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THE PUNCH PROBLEMS OF THE PLANE THEORY OF VISCOELASTICITY
FOR THE HALF PLANE

GOGI KAPANADZE! AND BAKUR GULUA?2:3

Abstract. The paper considers the concrete problems of the punch for a viscoelastic half-plane
by the Kelvin—Voigt model. It is known that many buildings and composite materials exhibit
viscoelastic properties which are reflected in Hooke’s law in which the stresses are proportional both
to the deformations and to their derivatives in time.

The purpose of the present paper is to study the some concrete problems of the punch for a
viscoelastic half-plane by means of Kolosov—Muskhelishvili’s method for the Kelvin—Voigt model
and get formulas for the distribution of the tangential and normal stresses under the punch.

INTRODUCTION

For viscoelastic bodies, following the Kelvin—Voigt model, Hook’s law in the plane theory of elas-
ticity has the form [3]

Xe = M+ 2ueg, + A + 21 €y

Yy, = M+ ey, + XD+ 2u%éy,, (1)
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where ¥ = ey + €yy = % + %Z’ Xz, Yy, ..., ey are the functions of the variables z, y, t (Under
t we will always mean the time parameter and the dots in the expressions 19, ..., u will denote time

derivatives). The constants A and p are elastic, while A* and p* are viscoelastic.
We cite here certain well-known Kolosov—Muskhelishvili’s formulas which may, as is known, be
attributed to any solid bodies [2]

X, +Y, =4Re[®(z,1)] = 4Re [¢'(2,1)],
Y, — Xo 4 20X, = 2[29'(2,t) + ¥(z,1)],
Y, —iX, = ®(z,t) + O(2,t) + 29/ (2, t) + ¥(z, t).

(2)

We assume that the resultant vector (X;Y") of the external forces, acting on the boundary, is finite
and the stresses and rotation vanish at infinity, thus for large |z|, we have

D(z,t) = XAy + 0(1), U(z,t) =

2mz z
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From the correlations (1) and (2) we obtain the formula (see [1,4]) (we assume that at time ¢ = 0,
the displacements ug(z,y,0) = vo(x,y,0) = 0):

t

2u* (u+iv) = / [%*go(zw)ekh_t) + (gp(z, T) — 29 (2,7) — 1/J(Z7T))€m(7_t)}d7', (3)
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Formula (3) is an analogue of Kolosov—Muskhelishvili’s formula for the second basic problem of the
plane theory of elasticity (see [2]) for a viscoelastic isotropic body. This formula implies that

t
2u*0 (2,t) = Im/ [ek(T_t)(I)(Z,T)dT
0

+ O/ em(r=t) (@(Z,T) —B(z,7) — 20/ (z, 1) — @(Z,T))]dT.

STATEMENT OF THE PROBLEM

Let a viscoelastic body occupy a lower half-plane S~ and by L we denote the boundary of that
domain (i.e., the Oz-axis). Assume that at each point of L' = [—1,1] there is a normal displacement
v~ (x,0,t) = f(x) at time ¢, for which the segment L’ undergoes a normal pressure N(z,0,t). In
the resulting “trench”, established, the punch with the given form of base y = f(z) and maintained
balance is pressed by the vertical force Ny = f_ll N(z,0,t)dz (in what follows, by Ny we mean the
value NoH (t), where H(t) is the Heaviside step function. In the same sense, we understand all other
quantities that depend on time t). The law of distribution of normal pressure N(z,0,t) is unknown in
advance, it is the main unknown value of the problem and must be determined so that the equilibrium
of the punch is maintained under the conditions of constant deformation of the boundary, i.e., we have
the problem of the stress relaxation.

Usually, the linear theory of elasticity considers only a small displacement and a shallow punch;
in this connection the boundary conditions are set on the segment L’ (i.e., on the undeformed part
L’ = [-1,1] of the boundary of the half-plane).

So, the boundary conditions can be written in the form

X, (z,t) = aN(z,t), a=const >0, z €L,
X, (x,t) =Y, (z,t) =0, ve L"=L-L, (4)
v (z,t) = f(z) +¢, €L, (c=const),

where y = f(z) is the given function defining the base shape of the punch before pressing into the half-
plane. In (4), by X, (z,t),...,v7(x,t) we have denoted the expressions X, (,0,t),...,v7(,0,t).
The total tangential stress in the case under consideration has the form Ty = aNy and hence, the
resultant vector of outer forces acting onto the punch (which are assumed to be prescribed) is of the
kind (X,Y) = (aNg, —Np).

SOLUTION OF THE PROBLEM

The considered problem, in the general form, when the displacement changes in time, i.e., v(z,0,t) =
f(z,t), where f(z,0) = f(x), has been studied in [1], where formulas for the distribution of the tan-
gential p(z,t) = Y, (x,t) and normal T'(z,t) = X, (v,t) stresses under the punch are obtained and
in our case, we have

P(a,t) = Yy(a6) = ~2 m [+ _zia‘lf(x,t)], .
T(x,t) = X; (2,t) = —20 Im [ﬁ@’(m,t)},

where
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Note that the second term of the formula M corresponding to the solution of the problem about the
pressure of the rectangular stamp, plays a major “guiding” role, while the first term corresponds to
the perturbation caused by the curvature of the punch profile, which we usually assume to be a slightly
curved smooth curve. The integral that participates in this term is calculated based on the remainder
theory.

On the basis of (5) and (6) we can conclude that in our case (i.e., in the case of pressure of a rigid
punch with friction) the tangential and normal stresses have the character of damping oscillations
with respect to time t. Also, taking into account (6), we can conclude that oscillations are absent in
the following cases:

1) for a = 0 (i.e., without friction);

2) for m =k (i.e., the constants A, ..., u* are connected by the relation 5+ = HL)

As is mentioned, we calculate the following kind of integral

1
1 / x(o
T o—z
Z1
based of the remainder theory.

Let us examine some particular cases of the punch profile bearing in mind that the linear theory of
viscoelasticity studies usually only small displacements, and in this connection we consider a slightly
curved profile of the punch.

2

L f(z) = &2, ie., f/(z) = %‘”, where R is a large enough number because we will have small
deformations.

Given large |z| (i.e., z — 00), we have

1

zx(z) zz(1+z)%+5(l—z)575 = —je™® (z—|—1) Oz — 1)%*5
- ”6[2 + 262+ - (452—1)+0( )]

_2
Rcosmd

2. In the case f(z) = — V1 —22, f'(z) = Fi==> We obtain

1= s (G57) 21

I(z) = [(z+1)%+5(2f1)%*5722725,27%(45271)]
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