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ON SOME SHARP CONDITIONS FOR GENERALIZED ABSOLUTE
CONVERGENCE OF FOURIER SERIES

BORIS GOLUBOV! AND SERGEY VOLOSIVETS?

Abstract. In the present paper,we give some sufficient conditions for generalized absolute conver-
gence of trigonometric Fourier series in terms of LP and p-variational best approximations or moduli
of smoothness and prove their sharpness. Similar conditions for an arbitrary orthonormal system in
L?[0,1] are considered.

1. INTRODUCTION
Let LP, 1 < p < o0, be the space of 27-periodic measurable functions with a finite norm || f]|, =

27
([ 1f(@)?dz)"" and for k€ N={1,2,...}, 6 € [0, 2],
0

wi(f,8)p = sup{[|ALf(2)llp « |h] < 6},

k
where AF(f)(z) = > (=1)k1 (f)f(x +th), k € N, is the k-th difference of f with step h. If T), is

i=0
the space of trigonometric polynomials of order at most n, then the n-th best approximation in L? is
introduced by

Ea(flp = inf | ~tallyy n€Zp={0,1,...}.

Let f be a 2m-periodic real bounded function, £ = {z¢p < 1 < -+ < &, = kg + 27} be a partition

. n 1

of a period and aeg(f) = (l; |f(zi) — flzim1)[P) /p, 1<p< oo

By the definition, for 1 < p < oo, we set

wkl/p(fa ) = SUP{?E?(JC) SA(E) = miax(a?i —xi_1) <0}
and for k € N, k > 2,
wi—1/p(f,0) = sup{wr 1/ (AR (@), |h]) < [B] < 6}
For 1 < p < 00, let us introduce the space V), of all 2r-periodic bounded functions with the property
[1£1lv, = max(|| flloc, wi-1/p(f,27)) < o0
and Cp, = {f €V, : ;irr(l)wl_l/p(f, ) = 0}. Here, || f[loc = Sup,efo,2q |f(x)]. The space V}, of functions
—

of bounded p-variation was introduced for the case p = 2 by Wiener [13], while the space C), of p-
absolutely continuous functions in another but equivalent form was considered by Young [14]. Both
V, and C), are Banach spaces with respect to the norm || - ||y,. The best approximation E,(f)y, in
the space Cp, 1 < p < 00, is introduced similarly to E,(f),. The problems of approximation in C,
and LP, 1 < p < oo, are closely connected (see [6], [7] and lemmas below).

Let 1 < o < co. We say that a sequence {7;}72, belongs to the class A(«a) if v, > 0 for all k € Z
and

ontl_q 1/ on—1
> 7,3) < conl/e=h N~y = oo/, (1.1)
k=2n k=—2n-1
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for all n € N. In the case n = 0 we suppose that (1.1) is valid for I'g = 79. This definition due to
Gogoladze and Meskhia [2] generalizes a class introduced by Ul'yanov [9]. The class A(co) consists of
all positive sequences {y;}72, such that max v, < C27"T,, n € N, 7 < Cv. It is known that

2n<k<2nt!
Alaq) C A(ag) for 1 < ag < ag < 0.
For f € L', let us consider its Fourier coefficients

27 27
ak(f)zw_l/f(x)coskmdx, keZy, bk(f)zw_l/f(x)sinkxdx, keN,
0 0

partial Fourier sums S, (f)(z) = ao(f)/2 + i(ak(f) coskx + bp(f)sinkx), n € Z4, and pr(f) =
k=1

(aZ(f) +b3())Y2, k€ Zy.
Let w(x) be a continuous increasing function on Ry = [0, +00) such that w(0) = 0 (in this case we
write w € Q). A function w €  belongs to the Bary class B if

Y kTlwk™) =0(w(n™), neN,
k=n

correspondingly, w €  belongs to the Bary—Stechkin class By, k > 0 if

n

ij*lw(f )=O0(n*w(n™)), neN.

j=1

These definitions may be found in [1].
In [2], the following theorems were proved (the case r = s is treated similarly to the proof in [2]).
They generalized the results in the case v, = k? proved by A. A. Konyushkov [3].

Theorem A. Let 1 <p <oo, 1/p+1/g=1, s =max(q,2), 0 <7 <s, {1}, € A(s/(s—1)). If
f € LP and the series

> kB (), (1.2)

k=1

converges, then the series
o0
> ek (1.3)
k=1

also converges, and for some C' > 0,

> wph SCY T REL(f)p-
k=2 k=1
Theorem B. If the conditions of Theorem A hold, but instead of the convergence of series (1.2)

D kT (f,1/k),y

k=1
converges for some |l € N, then series (1.3) converges.
Note that Theorem B follows from Theorem A and Lemma 2.3.
The aim of the present paper is to establish the sharpness of Theorems A and B and their

p-variational analogues (see Theorem 3.1). Also, we investigate similar to (1.3) series in the case
of general orthonormal systems and obtain a sharp condition for its convergence.



ON SOME SHARP CONDITIONS 357

2. AUXILIARY PROPOSITIONS

The first assertion of Lemma 2.1 is proved in [12], while the second one is established in [6].

Lemma 2.1. Let f € V,, 1 <p<oo, k€ N. Then
1) E,(f)v, = Cn'?E,(f)y, n €N, for some C > 0;
2) wi(f,0)p < 6"Pwi_1/y(f,0), 6 € [0, 27].

Lemma 2.2 is due to W.Rudin and H.S.Shapiro (see [4]). For t,(z) = > (ax coskx + S sin kx),
k=0
n €N, we set £(tn,r) = ( 3 (ol + 8x]")) """
k=0

Lemma 2.2. There exists a sequence {yi}3>, such that v, = £1 for alln € Z,, and for all N € Z,

one has
N
int
E Tn€
n=0

N
In particular, |Py(t)] :=| 3 vncosnt| < 5v/N +1 and £(Py,r) == (N + nyr > 1.
n=0

<5VN +1.

The direct Jackson-Stechkin and inverse Bernstein—Salem—Stechkin approximation theorems in L?,
1 <p<oo(see 8, §5.1, §6.1]) are combined in the following

Lemma 2.3. Let 1 <p<oo, k€N, fe LP. Then
En(f)p < Crwk(f,1/(n+1))p, n€Zy,

w(fi1/n)y < Con™* Y (i + 1) Ej(f)p, nEN,
=0

for some C; = Ci(k) > 0,i=1,2.

The direct and inverse approximation theorems in C), were established by A. P. Terekhin. A sketch
of proof of the first inequality of Lemma 2.4 may be found in [6], while for the proof of the second
one we refer the reader to [10].

Lemma 2.4. Let1 <p<oo, k€N, feCp. Then
En(f)v, < Crwp_1p(f,1/(n+1)), neZy,

Wr—1/p(f;1/n) < Con=FF1/p Z(J + 1)k_1/p_1Ej(f)Vp, n €N,
=0

for some Cy = Cy(k) > 0, Cy = Co(k,p) > 0.
Lemma 2.5 may be derived from the results in [7] (see also [11]).

Lemma 2.5. Let 1 <p < oo, t, € T,,, n € N. Then |[t,|lv, < C(p)n*/P|[t,]lp.

3. GENERAL ABSOLUTE CONVERGENCE OF TRIGONOMETRIC FOURIER SERIES

From Theorems A and B and Lemma 2.1 we easily deduce

Theorem 3.1. Letl <p <oo,l €N, 1/p+1/qg=1, s =max(q,2), 0 <r <s, {1}, € A(s/(s—r)).
If f € C,, and the series

S kT B (f)y,
k=1
or the series

o0
D KT Py ()
k=1

converges, then the series (1.3) also converges.
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Theorems 3.2 and 3.3 show the sharpness of Theorem A in the case 1 < p < 2 under some additional
conditions.

Theorem 3.2. Suppose that 1 < p <2, 1/p+1/q=1,0<r <1, and for {y}32, € Alq/(q —r))
and some o € (0,1) the inequality

(1 — a)2_kr/qu > 2—r(k—1)/qu71’ keN

(oo}
holds. If a sequence {e;}2, decreases to zero and ) i’r/q'yieg = 00, then there exists f € LP such
1

i—
that E,(f)p < en, n € N, but the series (1.3) diverges.

n
Proof. Let Dyp(xz) = 1/2+ > coskx, n € Z4. It is known that D, (z) = sin(n + 1/2)z/(2sin(z/2))
k=1
for z # 27k and

w/n T
1D 2 < 2( /((n+ 1)/2)Pdx + /((w)/Qm)pdaz> <Pl neN. (3.1)
0 T/n

We consider the function

folw) = 27107 VP (egr — egre1) (Dae (x) — Dowms ()27,
k=1

Then for n € [2F;281) k€ Z,, by (3.1), we obtain

En(fo)p < Bar(fo)p <270 Y (e25 — e9i01)Cy V/P279/9| Dy — Dga [,
j=k+1
< Z (95 — €9i+1) = Egrt1 < &py.
Jj=k+1

By the Jensen inequality, we have (a — b)" > a” — 0" for a > b > 0 and 0 < r < 1. Therefore

o) N 0o 2F-1
C Z’Yz‘|f0(i)|r = Z Z Yi(ear — 52k+1)r27kr/q
i=1 k=1 j=2k-1

> Zrﬁ—/w/q(ggk — b)) = Zggk (I‘k2—kr/q _ I‘k712—(k—1)r/q) + T
k=1 k=1

>a )y ep T2 ke,
k=1
Since A(q/(q¢ —r)) C A(1), the inequality 'y, < C5T'x_1, k € N, holds. Using this inequality, we

have
2k_q

Y et < Oy 27 e,

i=2k—1

and from the conditions of Theorem 3.2 we deduce the divergence of the series kio: bk I'x2- /4. Thus,
=1
the series im\ﬁ)(iﬂr diverges. O
Theorem 3.3. Let 1 <p <2, 1/p+1/g=1,0<r <gq, {Ww}2, € Alg/(¢ — 1)) and a sequence
{€:}32, be decreasing to zero. If {&;}32, satisfies the Bary condition
3 % —O(ey), keN, (3.2)
i=k
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and the series Y .o, vii~"/9eT diverges, then there exists f € LP such that E.(f)p = O(en), n € N,
but series(1.3) diverges.

Proof. From (3.2), by the decreasing of {Ei}fil, it follows that

ngz < &g + Z Z %527 <eéeg + Z < Cheq. (3.3)

i=l4+1  j=2i-141 j= 21+1
Let us consider the function

= &9 (Doi(x) = Daes (z))27 /1.
k=1
Then for n € [2¥;2F+1) k€ Z,, (3.1) and (3.3) yields

En(fo)p < EQ’C (fO)p < ||f0 - 52’“ (fO)”p < Z 52’32_i/q||D2i - D2i—1||p

i=k+1

o0
< Oy Z e9i < C3egr+1 < Chen.

i=k+1
On the other hand,
00 0o 2F-1
S viei(fo) = Y wieh2” ’“/q—Zer 9~kr/a, (3.4)
i=l k=1i=2k—1

Similarly to the proof of Theorem 3.2, under the condition r < g, one can show that from the conditions
of Theorem 3.3 follows the divergence of the right-hand side of (3.4). In case r = ¢ and v € A(00),
we see that

2k 1
4,1 4 q —(k—1)
‘ ; ) Vigt T < zlg[grg?lxgk) Vi€or-1 < 0562k712 Fe—1,
Pl
whence we obtain the divergence of the right-hand side of (3.4) again. O

Theorem 3.2 is an analogue of Theorem 3 in [2] treating the case 2 < p < oo (the continuous
functions f € Ca, were considered for p = c0). Since the condition on I'j, in the above-mentioned
Theorem or Theorem 3.2 is too complicated, we give a corresponding analogue of Theorem 3.3.

Theorem 3.4. Let 0 < r < 2, a positive sequence {e}72, be decreasing to zero and satisfying the
Bary condition (3.2). Also, we suppose that e, < Cea, for n € N and {y}72, € A(2/(2—1)). If the

(o]
series Z vkk’r/%k diverges, then there exists fo € Con such that En(fo)eo = O(en), but the series
=1

(1.3) dwerges for f = fo.

Proof. Let us consider the function

x) = Z 2_k/252k (Por (x) — Pyr-1(x)),

2k
where the polynomials Py« (z) are defined in Lemma 2.2. Then Py () — Por—1(x) = > 7, cosiz,
i=2k—141

vi = £1, and |Pyr (x) — Pyr—1(x)| < 10(2F +1)1/2 < C12F/2, 2 € [0,27]. For n € [2¥,2F1) | we have

En(fo)oo < Ear(fo)oo Z 279/22,,|| Pys — Pay1 oo
j=k+1

oo
<O Y ey < Coegers < oz,
j=k+1
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On the other hand, for 0 < r < 2,
oo 2F—1 'S 0o
Z Z ,ij—kr/QE;k2k—1 — Zrk2—kr/26gk >0y Zj—r/Q,yjé_;
k=1 j=2k-1 k=1 j=1

by the condition ¢, < Cse, for n € [m,2m]. In the case r = 2, we repeat the arguments at the end
of the proof of Theorem 3.3. Thus series (1.3) diverges for f = fo. O

Now we can obtain the sharpness of Theorem B.

Theorem 3.5. Let1 <p <oo,l €N, 1/p+1/g=1, s =max(q,2),0 <r <s, {w}2, € A(s/(s—r)).
If w € BO\B; and the series > po k™" *yw(k™1) diverges, then there exists fo € LP such that
wi(fo,0)p < Cw(d), § € [0,27], and the series (1.3) for f = fy diverges.

Proof. Let 1 < p < 2. Let us consider ¢, = w(1/n), n € N, and the function fy(z) from the proof of
Theorem 3.3. Then E,(fo), < Ciw(1/n), n € N, and analogously, Eo(fo)p < ||foll, < C1w(1). By the
converse approximation theorem in L? (see Lemma 2.3), we have

wi(f,1/n) < Con™ Ny (k+ 1) w((k+1)7") < Csw(n™), neN,
k=0
by the condition w € B;. Note that the condition w € B; is appropriate to use Theorem 3.3. Since
w € By satisfies the As-condition w(2t) < Crw(t), t € [0,7] (see Lemma 3 in [1]), we derive that
wi(fo,0) < Csw(9d), § € [0,2x]. By Theorem 3.3, series (1.3) diverges for f = fp. In the case p > 2,
we analogously consider ¢, = w(1/n) and the function fy from the proof of Theorem 3.4. Further, we
proceed as in the case 1 < p < 2. g

The following two theorems are devoted to the sharpness of Theorem 3.1.
Theorem 3.6. Let 1 <p <oo, 1/p+1/¢=1, s=max(q,2), 0 <r <s, {w}i2, € A(s/(s—r)). If

{er}2, decreases to zero, satisfies the Bary condition (3.2), e, < Ceay, for n € N, and the series

Z Fykkﬂ“/é‘*r/pgz
k=1

diverges, then there exists fi € Cp such that E,(f1)v, = O(en), n € N, and the series (1.3) diverges
for f = fi.

Proof. In the case 1 < p < 2, similarly to the proof of Theorem 3.3, we consider the function

= 27 eou (Do (x) — Dora (2)). (3.5)

Then for n € [2¥,2F1) k€ Z,, from (3.1), (3.3) and Lemma 2.5 we deduce

En(f)v, < 1A= S (f1)lly, < Z 2 e[| Dyx — Dae-rly,

i=k+1

00 00
<C Z 821.2—1'/‘1“D2k — D2k—1||p < (Cy Z €91 < 03€2k+1 < Csep,.
i=k+1 i=k+1

On the other hand, by the condition &,, < Ce, for n € [m,2m], m € N, we have

oo 2F-1

Z,%pzr(fo Z Z '722 krgzk > C14 Z’Yﬁ‘: i = o0.
=1

k=1i=2k-1
In the case p > 2, similarly to the proof of Theorem 3.4, let us consider the function

fi(z) = Z 2K/ Py (Py(x) — Poen (2)),

k=1
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where Py () is defined in Lemma 2.2. Then for n € [2%,2F+1) k € Z,, we have

o0

En(fi)v, < Epe(fi)y, < D 279279/ Py — Pyyally,
j=k+1

o0 o0
<y Z £2i279/2||Pyi — Py, < Cy Z £95277/2||Pos — Pl
j=k+1 j=k+1

(oo}
<Cs Z €95 < Ceeant1 < Crey.
j=k+1
Since hm en = 0, the last relation and the completeness of C,, imply that f, € C,,.
On the other hand,

oo 2F—1

S ) 5 3 e 003
and the series (1.3) diverges for f = fi. O

Theorem 3.7. Let 1 <p < oo, 1/p+1/g=1, s =max(q,2), 0 <r <s, {m}2, € A(s/(s—r)),
Il €N, we BNB_y,. If the series i 'ykk_r/s_T/pr(k_l) diverges, then there exists a function
f1 € Cp such that w1, (f1,0) < w(é),kgle [0,27], and the series (1.3) diverges for f = f1.

Proof. Let us consider e, = w(1/k), k € N and the function fi(z) from (3.5). Then E,(f1))v, <

Ciw((n+1)"1), n € Z4. By the converse approximation theorem in C), (see Lemma 2.4) we have

n

w1 /p(f1,1/n) < Con™ PN (k4 1) VP a((k+ 1)) < Caw(1/n). (3.6)
k=0

Since w € B;_y/, satisfies the As-condition (see Lemma 3 in [1]), from (3.6) and the monotonicity of
w we easily deduce the inequality w;_1/,(f,d) < Cyw(d), d € [0,27]. On the other hand, by Theorem

o)
3.6, we have Y yrpl(f1) = 0. O
k=1

4. THE RESULTS FOR GENERAL ORTHONORMAL SYSTEMS

Let {ox(x)}32, be a complete in L?[0, 1] orthonormal system. For f € L2[0, 1] we set

1 n
_ / f@on@dz, SEE) = erlf)pnlz)
0

k=1

n
E7(f)2 = inf, =Y arpr , neEN,
k=1 L2[0,1]
It is well known that
) 1/2
B2 =1 - S5z Dlen = (X latnP) (4.1)
k=n-+1

S. Stechkin [5] established a sharp condition of convergence of the series E lek(f)|- Using the method
of proof of Theorem A in [2] and the first equality in (4.1), one can eablly obtaln
Theorem 4.1. Let 0 <7 <2, {7}, € A(2/(2 — 1)), f € L?[0,1] and the series

Zk r/2 Etp ) )r
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converge. Then we have

S wmlen(HI" < CD R (EL(f)2)" < oo
k=2

k=1

The following counterpart of Theorem 3.3 shows the sharpness of Theorem 4.1.

Theorem 4.2. Suppose that {€;}2, decreases to zero and satisfies the Bary condition (3.2),
0<r< 2, {2, € Al/(2—r1)). If the series

oo

—r/2 _r
Z%‘l /Ei
=1

diverges, then there exists fo € L?[0,1] such that E?(fy)2 < Cepn, n € N, but the series

> kler(f)
k=1

diverges.

Proof. Let us consider Dirichlet kernels D (z) = Y~ (). Since {¢x(z)}32; is orthonormal on [0, 1],
k=1
we have

D€\ 200 = n'/2,  |IDE = D& || r2p00) = (n —m)%, n,meN, n>m. (4.2)

Just as in the proof of Theorem 3.3, we consider

2) =3 enn(DE (x) — D§e, ())27H2,

Using (4.2) and (3.3), we find for n € [2% 2k*1) k€ Z, | that
EZ(fo)2 < E3.(fo)2 = |[fo — S (fo)ll2(0.1)

e
< Z 62 1/2 |D 2, 1||L2[0 1] < Z Egi < 0152k+1 < Clen-
1=k+1 1=k+1

On the other hand,

oo e ok
Z%‘M‘(fo)\r > Z Z Yieh27k/2,
i=1

k=14=2k-141
As in the proof of Theorem 3.2, we have

ok
Z 7i€§i_r/2 < C’gfk,12_(k_1)’"/2€§k_1
1=2k—141

and from the embedding A(2/(2 —r)) C A(1), we can see that I'y < C3T'x_1, k € N. Thus we obtain
S ilei(fo)l” > S T2 e, > 071 S T2 e,
i=1

k=1 k=1

> (CoCs)™ Z Z 71€2T2—oo. O

k=1i=2k—141
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