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DYNAMICAL THERMOSTABILITY OF SHELLS OF REVOLUTION WITH AN

ELASTIC FILLER AND UNDER THE ACTION OF MERIDIONAL FORCES,

NORMAL PRESSURE AND TEMPERATURE

SERGO KUKUDZHANOV

Abstract. Dynamical thermostability of closed shells of revolution, close by their form to cylin-

drical ones, with an elastic filler and under the action of meridional stresses, external pressure and

temperature, is studied. The shells of middle length whose midsurface generatrix is a parabolic
function, are considered. The shells of positive and negative Gaussian curvature are investigated.

Formulas to find lower frequencies and boundaries of regions of dynamical instability depending on

the Gaussian curvature, initial stress, temperature and amplitude of shell deviation from cylindrical
form, are obtained.

1

The present work considers dynamic thermostability of closed shells of revolution, close by their
form to cylindrical ones, with an elastic filler, and under the action of meridional stresses distributed
uniformly over the end-walls of the shell, external pressure and temperature. We consider a light filler
for which the effect of tangential stresses on the contact surface and inertia forces may be neglected.
The shell is assumed to be thin and elastic. Temperature in the shell body is uniformly distributed.
An elastic filler is simulated by Winkler’s base, its extension caused by heating is not taken into
account. We investigate the shells of middle length for which the shape of a midsurface generatrix is
a parabolic function, and also the shells of positive and negative Gaussian curvature. The boundary
conditions on the end-walls correspond to a free support admitting certain radial shift in the initial
state.

In solving the problems under consideration the main attention is paid to the finding of the most
dangerous area of dynamical instability and to lower frequencies, which are practically most important.
Formulas in dimensionless form and universal curves of dependence of lower frequency, shape of wave
formation and boundaries of regions of dynamical instability on the Gaussian curvature, prestress,
temperature and shell deviation amplitude from a cylinder, are derived. It is shown that in the
presence of an elastic filler and prestresses, the temperature may change considerably lower frequencies
and boundaries of regions with dynamical instability.

1. We consider the shell whose midsurface is formed by the rotation of square parabola around
the z-axis of the Cartesian coordinate system xyz with origin at the midpoint of the rotation axis
segment. It is assumed that the cross-section radius R of the midsurface of the shell is defined by the
equality

R = r + δ0[1− ξ2(r/l)2], (1.1)

where r is the end section radius, δ0 is maximal deviation (for δ0 > 0, the shell is convex, and for
δ0 < 0, is concave); L = 2l is the shell length, ξ = z/r. We consider the midlength shells [6] and it is
assumed that

(δ/r)2, (δ0/l)
2 � 1. (1.2)

The equations of the theory of shallow shells were taken as the basic equations of oscillations [5]. For
the midlength shells under consideration, the oscillation modes corresponding to lower frequencies have
weak variability in longitudinal direction in comparison with circumferential, therefore the relation

δ2f/∂ξ2 � ∂2f/∂ϕ2 (f = w,ψ) (1.3)
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is valid, where w and ψ are the functions of radial displacement and stress, respectively. As a result,
the system of equations for the shells under consideration reduces to the following equation:

ε
∂8w

∂ϕ8
+
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2∂ϕ2
+ 4δ2

∂4w

∂ϕ4
− t01

∂6w

∂ξ2∂ϕ4
− t02

∂6w

∂ϕ6
− 2s0

∂8w

∂ξ∂ϕ5

+γ
∂4w

∂ϕ4
+
ρr2

E

∂2

∂t2

(∂4w
∂ϕ4

)
= 0, (1.4)

ε = h2/12r2(1− ν2), δ = δ0r/l
2, γ = βr2/Eh, t01 =

T 0
i

Eh
, s0 = S0/Eh (i = 1, 2),

where E and ν are the modulus of elasticity and the Poisson coefficient, respectively; T 0
1 , T 0

2 , S0 are
maridinal, circumferential and shear force in the initial state; ρ is density of the shell material; γ is the
“bed” coefficient of the elastic filler (charactrizing elastic rigidity of the filler); ϕ is angular coordinate;
t is time.

The initial state is assumed to be momentless. Relying on the corresponding solution and taking
into account the filler reaction and also relation (1.2), we get the following approximate expressions:

T 0
1 =P1

[
1 +

δ0
r

(
ξ2(r/l)2 − 1

)]
− qδ0

[
ξ2(r/l)2 − 1

]
,

T 0
2 =− 2P1δ0r/l

2 − qr + β0rw0, S = 0,
(1.5)

where ω0 and β0 are, respectively, the deflection and “bed” coefficient of the filler in the initial state.
Taking into account that ∣∣∣ξ2(r/l)2 − 1

∣∣∣∂2w
∂ξ2

� 2(r/l)2
∂2w

∂ϕ2
,

δ0
r

∣∣∣ξ2(r/l)2 − 1
∣∣∣∂2w
∂ξ2

� ∂2w

∂ϕ2
,

the expressions (1.5), after substitution into equation (1.4), can be simplified. Thus they take the
form

T 0
1

Eh
=

P1

Eh
,

T 0
2

Eh
= −2

P1

Eh
δ − qr

Eh
+ w0

β0r

Eh
, Ti = σ0

i h (i = 1, 2). (1.6)

Bearing in mind that in the initial state the shell deformation in the circumferential direction ε0ϕ is
defined by the equality

ε0ϕ =
σ0
2 − νσ2

1

E
+ αT, ε0ϕ = −w0

r
,

where α is coefficient of linear extension and T is temperature, we get

w0 = (−σ0
2 + νσ0

1)
r

E
− αTr. (1.7)

Substituting (1.7) into the second equality (1.6), we obtain

T2
Eh

=
σ0
2

Eh
− 2

P1

Eh
δ +

β0r
2

Eh
(−σ0

2 + νσ0
1)

1

E
− αTβ0r

2

Eh

whence
σ0
2

E

(
1 +

βr2

Eh

)
= − qr

Eh
− 2

P1

Eh
δ + ν

σ0
1

E

β0r
2

Eh
− αT β0r

2

Eh
.

Introduce the notation

qr

Eh
= q,

P1

Eh
= −p, β0r

Eh
= γ0, 1 + γ0 = g.

Then expressions (1.6) take the form

−σ
0
1

E
= p, −σ

0
2

E
= (q − 2pδ + νpγ0 + αTγ0)g−1. (1.8)
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As a result, equation (1.4) can be written as

ε
∂8w

∂ϕ8
+
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2∂ϕ2
+ 4(δ2 + γ/4)

∂4w

∂ϕ4
+ (q − 2pδ + νpγ0 + αTγ0)g−1

∂6w

∂ϕ6

+p
∂6w

∂ξ2∂ϕ4
+
βr2

E

∂2

∂t2

(∂4w
∂ϕ4

)
= 0. (1.9)

First, consider harmonic oscillations. The above boundary conditions of free support and equation
(1.9) are satisfied by the solution

w = Amn cosλmξ sinnϕ cosωmnt, λm = mπr/2l

(m = 2i+ 1, i = 0, 1, 2, . . .). (1.10)

Substituting (1.10) into equation (1.9), to find eigenfrequencies we obtain the following equality (in
the sequel, for ωmn, the indices m and n will be omitted):

ω2 =
E

ρr2

[
εn4 + λ4mn

−4 + 4δλ2mn
−2 + 4(δ2 + γ/4)− p(λ2m − 2δ̃n2)− (q + γ0αT )g−1n2

]
. (1.11)

Introduce the notation

δ
2

= δ2 + γ/4, δ̃ = (δ − 0, 5νγ0)g−1, q̃ = (q + γ0αT )g−1.

Then (1.11) takes the form

ω2 =
E

ρr2

[
εn4 + λ4mn

−4 + 4δλ2mn
−2 + 4δ

2 − p(λ2m − 2δ̃n2)− q̃n2
]
. (1.12)

Thus it can be seen that for p = 0, δ > 0, the value m = 1 corresponds to the least frequency. It can
also be shown that this condition holds for δ < 0, taking into account inequalities (1.2) and also the
fact that ω2 > 0. Thus we first consider the modes of oscillastions under which one half-wave (m = 1)
is formed along the length of the shell and n waves in circumferential direction. For compression,
p > 0, and for tension, p < 0; q is a normal pressure and regarded as positive, if external.

Represent expression (1.12) for m = 1 in dimensionless form and towards this end, we introduce
the following dimensionless quantities:

N = n2/n20, P = p/p0∗, Q̃ = q̃/q0∗, p0∗ =
(1− ν2)−1/2√

3

h

r
, q0∗ = 0, 855(1− ν2)−3/4

(h
r

)3/2 r
L
,

δ∗ = δε
−1/2
∗ ε∗ = (1− ν2)−1/2

( r
L

)2h
2
, n20 = λ1ε

−1/4, λ1 = πr/L, δ
2

∗ = δ2∗ + γ/4, (1.13)

γ∗ = γε−1∗ , δ̃∗ = (δ − 0, 5νγ0)ε
1/2
∗ g−1, ω2

∗ = 2λ21ε
1/3 E

ρr2
,

q̃

q0∗
=
( q

q0∗
+
γ0αT

q0∗

)
g−1,

where ω∗, p0∗, q0∗ are, respectively, the least frequency, critical loading under compression and critical
pressure for the cylindrical shell of middle length [2, 6]. As a result, equality (1.12) can be written in
the following dimensionless form:

ω2(N)/ω2
∗ = 0, 5

[
N2 +N−2 + 2, 37δ∗N

−1 + 1, 404δ
2

∗ − 2P (1− 1, 185δ̃∗N)− 1, 755Q̃N
]
. (1.14)

The least frequency (for ω2(N) > 0) is determined from the condition [ω2(N)] = 0. Thus we obtain
either

0, 8775Q̃− 1, 185δ̃∗P = N − 1, 185δ∗N
−2 −N−3,

or
N4 − (0, 8775Q̃− 1, 185δ∗P )N3 − 1, 185δ∗N − 1 = 0, (1.15)

whence for P = Q̃ = 0, we have the well-known equation

N4 − 1, 185δ∗N − 1 = 0,

whose roots were obtained explicitly in [3]. Moreover, from (1.15), for δ∗ = 0, Q̃ = 0 (δ = γ0 = 0,
q = 0) we obtain the equation N4 − 1 = 0 with the root N = 1. Consequently, for the cylindrical
midlength shell the least frequency is realized for N = 1, regardless of P , which is in a full agreement
with [4].
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Let us consider equation (1.15) and write it in the form

N4 + bN3 + dN + e = 0, b = 1, 185δ∗P − 0, 8775Q̃, d = −1, 185δ∗, e = −1. (1.16)

The roots of this equation coincide with the roots of the two quadratic equations

N2 + (b+B1,2)
N

2
+
(
y1 +

by1 − d
B1,2

)
= 0, B1,2 = ±

√
b(y1 + b2/8).

Introduce the notation

γ1 = y1 + b2/8, γ2 = y1 − b2/4.
Then the roots of the these equations take the form

N1,2 = −
√

8γ1 + b

4
±

√
−by1 − d√

8γ1
+
b
√

8γ1 − 4γ2
8

, (1.17)

N3,4 =

√
8γ1 − b

4
±

√
by1 − d√

8γ1
− b
√

8γ1 + 4γ2
8

, (1.18)

where y1 is any real root of the cubic equation

y3 + 3py + 2q = 0,

3p = 1− 1, 1852δ̃2PM

4
, 2q = −1, 1852δ̃2(1− P 2M2)

8
, M = 1− 0, 7405Q̃/δ̃∗P

for
1, 1852δ̃2∗|PM |

4
� 1 (δ∗ ≤ 0.5, |PM | ≤ 0, 5) (1.19)

p =
1

3
, q = −1, 1852δ̃2∗(1− P 2M2)/16

since the dinscriminant of this equation is D > 0, we have one real root

y1 = (−q +
√
D)1/3 + (−q −

√
D)1/3,

√
D =

√
1 + 0, 208δ̃4∗(1 + P 2M2)2/33/2. (1.20)

Taking

0, 208δ̃4∗(1− P 2M2)2 � 1 (1.21)

and expanding into series the expressions appearing in (1.20) neglecting therein the values of the second

order of smallness, we obtain y1 = 0, 1755δ̃2(1−P 2M2). Under the restrictions (1.19), inequality (1.21)
is fulfilled all the more.

Substituting the values y1, b, d, γ1, γ2 into expressions (1.17) and (1.18) and taking also into
account inequality (1.19), we find that for d > 0 (δ∗ < 0) only the root N1 is positive, whereas for
d < 0 (δ∗ > 0), positive is the root N3. Thus we have

N = [1 + 0, 1755δ̃2∗PM1(1− P 2M2
1 )− 0, 0877δ̃2∗(1 + 2PM1 − 2P 2M2

1 )]1/2

+0, 2962(1− PM1) (δ∗ > 0). (1.22)

N = [1 + 0, 1755δ̃2∗PM2(1− P 2M2
2 )− 0, 0877δ̃2∗(1 + 2PM2 − 2P 2M2

2 )]1/2

−0, 2962(1− PM2) (δ∗ < 0). (1.23)

M1 = 1− 0, 7405Q̃/δ̃∗P, M2 = 1 + 0, 7405Q̃/δ̃∗P.

For δ̃∗ > 0, P/Q̃ > 0, the value M1 = 0, if δ̃∗ = 0, 7405P/Q̃; for δ̃∗ < 0, P/Q̃ < 0, the value M2 = 0,

if |δ̃∗| = −0, 7405P/Q̃. In addition, formulas (1.22) and (1.23) take the form

N =

√
1− 0, 0877δ̃2∗ + 0, 2962δ̃∗ (δ∗ > 0),

N =

√
1− 0, 0877δ̃2∗ − 0, 2962|δ̃∗| (δ∗ < 0).
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It should be noted that this case of the defined values δ̃∗ corresponds to the cases under which normal
cicumferential stresses caused by meridional loading, external pressure and temperature, mutually
neutralize each other.

For γ∗ = 0, we have δ̃∗ = δ∗ and for N , we obtain the formulas given in [3]. In what follows, we
take γ = γ0.

Figure 1

Substituting the values of N on the basis of formulas (1.22), (1.23) for fixed (δ∗, P, Q̃, γ∗) into
formula (1.14), we obtain the least value of dimensionless frequency ω/ω∗. Figure 1 shows the values

ω/ω∗ depending on P for the relation Q̃ = 0, 54P (for δ∗ = 0, 4; 0;−0, 4) and (γ∗ = 0; 1, 272). The
corresponding dependencies for γ∗ = 0 are given by solid curves and for γ∗ = 1, 272 by dashed curves.

Moreover, we can see, for comparison, the curves of the least frequency dependence on P , when Q̃ = 0,
γ = 0 for δ∗ = 0, 4;−0, 4, which are denoted, respectively, by 1 and 2.

For ω = 0, from equality (1.14), we get

1, 755Q̃ = N +N−3 + 2, 37δ∗N
−2 − 2P (N−1 − 1, 185δ̃∗). (1.24)

The least value Q̃ > 0 depending on N is realized for Q̃iN = 0, whence it follows that

N4 + cN2 + dN + e = 0, c = 2P − 1, 404δ
2

∗, d = −4, 74δ∗, e = −3. (1.25)

The roots of equation (1.25) coincide with those of the two quadratic equations

N2 +
A1,2

2
N +

(
y1 −

d

A1,2

)
= 0, A1,2 = ±

√
8α

N1,2 = −
√
α

2
±

√
d√
8α
− α1

2
, N3,4 =

√
α

2
±

√
−d√
8α
− α1

2
(1.26)

α = y1 −
c

2
, α1 = y1 +

c

2
, (1.27)

where y1 is any real root of the cubic equation

y3 − c

2
y2 − ey +

(ce
2
− d2

8

)
= 0, (1.28)

or

z3 + 3pz + 2q = 0 (z = y − c/6), (1.29)

p = 1− (2P − 1, 404δ
2

∗)
2/36, q = −1

2
(2P + 1, 404δ

2

∗)
[
1− (2P − 1, 404δ

2

∗)
3

108(2P + 1, 404δ
2

∗)

]
. (1.30)
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If we take

(2P − 1, 404δ
2

∗)
2 � 1, (1.31)

then expressions (1.30) have the form

p = 1, q =
1

2
(2P + 1, 404δ

2

k)
[
1− (2P − 1, 404δ

2

∗)
3

108(2P + 1, 404δ
2

∗)

]
.

Since the discriminant of equation (1.29) is D = q2 + p3 > 0, we have one real root

z = (−q +
√
q2 + p3) + (−q −

√
q2 + p3). (1.32)

Taking

(2P + 1, 404δ∗2)2/36� 1, (1.33)

expanding the expresseins appearing in (1.32) into series and omitting the values of the second order
of smallness, we obtain z = [2P + 1, 404(δ∗2 + 3

4γ∗)]/3. Then relying on (1.25), (1.27), we get

α = z − c/3 = 2 · 1, 404δ∗2/3, α1 = z +
2

3
c = 2P + 1, 404

(
δ∗2 +

3

4
γ∗

)
/3. (1.34)

Since N2 = n2/n20, therefore of our interest are only the positive roots of equation (1.25). Taking
into account inequality (1.31) and also the fact that y1 is the root of equation (1.28), we find that for
δ∗ > 0 (d < 0), positive is only the root of N3, and for δ∗ < 0 (d > 0), positive is only the root of N1.

Substituting the values d, α, α1 according to equalities (1.25) and (1.34) into expressions (1.26),
we obtain

N =

√
√

3 + 0, 234
(
δ
2

∗ +
3

4
γ∗

)
− P + 0, 684δ∗ (δ∗ > 0),

N =

√
√

3 + 0, 234
(
δ
2

∗ +
3

4
γ∗

)
− P − 0, 684|δ∗| (δ∗ < 0).

(1.35)

As a result, we get

n1,2 =
(√√

3 + 0, 2703ε−1
([(δ0

l

)2
+

3γ

4

( l
r

)2]
− P ± 0, 735ε−1/4

|δ0|
l

)
λ1ε

1/4, (1.36)

where index (1) corresponds to δ0 > 0, and index (2) to −δ0 < 0. In particular, for δ0 = γ0 = p = 0,
we obtain the known formula for a critical number of waves of the cylindrical shell of middle length
n2∗ = 4

√
3λ1ε

−1/4 [6].
From formula (1.36), it is not difficult to notice that under the action of compressive forces the

number of critical waves around the circumference decreases, whereas under tensile forces it increases.
Formula (1.35), as it has been mentioned above, holds when condition (1.33) is fulfilled. In case

this condition is not fulfilled, it is necessary to proceed from full expressions (1.26). Defining thus
the values of N∗ (for fixed δ∗, γ∗, P ) and substituting them into (1.24), we obtain the corresponding

critical value of Q̃∗.
Figure 2 shows in dimensionless form critical values of N∗ depending on P for δ∗ = −0, 4; 0; 0, 4 and

γ∗ = 0; 1, 272. The corresponding graphs for γ∗ = 0 are represented by solid curves, and for γ∗ = 1, 272

by dashed curves. The values Q̃∗(δ∗, γ∗, P ) denoted, respectively, by solid and dashed curves are given

in Figure 3. Note that the curve Q̃∗(δ∗, γ∗, P ) for P > 0 in Figure 3 coincides practically with that of
the work [4].

Further, consider the value m > 1. Using notation (1.13), formula (1.12) can be represented as
follows:

ω2/ω2
∗ = 0, 5m2

[
Q2 +Q−2 + 2, 37δ∗θ

−1m−1 + 1, 404(δ2∗ + γ∗/4)m−2

−2P (1− 1, 185δ̃∗θm
−1)− 1, 755θ̃θm−1

]
. (1.37)

θ = N/m. (1.38)
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Figure 2

Figure 3

Consider now the expression for finding critical loading Q̃ > 0. The right-hand side in relation
(1.37) vanishes for

1, 755Q̃ = m(θ2 + θ−2 − 2PQ−1) + 2, 37δ∗θ
−2 + 1, 404δ

2

∗θ
−1m−1 + 2, 37P δ̃∗. (1.39)

Next, taking into account inequality (1.2), we restrict ourselves to |δ∗| . 1.

The quantity Q, realizing the least value of Q̃ (for fixed m) is defined by a positive root of the
equation

θ4 + (2P − 1, 404δ
2

ν)θ2 − 4, 74δνθ − 3, δν = δ∗/m, δ
2

ν =
(
δ2∗ +

γ∗
4

)∣∣m2.

Similarly to the above-said, taking into account inequality (1.33) (replacing δ∗ by δν), we obtain

θ =

√
√

3 + 0, 234
(
δ
2

∗ +
3

4
γ∗

)
/m2 − P + 0, 684δ∗/m (δ∗ > 0),

θ =

√
√

3 + 0, 234
(
δ
2

∗ +
3

4
γ∗

)
/m2 − P − 0, 684|δ∗|/m (δ∗ < 0).
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In case δ∗, γ∗, P do not satisfy inequality (1.33), we have to proceed from the full expressions for
the roots of Q1, Q3. They are of the same form as N1, N3 defined by equalities (1.26), where δ∗ should

be replaces by δν , δ
2

∗ and δ
2

ν .

Figure 4

Figure 4 gives critical values of Q̃∗(m,P ) under m = 1, 3, 5 (γ∗ = 0; 1, 272) for δ∗ = 0, 4 (Figure 4a)
and under δ∗ = −0, 4 (Figure 4b). Corresponding dependencies for γ∗ = 0 are given by solid curves,

and for γ∗ = 1, 272 by dashed curves. It can be seen that for δ∗ > 0 and P < 0, the least value of Q̃∗,
irrespective of γ∗, is realized for m = 1, whereas for P approaching from above to unity, the critical

value of Q̃∗ is realized for large m. For δ∗ < 0, the least value of Q̃∗ is realized for m = 1 when

0 ≤ P ≤ P∗ (P∗ is a critical value of P for Q̃ = 0).
Consider now expression (1.37). The least value ω2 with respect to Q (for fixed m) is defined from

the condition

(ω2)′θ = 0, 5m2(2θ − 2θ−3 − 2, 37δνθ
−2 + 2, 37Pδν − 1, 755θ̃ν) = 0

Q̃ν = Q̃/m, δν = δ∗/m,

which implies that

θ4 + bθ3 + dθ + e = 0, b = 1, 185δ̃νP − 0, 8775Q̃ν , d = −1, 185δν , e = 1.

This equation is of the same form as (1.16), where δ∗ should be replaced by δν ; δ̃∗ by δ̃ν , and Q̃ by

Q̃ν . Therefore, analogously to the above-said, we find that

θ = [1 + 1, 755δ̃2∗PM1(1− P 2M2
1 )− 0, 08775δ̃2ν(1 + 2PM1 − 2P 2M2

1 )]1/2

+0, 2962δν(1− PM1), (δ∗ > 0),

θ = [1 + 1, 755δ̃2∗PM2(1− P 2M2
1 )− 0, 08775δ̃2ν(1 + 2PM2 − 2P 2M2

2 )]1/2
(1.40)

+0, 2962δν(1− PM2), (δ∗ < 0),

where

M1,2 = 1∓ (0, 7405θ̃/|δ̃∗|P );

indices (1) and (2) correspond to δ∗ > 0 and δ∗ < 0, respectively.

Figure 5 presents the least values of frequency ω(m,P, Q̃) for Q̃ = 0, 54P under m = 1, 3, 5; γ∗ = 0,
γ∗ = 1, 272 for δ∗ = 0, 4 (Figure 5a) and δ∗ = −0, 4 (Figure 5b). Corresponding dependencies for
γ∗ = 0 are given by solid curves and for γ∗ = 1, 272 by dashed curves. It is not difficult to see that
for δ∗ > 0 and P , varying in the interval 0 ≤ P < 1, the least is the frequency for m = 1, whereas for
P , approaching from above to unity, the least frequency is realized for large values m. For δ∗ < 0 and

P varying in the interval 0 ≤ P ≤ P∗ (P∗ is the critical value of P for Q̃ = 0), the least frequency is
realized for m = 1.
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Figure 5

It follows from the above formulas (1.38) and (1.40), that for m > 1, the values θ are close to
unity (θ ≈ 1), i.e., when n2 ≈ λmε−1/4. Therefore the given results are valid only for sufficiently thin
shells, when ε−1/4 � λm, then the relation n2 � λ2m holds and the given theory is valid. Moreover, by
formula (1.37), we find that for comparatively large m, when Q ≈ 1, ω2/ω2

∗ ≈ 0, 5m2(θ2 +θ−2−2P ) =

m2(1− P ) i.e., the influence of δ∗ and θ̃ may be neglected.
Thus it is shown that if the stresses arising in the shells under the action of external pressure,

temperature and filler constraint significantly change the lower frequencies, then the influence of
these factors on the higher frequencies is practically insignificant. At the same time, the influence of
meridional loading is significant both on the lower and on the higher frequencies.

2

Consider now the case for

q1 = q0 + qt cos Ωt, P1 = P0 + Pt cos Ωt, T1 = T0 + Tt cos Ωt.

We seek for a solution of equation (1.9) in the form

w = fmn(t) cosλmξ sinnϕ.

Substituting the given solution into (1.9) and requiring that the latter be satisfied for any ξ and ϕ,
we get

d2fmn
dt2

+
E

ρr2

{
εn4 + λ−4m n−4 + 4δλ2mn

−2 + 4δ2 +
γ

4
− P1(t)(λ2m − 2δn2)

−[q1(t) + αγT1(t)]
}
g−1n2fmn = 0. (2.1)

Frequencies of natural oscillations of the shell (for q1 = q0, P1 = P0, T1 = T0) are defined from
equation (2.1) by putting fmnt = C sinωmnt and expressed by formula (1.11). Since equation (2.1) is
identical for all forms of oscillations, the indices m and n may be neglected.

Analogously to the above-said, let us introduce dimensionless values (1.13), (1.38) and write equa-
tion (2.1) as follows:

d2f

dt2
+ 0, 5m2ω2

∗{θ2 + θ−2 + 2, 37δνθ
−1 + 1, 404(δ2ν + γν/4)− 2(P0 + Pt cos Ωt)(1− 1, 185νθ)

−1, 755[(Q0 + αγT 0) + (Qt + αγT t) cos Ωt]g−1Q−1m }f = 0, (2.2)
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where

Qi = qi/q0∗, Pi = pi/p0∗, T i = Ti/q0∗ (i = 0, t), δν = δ∗/m, γν = γ/m2.

Further, we introduce the notation Q̃i = (Qi + T̃i)g
−1, T̃j = αγT i and reduce equation (2.2) to the

standard form of the Mathieu equation

d2f/dt2 + ω2(θ)[1− 2µ(θ) cos Ωt]f = 0, (2.3)

ω2(θ) = ω2
0(θ)[1−M0(θ)], ω2

0(θ) = 0, 5ω2
∗m

2D(θ), ω2
∗ = 2λ21ε

1/2E/(ρr2), (2.4)

D(θ) = θ2 + θ−2 + 2, 37δνθ
−1 + 1, 404δ

2

ν , δ
2

ν = δ2ν + γν/4,

µ(θ) =
Mt(θ)

2[1−M0(θ)]
, M0(θ) =

P0

P (θ)
+

Q̃0

Q̃(θ)
, Mt(θ) =

Pt
P (θ)

+
Q̃t

Q̃(θ)
, (2.5)

P (θ) = D(θ)/2(1− 1, 185δνθ), Q̃(θ) = D(θ)/1, 755m−1θ. (2.6)

If P (t)

Q̃(t)
= χ, then Pi

Q̃i
= χ (Q̃i = Qi + αγT ; i = 0, t) and, in addition, we obtain

M0 =
Q̃0

Q̃c
, Mt =

Q̃i

Q̃c
, Q̃c = D(θ)/2χ(1− 1.185δνθ) + 1, 755m−1θ.

The value µ is usually called an energizing coefficient. The solution of equation (2.3) has been
investigated in a number of works where it was mentioned that under certain relations between µ,
Ω, ω and t → ∞ the solution of equation (2.2) is infinitely increasing in the regions of instability.
Generalizing the results of [1] to the shell under consideration, below we present the following formulas.
To elucidate the influence of temperature on the location of regions of dynamical instability, let us
consider first the case for Pt → 0 (µ→ 0).

Thus we find that these regions are located in the vicinity of frequencies

Ω∗ = 2ω(θ)/k.

Depending on a number k, we distinguish the first, second, third and so on regions of dynamical
instability. The region of instability (k = 1) lying close to Ω∗ = 2ω(θ), when ω(θ) takes the least
value, is the most dangerous and hence of greatest practical importance. This region is called a
principal region of dynamical instability. If Pt is other than zero, then for the boundaries of the
principal region of instability we obtain the following formula:

Ω∗ = 2ω(θ)
√

1± µ(θ),

Taking into account the resistance forces, proportional to the first time derivative with respect to
displacement (with damping factor ε), the formula for finding the boundaries of the principal region
of instability takes the form

Ω∗ = 2ω(θ)

√
1±

√
µ2(θ)− (∆/π)2, ∆ = 2πε/ω(θ), (2.7)

where the terms involving higher degrees ∆/π are omitted, taking into account that the damping
decrement ∆ is usually very small as compared with unity. The values of ω(θ), P (θ), µ(θ) are defined
by formulas(2.4), (2.5), (2.6), where m and θ correspond to the least value of ω(θ). For m = 1, on the
basis of formula (1.38), θ = N , the corresponding values ω(N) depending on P0 and δ∗ are presented
in Figure 1.

It follows from (2.7) that the minimal value of the energizing coefficient (critical), for which un-
damped oscillations are still possible, is defined by the equality

µ
∗1

= ∆/π.

For the boundary of the second region of instability (k = 2), the following formula

Ω∗ = ω(θ)

√
1 + µ2(θ)±

√
µ4(θ)− (∆/π)2[1− µ2(θ)] (2.8)

holds.
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In this case, a critical value of the energizing coefficient is defined approximately by the equality
µ
∗2

= (∆/π)1/2. Analogously, generalizing the results of [1], we can likewise give formulas for the

boundaries of the third region of instability which is practically rarely realized.
On the basis of our formulas and graphs, it is not difficult to determine intervals of change energizing

frequencies (depending on δ∗, P0, Pt, Q0, Qt, T0, Tt) falling into the regions of dynamical instability.

Thus, for example, for δ∗ = 0, 4; Pi/(Qi + T̃i) = 1, 85, (i = 0, t), P0 = 0, 2, Pt = 0, 05 (Q0 = Qt = 0,

T̃0 = 0, 108, T̃t = 0, 027), ∆ = 0, 01 we find that the least frequency is realized for m = 1, θ = M =
1, 11, ω(N) = 1, 167ω∗, Tc(N) = 0, 842, µ(N) = 0, 0183, µ

∗1
= 0, 00318, µ

∗2
= 0, 0564.

Then, by formula (2.7) we find that the values Ω, appearing in the interval 2, 292ω∗ ≤ Ω ≤ 2, 355ω∗,
lie in the principal region of dynamical instability. Since µ(N) < µ

∗2
, the second region of instability

is not attained.
In case δ∗ = −0, 4 and for the same values of external loading and temperature the least frequency

is realized for m = 1, θ = N = 0, 924, ω(N) = 0, 486ω∗, Tc(N) = 0, 1761, µ(N) = 0, 1978. In addition,
by formula (2.7), we find that the values Ω, appearing in the interval 0, 7798ω∗ ≤ Ω ≤ 1, 1643ω∗, fall
into the principal region of dynamical instability. In the given case, the second region of dynamical
instability is attained, since µ(N) > µ

∗2
. In addition, by formula (2.8), we find that the values Ω

appearing in the interval 0, 486ω∗ ≤ Ω ≤ 0, 5046ω∗ fall into the second region of dynamical instability.
The above formulas for the above posed questions allow one to define in a sufficiently simple way

to what extent temperature and acting loadings affect the regions of dynamical instability.
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