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FRACTAL STRUCTURES FROM THE BAND MATRICES FOR MATRIX

ALGORITHMS

RICHARD MEGRELISHVILI1 AND SOFIA SHENGELIA2

Abstract. The aim of the present paper is to construct a set of high order strong matrices for
a key-exchange matrix algorithm on an open channel and to create a high-speed one-way matrix

function. Fractal structures are synthesized from band matrices. Square matrices are considered

over a Galois field of GF (2). Each initial n-th order square matrix is primitive (the degree value is
equal to 2n − 1) or its degree value is a Mersenne number 2j − 1, when j < n (except n = 18).

1. Introduction

In cryptographic algorithms, the main task is the question of reliability of the algorithm. In matrix
algorithms, the process of encryption and decryption is implemented by matrices, and for the algorithm
to be reliable it is necessary to create powerful high-order matrix sets.

Each cryptographic system uses its own procedure, types of keys, methods of their distribution and
coding algorithms. The essence of the asymmetric cryptography consists in a specific character of a
one-way function. The one-way function is a y = f(x) function; its value can be obtain by computer
calculations in case x is known, but it is impossible to get the value of x argument by means of the
function f(x) and computer calculations at a real time. This fact is clearly illustrated by an example
of the Diffie–Hellman [2] one-way function ax = y(mod p).

2. The Matrix Function

To implement a one-way matrix function, we have the n × n matrix A. For simplicity of the
statement, the matrices are considered over the GF (2) field. Matrix A presents a secret parameter

selected randomly from a group of high powered Â; thus, A ∈ Â, v ∈ Vn, where Vn is a vector space
over GF (2) (v is an open parameter). Then the one-way matrix function looks as

vA = u, (2.1)

where both v ∈ Vn and u are open parameters.
It should be mentioned that if for Diffie–Hellman’s algorithm the one-way function

ax = y mod p (2.2)

is based on the problem of a discrete logarithm, then the problem for that function appears to be
the recursion inside the matrix [4, 7]. In a cryptographic algorithm, the use is made of a one-way
function for solving the authentication and verification tasks for a certain period of time. We also
use this function for solving the problem of stability of our matrix one-way function for a certain
period of time. Towards this end, using the exponential one-way function, the key exchange takes
place through the open channel. The result of this key exchange is the secret parameter k = v. At
the same time period, the key exchange or other operations are performed with our algorithm. In this
case, parameters v and A in (2.1) are secret and only parameter u is open [3].

In authors’ opinion, after reading the next section there should be no doubt both about the high-
speed of the matrix one-way function and about that of the key exchange algorithm on an open
channel.
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The function (2.1) fundamentally differs from the function (2.2) by the fact that for the function
(2.1) is used the operation of multiplication, whereas the function (2.2) is exponential.

3. The Matrix Algorithm

The Matrix Algorithm about Key-Exchange on an Open Channel is Implemented in the Following
Way:
• Mariami chooses (randomly) an n× n matrix A1 ∈ Â and sends to George the following vector:

u1 = vA1;

• George chooses (randomly) an n× n matrix A2 ∈ Â and sends to Mariami the vector

u2 = vA2,

where n is a size of vector u (open), A1 and A2 are (secret) matrix keys.
• Mariami computes

k1 = u2A1;

• George computes

k2 = u1A2,

where, k1 and k2 are secret keys, k1 = k2 = k, because k = vA1A2 = vA2A1.
The one-way matrix function and a new matrix algorithm for the corresponding open channel key

exchange considered in this paper have been first obtained and studied by the first author.
As is shown above, for the implementation of the key-exchange algorithm we need high power

multiple n×n matrices which are, at the same time, commutative. A number commutation in Diffie–
Hellman’s algorithm is implemented naturally, in accordance with the construction of the commutative
multiplicity of Â for each value of dimension n, while for our algorithm this task is difficult.

In the given work, we present an effective and constructive solution. The characteristics of effective
and constructive methods for construction of matrices are included in the following statements:
• For each n > 1 dimension, the initial n× n matrix should generate either a maximum number of

matrices (2n − 1), or this number should be the number of Mersenne, meaning 2j − 1, where j < n.
• The method of synthesis of any n × n matrix of any dimension, should be the same (where n

is probably implementable maximal dimension of the initial matrices). Hence the technology of the
construction for initial matrices should be implementable and similar to any given dimension of n.

For simplicity, the n-th order square matrices and other structures are considered in the Galois
GF(2) field. Obviously, of great importance is generation of a high power matrix set for the functioning
of a new key exchange function. The synthesis of such matrix sets and their structural study attract
particular attention [5, 6].

The new algorithm is an original cryptographic approach, especially, when its quickness is taken
into account. However, at the same time, this algorithm needs analyzing in regard to its cracking and
generating a required set of high order matrices. The study, analysis and software implementation of
such issues is also the main goal.

4. Software Implementation

The object of our study is a matrix, finding such a structure, whose existence makes the matrix
able to generate a multiplication cyclic group of matrices with a maximum value or a value equal to
the Mersenne prime degree.

In order to find out such structures it is necessary to verify the matrices of different orders regarding
whether this scheme gives such a multiplication group of matrices that is generated by any matrix
constructed by this structure and its value of degree is maximal, i.e., whether this matrix is primitive
(a matrix is primitive in case it generates a group with a maximum value of the degree). For this
purpose a method for natural increase of matrix order has been introduced, i.e., a method for natural
increase of the n order.

Several types of nondegenerate initial matrixes are experimentally tested. As a result, a general
structure is obtained, the matrices generating multiplication groups, sometimes with maximum degree
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value and sometimes with a degree value equal to Mersenne prime are alo abtained. Only in a single
case, (except for n = 18) [8–10], the matrix degree value is not a Mersenne prime and it is a subject
to an individual structural study. The paper also deals with new original fractal matrix structures,
banded matrices, etc.

The original matrix algorithm described in the paper is in some degree a similar model to the
Diffie–Hellman open channel key exchange algorithm. When the Diffie–Hellman algorithm stability
depends on the highest values of p simple number (i.e., stability depending on a real scale of time),
the one-way matrix function stability also depends on the high value of the A set.

The research is carried out for the matrices that are free from the internal recursion. A high order
matrix set consisting of primitive matrices is constructed (see Figures 1, 2, 3).

Matrix of the first Fractal structure:

n = 3, A =

1 0 1
0 0 1
1 1 0

 ; n = 4, A =


1 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0

 ; n = 5, A =


1 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

 .

Matrix of the second Fractal structure:

n = 3, A =

0 1 1
1 1 0
1 0 0

 ; n = 4, A =


0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 0

 ; n = 5, A =


0 0 0 1 1
0 0 1 1 0
0 1 1 0 0
1 1 0 0 0
1 0 0 0 0

 .

Figure 1. The fractal structure from the band matrix.

Matrix of the third Fractal structure:

n = 3, A =

0 1 0
1 0 1
0 1 1

 ; n = 4, A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 ; n = 5, A =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1

 .
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Figure 2. The fractal structure from the band matrix.

Figure 3. The fractal structure from the band matrix.

By using software, the orders of e were calculated for the initial normal n × n matrix structures
and the results are shown in the table below (Table 1).

1. Each initial n order square matrix is primitive (the degree value is equal to 2n− 1) or its degree
value is a Mersenne prime 2j − 1, when j < n (except for n = 18).

2. The corresponding matrices of the pairs (3, 4), (7, 8), (15, 16), (31, 32), (63, 64), (127, 128),
(255, 256) and (511, 512) of values (n, n + 1) are described by the following formulae:

A2r+1−1
2r−1 = E2r−1; A2r+1−1

2r = E2r , where r ≥ 2.

3. It is also noteworthy that nowadays in cryptographic algorithms the 289 probable selection
variants are very difficult even for the latest computers. We have calculated all matrices including the
1000×1000 size matrices. Each initial n order square matrix is primitive and its degree value is equal
to 2n − 1 (Table 2).
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Table 1. The results for calculated orders of e for the initial normal n× n matrices.

Table 2. Higher order matrices.

4. It is noteworthy that these results completely coincide with the results of Ukrainian scientist,
Professor Anatoly Beletsky. Although, as is well known, the initial matrices have completely different
structures, [1] i.e., the structures that are derived from the generalized Gray Codes.
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During the last decades overwhelming necessity has arisen for modern scientific-theoretical and
technological studies in security (reliability) and high-speed performance and their practical use in
asymmetric cryptography systems. The paper considers a new trend in asymmetric cryptography,
namely, a single-sided matrix function and the issues of generation of matrix sets, necessary for its
fulfilment, and also the problems of new fractal matrix structure synthesis. The above circumstances
provide actuality of the issue and its immense theoretical and practical value.
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