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RELATIVE UNIFORM CONVERGENCE OF DIFFERENCE SEQUENCE OF

POSITIVE LINEAR FUNCTIONS

KSHETRIMAYUM RENUBEBETA DEVI AND BINOD CHANDRA TRIPATHY

Abstract. In this article, we introduce the notion of relative uniform convergence, relative uniform
Cauchy of difference sequence of functions and study the relation between these two notions. We

define the sequence spaces `∞(∆, ru), c(∆, ru), c0(∆, ru) and study their topological properties.

1. Introduction

Throughout the paper, `∞, c, c0 denote bounded, convergent and null convergent sequence spaces
of real or complex numbers. These are normed linear spaces, normed by

‖(xk)‖ = sup
k∈N
|xk|.

Kizmaz (see [7]) defined the difference sequence spaces `∞(∆), c(∆), c0(∆) as follows:

Z(∆) = {x = (xk) : (∆xk) ∈ Z} ,

for Z = `∞, c, c0, where ∆xk = xk − xk+1, k ∈ N .
These sequence spaces are the Banach spaces under the norm

‖(xk)‖∆ = |x1|+ sup
k∈N
|∆xk|.

Tripathy and Esi (see [12]) introduced the generalized notion of the difference operator ∆mxk, for
a fixed m ∈ N . They defined the difference sequence spaces `∞(∆m), c(∆m), c0(∆m) as follows:

Z(∆m) = {x = (xk) : (∆mxk) ∈ Z} ,

for Z = `∞, c, c0, where ∆mxk = xk − xk+m, k ∈ N . Difference sequence spaces are studied from
different aspects by many other authers (see [9–11,13]).

The notion of relative uniform convergence of a sequence of functions was introduced by E. H. Moore.
Later on, Chittenden (see [1–3]) formulated the detailed definition of it as follows and carried out a
systematic investigation on the topic.

A sequence (fn) of real, single-valued functions fn of a real variable x, ranging over a compact
subset D of real numbers, converges uniformly relative on D in case there exist the functions g and
σ defined on D, and for every ε > 0, there exists an integer n0 (dependent on ε) such that for every
n ≥ n0, the inequality

|g(x)− fn(x)| < ε|σ(x)|,

holds for every element x of D.
The function σ of the above definition is called a scale function. The sequence (fn) is said to

relative uniformly convergent to the scale function σ. Relative uniform convergence was studied from
different aspects by many others (see [4, 5, 8]). For the details of basics on the sequence spaces and
summability theory, one may refer to the monograph by Kamthan and Gupta (see [6]).
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2. Definitions and Preliminaries

In this section, we procure some basic definitions that will be used for establishing the results of
the article.

Definition 2.1. A sequence space D is said to be solid or normal if (xk) ∈ D implies (αkxk) ∈ D,
for all (αk) with |αk| ≤ 1, for all k ∈ N .

Definition 2.2. A sequence space D is said to be monotone if it contains the canonical pre-images
of all its step spaces.

Definition 2.3. A difference sequence of functions (∆fn(x)) of real, single-valued functions ranging
over a compact subset D of real numbers converges uniformly relative on D if there exist the functions
g(x) and σ(x) defined on D and for every ε > 0, there exists an integer n0 = n0(ε) such that for every
n ≥ n0, the inequality

|g(x)−∆fn(x)| < ε|σ(x)|,

where ∆fn(x) = fn(x)− fn+1(x), holds for every element x of D.

Example 2.1. Consider the sequence of functions (gn(x)) defined by

gn(x) =
x

1 + nx2
, x ∈ R;

⇒ ∆gn(x) =gn(x)− gn+1(x)

=
x

1 + nx2
− x

1 + (n+ 1)x
2

=
x3

(1 + nx2)(1 + (n+ 1)x
2
)
∼ x

n
.

⇒ ∆gn(x) = x
n , doesn’t converge uniformly to zero function on x ∈ R, but converges uniformly w. r. t.

scale function x in R.

Definition 2.4. A difference sequence of functions (∆fn(x)) of single, real-valued functions ranging
over a compact subset D of real numbers is said to be relative uniformly Cauchy if there exists a
function σ(x) defined on D and for every ε > 0, there exists an integer n0 = n0(ε) such that

|∆fn(x)−∆fm(x)| < ε|σ(x)|,

for all n,m ≥ n0, holds for every element x of D.

Definition 2.5. A difference sequence of functions (∆fn(x)) defined on a compact domain D is said
to be relative uniformly bounded if there exists a function σ(x) defined on D such that

|∆fn(x)| < M |σ(x)|,

for all x ∈ D and n ∈ N .

We introduce the following difference sequence spaces:

Z(∆, ru) =
{

(fn(x)) : (∆fn(x)) ∈ Z relative uniformly w.r.t. σ(x)
}
,

for Z = `∞, c and c0, where ∆fn(x) = fn(x)− fn+1(x).
The above spaces are normed by

‖f(x)‖(∆,ru) = |f1(x)|+ sup
x∈D,n∈N

|∆fn(x)σ(x)|.
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3. Main Results

In this section, we establish the results of this article.

Theorem 3.1. The difference sequence of functions (∆fn(x)) converges relative uniformly w.r.t. scale
function σ(x) on a compact domain D if and only if it is relative uniformly Cauchy.

Proof. Let (∆fn(x)) be relative uniformly convergent sequence w.r.t. the scale function σ(x).
Then |∆fn(x)− f(x)| < ε

2 |σ(x)|, for all n ≥ n0.

⇒ |∆fn(x)−∆fm(x)| =|∆fn(x)− f(x) + f(x)−∆fm(x)|
≤|∆fn(x)− f(x)|+ |∆fm(x)− f(x)|

<
ε

2
|σ(x)|+ ε

2
|σ(x)| < ε|σ(x)|.

We get

|∆fn(x)−∆fm(x)| < ε|σ(x)|,
for all n,m ≥ n0.

Hence (∆fn(x)) is relative uniformly Cauchy w.r.t. the scale function σ(x).
Conversely, let (∆fn(x)) be relative uniform Cauchy w.r.t. the scale function σ(x).
Then |∆fn(x)−∆fm(x)| < ε

2 |σ(x)|, for all n,m ≥ n0.
By Cauchy’s general principle of convergence, (∆fn(x)) converges pointwise w.r.t. σ(x) for each

x ∈ D, there exists n0 = n0(ε) such that

|∆fn(x)− f(x)| < ε

2
|σ(x)|,

for n ≥ n0.
Then for all n ≥ n0,

|∆fn(x)− f(x)| =|∆fn(x)−∆fm(x) + ∆fm(x)− f(x)|
≤|∆fn(x)−∆fm(x)|+ |∆fm(x)− f(x)|

≤ε
2
|σ(x)|+ ε

2
|σ(x)| < ε|σ(x)|.

We get

|∆fn(x)− f(x)| < ε|σ(x)|,
for all n ≥ n0 and for any x ∈ D.

(∆fn(x)) is relative uniformly convergent w.r.t. scale function σ(x). �

Theorem 3.2. The class of sequences `∞(∆, ru), c(∆, ru), c0(∆, ru) are normed linear spaces
normed by

‖f(x)‖(∆,ru) = |f1(x)|+ sup
x∈D,n∈N

|∆fn(x)σ(x)|.

Proof. Let (fn(x)), (gn(x)) ∈ `∞(∆, ru) and α, β be the scalars.
Then

(fn(x)) ∈ `∞(∆, ru)⇒ sup
x∈D,n∈N

|∆fn(x)| ≤M1|σ1(x)| and

(gn(x)) ∈ `∞(∆, ru)⇒ sup
x∈D,n∈N

|∆gn(x)| ≤M2|σ2(x)|.

We have

sup
x∈D,n∈N

|∆(αfn(x) + βgn(x))| ≤ max(M1,M2) max |α1(x), α2(x)|.

Hence `∞(∆, ru) is a linear space.
To check for conditions of norm:
(i) f(x) = 0⇒ ‖f(x)‖(∆,ru) = 0.
Conversely, let ‖f(x)‖(∆,ru) = 0.
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Then

‖f(x)‖(∆,ru) = sup
x∈D
|f1(x)|+ sup

x∈D,n∈N
|∆fn(x)σ(x)| = 0;

⇒ f1(x) = 0 and |∆fn(x)σ(x)| = 0.

Let n = 1, then

(f1(x)− f2(x))σ(x) = 0;

⇒ f2(x)σ(x) = 0;

⇒ f2(x) = 0.

Proceeding this way, we get fn(x) = 0, for all n ∈ N .
(ii)

‖f + g‖(∆,ru) = sup
x∈D
|f1(x) + g1(x)|+ sup

x∈D,n∈N
|∆fn(x)σ1(x) + ∆gn(x)σ2(x)|

= sup
x∈D
|f1(x)|+ sup

x∈D,n∈N
|∆fn(x)σ1(x)|+ sup

x∈D
|g1(x)|+ sup

x∈D,n∈N
|∆gn(x)σ2(x)|;

⇒ ‖f + g‖(∆,ru) =‖f‖(∆,ru) + ‖g‖(∆,ru).

(iii)

‖λf(x)‖(∆,ru) = sup
x∈D
|λf1(x)|+ sup

x∈D,n∈N
|λ∆fn(x)σ(x)|

=|λ| sup
x∈D
|f1(x)|+ |λ| sup

x∈D,n∈N
|∆fn(x)σ(x)|;

⇒ ‖λf(x)‖(∆,ru) =|λ|‖f(x)‖(∆,ru).

Similarly, we can show for c(∆, ru), c0(∆, ru).
Hence the three spaces are the normed linear spaces. �

Theorem 3.3. The sequence spaces of functions c(∆, ru), c0(∆, ru) and `∞(∆, ru) are Banach spaces
under the norm

‖f(x)‖(∆,ru) = |f1(x)|+ sup
x∈D,n∈N

|∆fn(x)σ(x)|.

Proof. Let (f i(x)) be a Cauchy sequence in c(∆, ru), where (f i(x)) = (fn
i(x)) = (f1

i(x), f2
i(x), . . .) ∈

c(∆, ru), for each n ∈ N .
Then

‖f i(x)− f j(x)‖(∆,ru) = sup
x∈D
|f1

i(x)− f1
j(x)|+ sup

x∈D,n∈N
|(∆f i(x)−∆f j(x))σ(x)| → 0 as i, j →∞.

Hence for a given ε > 0, there exists n0 ∈ N such that

‖f i(x)− f j(x)‖(∆,ru) = sup
x∈D
|f1

i(x)− f1
j(x)|

+ sup
x∈D,n∈N

|(∆f i(x)−∆f j(x))σ(x)| < ε, for all i, j ≥ n0; (1)

⇒ (fn
i(x)) is a Cauchy sequence in D for n ∈ N ;

⇒ (fn
i(x)) is convergent in D w.r.t. σ(x) for n ∈ N.

Let lim
i→∞

fn
i(x) = fn(x), for each n ∈ N .

From (1), we have

|(∆fni(x)−∆fn
j(x))σ(x)| < ε, for all i, j ≥ n0 and n ∈ N.

Hence (∆fn
i(x)) is a Cauchy sequence in D, for all n ∈ N .

⇒ (∆fn
i(x)) is convergent in D w.r.t. σ(x), for each n ∈ N .

⇒ lim
i→∞

∆fn
i(x) = gn(x), for each n ∈ N .
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Then

lim
m→∞

sup
x∈D
|f1

j(x)− f1
m(x)| = sup

x∈D
|f1

j(x)− f1(x)| < ε, for all i ≥ n0 and

lim
m→∞

sup
x∈D,n∈N

|(∆f j(x)−∆fm(x))σ(x)| = sup
x∈D,n∈N

|(∆f j(x)− fn(x))σ(x)| < ε, for all j ≥ n0.

Thus

‖f i(x)− fm(x)‖ = ‖f i(x)− f j(x) + f j(x)− fm(x)‖ < ε, for all i,m ≥ n0.

⇒ ‖f i(x)− fm(x)‖ ≤ ‖f i(x)− f j(x)‖+ ‖f j(x)− fm(x)‖ < ε.

⇒ ‖f i(x)− fm(x)‖ < ε. �

Hence c(∆, ru) is complete. Similarly we can show for c0(∆, ru) and `∞(∆, ru).

Proposition 3.1. c0(∆, ru) ⊂ c(∆, ru) ⊂ `∞(∆, ru).

Proposition 3.2. The spaces c0(∆, ru), c(∆, ru) and `∞(∆, ru) are not solid spaces.

Proof. Proof of the proposed proposition follows from the following example. �

Example 3.1. Let us consider a sequence of functions (fn(x)) defined by

fn(x) =
x

n
, x ∈ R.

Then

∆fn(x) =fn(x)− fn+1(x)

=
x

n
− x

n+ 1

=
x

n2 + n
∼ x

n2
;

⇒ lim
n→∞

∆fn(x) =0.

Let us say that (∆fn(x)) is uniformly convergent.
Then

|∆fn(x)− f(x)| < ε, for all n ≥ n0 and for any x in R;

⇒
∣∣∣ x
n2

∣∣∣ < ε;

⇒ n >

√
x

ε
.

Here, n0 is dependent on x. Therefore our assumption is wronged.
(∆fn(x)) is not uniformly convergent, but converges relative uniformly to the scale function

σ(x) = x in R.
Hence (fn(x)) ∈ c(∆, ru) and (fn(x)) ∈ c0(∆, ru).
(∆fn(x)) is also uniformly bounded relative to the scale function σ(x) = x.
⇒ (fn(x)) ∈ `∞(∆, ru).
Let us consider another sequence of functions (gn(x)) defined by

gn(x) =
x2 + n

n
, x ∈ R.

Then

∆gn(x) =gn(x)− gn+1(x)

=
x2 + n

n
+
x2 + n+ 1

n+ 1

=
x2

n2 + n
∼ x2

n2
.
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(∆gn(x)) is pointwise convergent to zero, but does not converge uniformly.
Let us say that (∆gn(x)) is relative uniformly convergent w.r.t. the scale function σ(x) = x, x ∈ R.
Then we have ∣∣∣x2

n2

∣∣∣ < ε|x|, for all n ≥ n0 and for all x ∈ R;

⇒ n >

√
x

ε
, for all n ≥ n0 and for any x ∈ R.

Here, n0 is dependent on x. Therefore our assumption is wronged.
(∆gn(x)) is not relative uniformly convergent w.r.t. the same scale function σ(x) = x.
Hence

(gn(x)) 6∈ c(∆, ru) and (gn(x)) 6∈ c0(∆, ru).

(∆gn(x)) is also not uniformly bounded relative to the same scale function;

⇒ (gn(x)) 6∈ `∞(∆, ru).

Hence the three spaces are not solid.

Proposition 3.3. The spaces c0(∆, ru), c(∆, ru) and `∞(∆, ru) are the monotone spaces.

Proof. Proof of the proposed proposition follows from the following example. �

Example 3.2. Let us consider the sequence of functions (fn(x)) defined by

fn(x) =
x

n
, x ∈ R

considered in Example 3.1. From the above example, we know that (∆fn(x)) is relative uniformly
convergent w.r.t. scale function σ(x) = x and (∆fn(x)) is also uniformly bounded relative to the scale
function x.

Hence (fn(x)) ∈ c(∆, ru), (fn(x)) ∈ c0(∆, ru) and (fn(x)) ∈ `∞(∆, ru). Let (gn(x)) be the pre-
image of a sequence of functions (fn(x)) defined by

gn(x) =

{x
n
, if n is even;

0, otherwise.

(∆gn(x)) is defined by

∆gn(x) =


(−1)nx

n+ 1
, if n is even;

(−1)nx

n
, otherwise.

We have seen that (∆gn(x)) is also uniformly convergent and uniformly bounded relative to the
same scale function σ(x) = x. Hence the three spaces c0(∆, ru), c(∆, ru) and `∞(∆, ru) are monotone.

Result 3.1. Let two difference sequence of functions (∆fn(x)) and (∆gn(x)) converge uniformly
relative to a scale function σ(x) on a compact domain D, then their sum also converges uniformly to
their sum of the limit functions relative to the scale function σ(x).
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