The trigonometric Fourier series of f is defined as

$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} C_{n}(x)
$$

where

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

We write

$$
\begin{array}{r}
\phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\}, \\
\phi_{\alpha}(t)=\frac{\alpha}{t^{\alpha}} \int_{0}^{t}(t-u)^{\alpha-1} \phi(u) d u, \quad(\alpha>0) .
\end{array}
$$

It is well known that if $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, then $t_{n}(x)=O(1)$, where $t_{n}(x)$ is the $(C, 1)$ mean of the sequence $\left(n C_{n}(x)\right)$ (see [10]).

In [8], Bor has also obtained a new theorem including the trigonometric Fourier series about the $\left|\bar{N}, p_{n}\right|_{k}$ summability.

Theorem 4.1 ([8]). Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, and the sequences $\left(p_{n}\right)$, (λ_{n}) and (X_{n}) satisfy the conditions of Theorem 2.1, then the series $\sum C_{n}(x) \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Now, we generalize Theorem 4.1 to Theorem 4.2 for the $\left|A, p_{n} ; \delta\right|_{k}$ summability method.
Theorem 4.2. Let A be a positive normal matrix as in Theorem 3.1. Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, and the sequences $\left(p_{n}\right),\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ satisfy all the conditions of Theorem 3.1, then the series $\sum C_{n}(x) \lambda_{n}$ is summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.

5. Applications

It is noted that if we take $\delta=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 4.2, then we get Theorem 4.1, and also, if we take $\beta=0$, then we have new theorem on a quasi- σ-power increasing sequence. If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all n, then we have a theorem on the $|C, 1 ; \delta|_{k}$ summability factors of Fourier series. If we take $\delta=0$, then we have a result dealing with the $\left|A, p_{n}\right|_{k}$ summability factors of Fourier series (see [25]). Finally, if we take $\delta=0$ and $p_{n}=1$ for all n, then we obtain a theorem on the $|A|_{k}$ summability factors of Fourier series.

Acknowledgement

The author expresses her thanks to the referee for his/her comments for the improvement of this paper.

References

1. N. K. Bari, S. B. Stec̆kin, Best approximations and differential properties of two conjugate functions. (Russian) Trudy Moskov. Mat. Ob. 5 (1956), 483-522.
2. H. Bor, On two summability methods. Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 147-149.
3. H. Bor, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series. J. Math. Anal. Appl. 179 (1993), no. 2, 646-649.
4. H. Bor, Quasimonotone and almost increasing sequences and their new applications. Abstr. Appl. Anal. 2012, Art. ID 793548, 6 pp .
5. H. Bor, On absolute weighted mean summability of infinite series and Fourier series. Filomat 30 (2016), no. 10, 2803-2807.
6. H. Bor, Some new results on absolute Riesz summability of infinite series and Fourier series. Positivity 20 (2016), no. 3, 599-605.
7. H. Bor, An application of power increasing sequences to infinite series and Fourier series. Filomat 31 (2017), no. 6, 1543-1547.
8. H. Bor, Absolute weighted arithmetic mean summability factors of infinite series and trigonometric Fourier series. Filomat 31 (2017), no. 15, 4963-4968.
9. E. Cesàro, Sur la multiplication des sèries. Bull. Sci. Math. 14 (1890), 114-120.
10. K. K. Chen, Functions of bounded variation and the Cesaro means of a Fourier series. Acad. Sinica Science Record 1(1945), 283-289.
11. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3) 7 (1957), 113-141.
12. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. (3) 8 (1958), 357-387.
13. G. H. Hardy, Divergent Series. Oxford, at the Clarendon Press, 1949.
14. L. Leindler, A new application of quasi power increasing sequences. Publ. Math. Debrecen 58 (2001), no. 4, $791-796$.
15. S. M. Mazhar, Absolute summability factors of infinite series. Kyungpook Math. J. 39 (1999), no. 1, 67-73.
16. H. S. Özarslan, H. N. Öğdük, Generalizations of two theorems on absolute summability methods. Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 13, 7 pp.
17. H. S. Özarslan, Ş. Yıldız, A new study on the absolute summability factors of Fourier series. J. Math. Anal. 7 (2016), no. 2, 31-36.
18. M. Stieglitz, H. Tietz, Matrix transformationen quasikonvexer Folgen. Hokkaido Math. J. 49 (2020), no. 3, $481-508$.
19. W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV. Indian J. Pure Appl. Math. 34 (2003), no. 11, 1547-1557.
20. W. T. Sulaiman, Extension on absolute summability factors of infinite series. J. Math. Anal. Appl. 322 (2006), no. 2, 1224-1230.
21. W. T. Sulaiman, On the absolute Riesz summability. J. Comput. Anal. Appl. 13 (2011), no. 5, 843-849.
22. N. Tanovi-Miller, On strong summability. Glasnik Mat. Ser. III 14(34) (1979), no. 1, 87-97.
23. S. Yildiz, A matrix application on absolute weighted arithmetic mean summability factors of infinite series. Tbilisi Math. J. 11 (2018), no. 2, 59-65.
24. Ş. Yildiz, A new result for weighted arithmetic mean summability factors of infinite series involving almost increasing sequenes. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), no. 2, 1611-1620.
25. Ş. Yildiz, An absolute matrix summability of infinite series and Fourier series. Bol. Soc. Parana. Mat. (3) 38 (2020), no. 7, 49-58.
26. Ş. Yildiz, A matrix application of power increasing sequences to infinite series and Fourier series. Ukrainian Math. J. 72 (2020), no. 5, 730-740.
(Received 03.02.2021)
Department of Mathematics, Kirşehir Ahi Evran University, Kirşehir, Turkey
E-mail address: sebnemyildiz@ahievran.edu.tr

[^0]: 2020 Mathematics Subject Classification. 26D15, 42A24, 40D15, 40F05, 40 G99.
 Key words and phrases. Summability factors; Absolute matrix summability; Fourier series; Infinite series; Hölder inequality; Minkowski inequality.

