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ON THE LERAY–HIRSCH THEOREM

LEONARD MDZINARISHVILI

Abstract. In [7], E. Spanier directly proved that for the total pair (E, Ė) of a fiber-bundle pair with base

B and fiber pair (F, Ḟ ) such that H∗(F, Ḟ , R) is free and finitely generated over R and θ is a cohomology

extension of the fiber, the homomorphism

Φ∗ : H∗(E, Ė,G) −→ H∗(B,G)⊗H∗(F, Ḟ , R),

where H∗ is the singular homology, is an isomorphism for all R modules G ([7, Theorem 5.7.9]), where R is
a commutative ring with a unit.

About the homomorphism

Φ∗ : H∗(B,G)⊗H∗(F, Ḟ , R) −→ H∗(E, Ė, R),

where H∗ is the singular cohomology, he said that a similar argument does not appear possible, because it

is not true that H∗(B,R) is isomorphic to the inverse limit lim
←−
{H∗(U,R)}U∈U .

In [8], R. Switzer, using the spectral sequence of Serre, proved that the homomorphism Φ∗ is an isomor-
phism ([8, Theorem 15.47]).

In [1], the Leray–Hirsch theorem (Theorem 4D.1) is proved, not using the spectral sequence, however,

the base B is an infinite-dimensional CW complex.
In this paper, we give another proof of the fact that the homomorphism Φ∗ is an isomorphism not using

the spectral sequence of Serre.

Below, we give the brief summaries of some results used in the paper.
Let Ab be the category of abelian groups and homomorphisms.

Lemma 1 ( [7, Lemma 5.5.6]). If B is a finitely generated free abelian group, then for arbitrary abelian
groups A and G, µ is an isomorphism

µ : Hom(A,G)⊗Hom(B,Z) ≈ Hom(A⊗B,G).

Lemma 2 ([7, Corollary 5.5.4]). If (X,A) is a topological pair such that H∗(X,A) is finitely generated, then
the free subgroups of H∗(X,A) and H∗(X,A) are isomorphic and the torsion subgroups of H∗(X,A) and
H∗−1(X,A) are isomorphic, where H∗ (H∗) is the integral singular homology (cohomology) theory.

Lemma 3 ([6, Lemma 5.2]). Given a short exact sequence of abelian groups

0 −→ A′ −→ A −→ A′′ −→ 0

and an abelian group B, if A′′ or B is torsion free (where being torsion free is equivalent to being free), there
is a short exact sequence

0 −→ A′ ⊗B −→ A⊗B −→ A′′ ⊗B −→ 0.

Lemma 4 ([3, V.1]). If A and B are free abelian groups, then A⊗B is a free abelian group.

Lemma 5 ([8, 10.36]). Let {Xα, α ∈ Λ} be a directed set (α ≤ β ⇒ Xα ⊂ Xβ) of subspaces of topological
space X such that for any compact C ⊂ X there exists α ∈ Λ with C ⊂ Xα. The inclusions iα : Xα → X,
α ∈ Λ, induce an isomorphism

{iα,∗} : lim
−→

H∗(X
α, G)

∼−→ H∗(X,G).

Theorem 1 ([4, Theorem 11.32]). Let

0 −→ X ′ −→ X −→ X ′′ −→ 0
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be a short exact sequence of inverse systems. Then there exists an exact sequence

0 −→ lim
←−

X ′ −→ lim
←−

X −→ lim
←−

X ′′ −→ lim
←−

(1)X ′ −→ · · · −→ lim
←−

(n)X ′ −→ lim
←−

(n)X −→ lim
←−

(n)X ′′ −→ · · · ,

where lim
←−

(i), i ≥ 1, is a derived functor.

Lemma 6. If B is a free and finitely generated abelian group and {Aα} is an inverse system of abelian
groups Aα, then there is an isomorphism

lim
←−

(i){Aα} ⊗B ≈ lim
←−

(i){Aα ⊗B}, i ≥ 0.

Proof. Let A = lim
←−
{Aα} be an inverse limit of abelian groups Aα. Since B is a free and finitely generated

abelian group, there is an isomorphism
B ≈ Zn.

Hence, for all α, we have an isomorphism

Aα ⊗B ≈ Aα ⊗ Zn ≈ (Aα ⊗ Z)n ≈ (Aα)n.

a) By Lemma 11.24 [4], the functor lim
←−

preserves finite products. Therefore there is

lim
←−
{Aα ⊗B} ≈ lim

←−
(Aα)n =

(
lim
←−

Aα
)n

= An

≈ (A⊗ Z)n ≈ A⊗ Zn ≈ A⊗B = lim
←−
{Aα} ⊗B.

b) By Corollary 12.15 [4], for i ≥ 1, we have

lim
←−

(i){Aα ⊗B} ≈ lim
←−

(i){Aα ⊗ Zn} ≈ lim
←−

(i){(Aα ⊗ Z)n} ≈ lim
←−

(i){Aα}n

≈
(
lim
←−

(i){Aα}
)n ≈ (lim

←−
(i){Aα} ⊗ Z

)n ≈ lim
←−

(i){Aα} ⊗ Zn ≈ lim
←−

(i){Aα} ⊗B. �

Lemma 7 ( [2, Proposition 1.2]). For any direct system {Aα} of abelian groups Aα, there are an exact
sequence

a) 0 −→ lim
←−

(1) Hom(Aα, G) −→ Ext(lim
−→

Aα, G) −→ lim
←−

Ext(Aα, G) −→ lim
←−

(2) Hom(Aα, G) −→ 0

and an isomorphism
b) lim

←−
(i) Ext(Aα, G) ≈ lim

←−
(i+2) Hom(Aα, G), i ≥ 1.

Lemma 8 ([7, Theorem 5.1.9]). The tensor-product functor commutes with direct limits, i.e., there is an
isomorphism

lim
−→
{Aα} ⊗B ≈ lim

−→
{Aα ⊗B}.

Lemma 9 ([5, Exercise 3, §A.3]). If {Aα} is a direct system of abelian groups Aα, then there is an isomor-
phism

Hom
(
lim
−→
{Aα}, B

)
≈ lim
←−

Hom(Aα, B).

A fiber-bundle pair with the base space B consists of a total pair (E, Ė), a fiber pair (F, Ḟ ) and a projection
p : E → B such that there exist an open covering {V } of B and, for each V ∈ {V }, a homeomorphism

ϕV : V × (F, Ḟ )→ (p−1(V ), p−1(V ) ∩ Ė) such that the composite

V × F ϕV−→ p−1(V )
p−→ V

is the projection to the first factor. If A ⊂ B, we suppose EA = p−1(A) and ĖA = p−1(A)∩ Ė, and if b ∈ B,

then (Eb, Ėb) is the fiber pair over b.

Given a fiber-bundle pair with a total pair (E, Ė) and a fiber pair (F, Ḟ ), a cohomology extension of the

fiber is a homomorphism θ : H∗(F, Ḟ )→ H∗(E, Ė) of graded abelian groups (of degree 0) such that for each
b ∈ B the composite

H∗(F, Ḟ )
θ−→ H∗(E, Ė) −→ H∗(Eb, Ėb)

is an isomorphism, where H∗ is the integral singular cohomology.
Let p : B × (F, Ḟ )→ (F, Ḟ ) be the projection to the second factor. Then

θ = p ∗ : H∗(F, Ḟ ) −→ H∗(B × (F, Ḟ ))
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is a cohomology extension of the fiber of the product-bundle pair.

Theorem of Leray–Hirsch. Let (E, Ė) be the total pair of a fiber-bundle pair with the base B and fiber

pair (F, Ḟ ). Assume that H∗(F, Ḟ ) is free and finitely generated over Z and that θ is a cohomology extension
of the fiber. Then the homomorphism

Φ∗ : H∗(B,C)⊗H∗(F, Ḟ ) −→ H∗(E, Ė,G)

is an isomorphism for all abelian groups G, where Φ∗(u ⊗ v) = p∗(u) ^ θ(v), ^ is the cup-product homo-
morphism.

Proof. By Lemma 5.7.1 [7], it suffices to prove the result for the map Φ∗ in the case G = Z.
For any subset A ⊂ B, let θA be the composite

H∗(F, Ḟ )
θ−→ H∗(E, Ė) −→ H∗(EA, ĖA).

Then θA is a cohomology extension of the fiber in the induced bundle over A. It follows from Lemma 5.7.8 [7]

that if the induced bundle over A is homeomorphic to the product-bundle pair A× (F, Ḟ ), then

Φ∗A : H∗(A)⊗H∗(F, Ḟ )
∼−→ H∗(EA, ĖA).

Hence Φ∗A is a cohomology extension of the fiber in the induced bundle over A.

Using the exact Mayer–Vietoris sequences, property 5.6.20 [7] and also the fact that H∗(F, Ḟ ) is a free
and finitely generated abelian group, we find that Φ∗U is an isomorphism for any U which is a finite union of
sufficiently small open sets. Let U = {U} be the collection of these sets. Since any compact subset of B lies
in some element of U , by Lemma 5, there is an isomorphism

H∗(B) ≈ lim
−→
U∈U

H∗(U).

Also, any compact subset of E lies in some element of EU = {EU}, where EU = p−1(U), U ∈ U . Therefore,
by Lemma 5, there is an isomorphism

H∗(E, Ė) ≈ lim
−→

H∗(EU , ĖU ). (1)

Since C∗(EU , ĖU ) is a subcomplex of the free chain complex C∗(EU ), for the pair (EU , ĖU ) there is an exact
sequence

0 −→ Ext(H∗−1(EU , ĖU ),Z) −→ H∗(EU , ĖU ) −→ Hom(H∗(EU , ĖU ),Z) −→ 0. (2)

The collection U = {U} generates the collection EU = {(EU , ĖU )} directed by inclusions. Hence the exact
sequence (2) induces an exact sequence of inverse systems

0 −→ {Ext(H∗−1(EU , ĖU ),Z)} −→ {H∗(EU , ĖU )} −→ {Hom(H∗(EU , ĖU ),Z)} −→ 0.

By Theorem 1, there is an exact sequence

0 −→ lim
←−

Ext(H∗−1(EU , ĖU ),Z) −→ lim
←−

H∗(EU , ĖU ) −→ lim
←−

Hom(H∗(EU , ĖU ),Z) −→

−→ lim
←−

(1) Ext(H∗−1(EU , ĖU ),Z) −→ · · · .

Consider the commutative diagram with exact rows

0 // Ext(H∗−1(E, Ė),Z) //

ϕ′

��

H∗(E, Ė) //

ϕ

��

Hom(H∗(EU , ĖU ),Z) //

ϕ′′

��

0

0 // lim
←−

Ext(H∗−1(E, Ė),Z) // lim
←−

H∗(E, Ė) // lim
←−

Hom(H∗(EU , ĖU ),Z) //

−→ lim
←−

(1) Ext(H∗−1(E, Ė),Z) −→ · · · . (3)

Since there is the isomorphism (1), by Lemma 9, using the connection between the functors Hom(−,Z) and
lim
−→

, we have an isomorphism

Hom(H∗(E, Ė),Z) ≈ Hom(lim
−→

H∗(U, U̇),Z) ≈ lim
←−

Hom(H∗(U, U̇),Z).
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Hence in diagram (3), the homomorphism ϕ′′ is an isomorphism, and also, the isomorphisms

Kerϕ′ ≈ Kerϕ, Cokerϕ′ ≈ Cokerϕ.

By Lemma 7 a), there are isomorphisms

Kerϕ ≈ Kerϕ′ ≈ lim
←−

(1) Hom(H∗−1(EU , ĖU ),Z), (4)

Cokerϕ ≈ Cokerϕ′ ≈ lim
←−

(2) Hom(H∗−1(EU , ĖU ),Z). (5)

Using isomorphisms (4) and (5), we have an exact sequence

0 −→ lim
←−

(1) Hom(H∗−1(EU , ĖU ),Z) −→ H∗(E, Ė) −→ lim
←−

H∗(EU , ĖU ) −→

−→ lim
←−

(2) Hom(H∗−1(EU , ĖU ),Z) −→ 0. (6)

Using Lemma 2 [6], for each U ∈ U , there is the commutative diagram

0 // Hom(B∗−1,Z) //

��

Z∗U
//

��

Hom(H∗(EU , ĖU ),Z) // 0

0 // Ext(H∗−1(EU , ĖU ),Z) // H∗U // Hom(H∗(EU , ĖU ),Z) // 0,

where B∗−1 = B∗−1(EU , ĖU ), Z∗U = Z∗(EU , ĖU ), H∗U = H∗(EU , ĖU ), which induces, by Theorem 1, a long
commutative diagram with exact sequences

· · · // lim
←−

(i) Hom(B∗−1,Z) //

��

lim
←−

(i)Z∗U
//

��

lim
←−

(i) Hom(H∗(EU , ĖU ),Z) //

��

· · ·

· · · // lim
←−

(i) Ext(H∗−1,Z) // lim
←−

(i)H∗U
// lim
←−

(i) Hom(H∗(EU , ĖU ),Z) // · · · ,

(7)

where H∗−1 = H∗−1(EU , ĖU ).
By Lemma 7 b), for i ≥ 1, there is an isomorphism

lim
←−

(i) Ext(B∗−1,Z) ≈ lim
←−

(i+2) Hom(B∗−1,Z). (8)

Since B∗−1 is a free abelian group, there is the equality [3, Theorem 3.5]

Ext(B∗−1,Z) = 0. (9)

Using isomorphism (8) and equality (9), for k ≥ 3, we have the equality

lim
←−

(k) Hom(B∗−1,Z) = 0. (10)

By Lemma 7 a) and equality (9), there is the equality

lim
←−

(2) Hom(B∗−1,Z) = 0. (11)

From the commutative diagram (7) and equalities (10), (11), for i ≥ 2, we have an isomorphism

lim
←−

(i)Z∗U ≈ lim
←−

(i) Hom(H∗(EU , ĖU ),Z)

and a split exact sequence

0 −→ lim
←−

(i) Ext(H∗−1(EU , ĖU ),Z) −→ lim
←−

(i)H∗(EU , ĖU ) −→ lim
←−

(i) Hom(H∗(EU , ĖU ),Z) −→ 0. (12)

Using the exact sequence (6), the split exact sequence (12) for i ≥ 2, the isomorphism ϕ′′ from the commu-
tative diagram (3), we have an exact sequence

0 −→ lim
←−

(1) Ext(H∗−1(EU , ĖU ),Z) −→ lim
←−

(1)H∗(EU , ĖU ) −→ lim
←−

(1) Hom(H∗(EU , ĖU ),Z) −→ 0,
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and using the Yoneda method, we also have a finite exact sequence

0 −→ lim
←−

(2∗−3)H1
U −→ · · · −→ lim

←−
(1)H∗−1U −→ H∗(E, Ė) −→ lim

←−
H∗U −→

−→ lim
←−

(2)H∗−1U −→ · · · −→ lim
←−

(2∗−2)H1
U −→ 0, (13)

where H∗U = H∗(EU , ĖU ).
For the base B, there is an exact sequence

0 −→ Ext(H∗−1(B),Z) −→ H∗(B) −→ Hom(H∗(B),Z) −→ 0.

Since H∗(F, Ḟ ) is free and finitely generated over Z, there is an isomorphism Hom(H∗(F, Ḟ ),Z) ≈
H∗(F, Ḟ ), and, by Lemma 3, there is a short exact sequence

0 −→ Ext(H∗−1(B),Z)⊗Hom(H∗(F, Ḟ ),Z) −→ H∗(B)⊗H∗(F, Ḟ )
ξ−→

ξ−→ Hom(H∗(B),Z)⊗Hom(H∗(F, Ḟ ),Z) −→ 0.

Denote Ker ξ = Ext(H∗−1(B),Z)⊗Hom(H∗(F, Ḟ ),Z). For each U ∈ U = {U}, there is an exact sequence

0 −→ Ker ξU −→ H∗(U)⊗H∗(F, Ḟ ) −→ Hom(H∗(U),Z)⊗H∗(F, Ḟ ) −→ 0,

where Ker ξU = Ext(H∗−1(U),Z)⊗Hom(H∗(F, Ḟ ),Z).
By Lemma 1, there is an isomorphism

Hom(H∗(B),Z)⊗Hom(H∗(F, Ḟ ),Z) ≈ Hom(H∗(B)⊗H∗(F, Ḟ ),Z). (14)

The family U = {U} induces an exact sequence of inverse systems

0 −→ {Ker ξU} −→ {H∗(U)⊗H∗(F, Ḟ )} −→ {Hom(H∗(U)⊗H∗(F, Ḟ ),Z)} −→ 0,

which, by Theorem 1, generate an exact sequence

0 −→ lim
←−
{Ker ξU} −→ lim

←−
{H∗(U)⊗H∗(F, Ḟ )} −→ lim

←−
{Hom(H∗(U)⊗H∗(F, Ḟ ),Z)} −→

−→ lim
←−

(1){Ker ξU} −→ · · · .

Using isomorphism (14) and Lemma 8, we have an isomorphism

Hom(H∗(B),Z)⊗Hom(H∗(F, Ḟ ),Z) ≈ Hom(H∗(B)⊗H∗(F, Ḟ ),Z)

≈ Hom(lim
−→
{H∗(U)} ⊗H∗(F, Ḟ ),Z) ≈ lim

←−
Hom(H∗(U)⊗H∗(F, Ḟ ),Z). (15)

Hence, using isomorphism (15) and Lemma 9, there is a commutative diagram with exact rows

0 // Ext(H∗−1(B),Z)⊗Hom(H∗(F, Ḟ ),Z) //

ψ′

��

H∗(B)⊗H∗(F ) //

ψ

��
0 // lim

←−
{Ext(H∗(U),Z)⊗Hom(H∗(F, Ḟ ),Z)} // lim

←−
{H∗(U)⊗H∗(F, Ḟ )} //

// Hom(H∗(B)⊗Hom(F, Ḟ ),Z) //

ψ′′≈
��

0

// lim
←−
{Hom(H∗(U)⊗H∗(F, Ḟ ),Z)} // 0.

(16)

Since ψ′′ is an isomorphism, by the commutative diagram (16), there are isomorphisms

Kerψ′ ≈ Kerψ, (17)

Cokerψ′ ≈ Cokerψ. (18)
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Using Lemmas 6 a) and 9, we have an exact sequence

0 −→
(
lim
←−

(1){Hom(H∗−1(U),Z)}
)
⊗Hom(H∗(F, Ḟ ),Z) −→ Ext(H∗−1(B),Z)⊗Hom(H∗(F, Ḟ ),Z) −→

−→
(
lim
←−
{Ext(H∗−1(U),Z)}

)
⊗Hom(H∗(F, Ḟ ),Z) −→

−→
(
lim
←−

(2){Hom(H∗−1(U),Z)}
)
⊗Hom(H∗(F, Ḟ ),Z) −→ 0.

Since

Kerψ′ =
(
lim
←−

(1){Hom(H∗−1(U),Z)}
)
⊗Hom(H∗(F, Ḟ ),Z)

and

Cokerψ′ =
(
lim
←−

(2){Hom(H∗−1(U),Z)}
)
⊗Hom(H∗(F, Ḟ ),Z),

using isomorphisms (17) and (18), there is an exact sequence

0 −→
(
lim
←−

(1){Hom(H∗−1(U),Z)}
)
⊗Hom(H∗(F, Ḟ ),Z) −→ H∗(B)⊗H∗(F, Ḟ ) −→

−→ lim
←−
{H∗(U)⊗H∗(F, Ḟ )} −→

(
lim
←−

(2){Hom(H∗−1(U),Z)}
)
⊗Hom(H∗(F, Ḟ ),Z) −→ 0. (19)

By Lemma 1 [6], for each U ∈ U = {U}, there is an exact sequence

0 −→ Hom(B∗−1(U),Z) −→ Z∗(U) −→ Hom(H∗(U),Z) −→ 0.

Since Hom(H∗(F, Ḟ ),Z) is free and finitely generated, by Lemma 3, we have an exact sequence

0 −→ Hom(B∗−1(U),Z)⊗Hom(H∗(F, Ḟ ),Z) −→ Z∗(U)⊗Hom(H∗(F, Ḟ ),Z) −→

−→ Hom(H∗(U),Z)⊗Hom(H∗(F, Ḟ ),Z) −→ 0. (20)

Using Lemma 1, for the exact sequence (20), there is an exact sequence of inverse systems

0 −→
{

Hom(B∗−1(U))⊗Hom(H∗(F, Ḟ ),Z)
}
−→

{
Z∗(U)⊗Hom(H∗(F, Ḟ ),Z)

}
−→

−→
{

Hom(H∗(U))⊗Hom(H∗(F, Ḟ ),Z)
}
−→ 0,

which, by Theorem 1, generates an exact sequence

0 −→ lim
←−

{
Hom(B∗−1(U))⊗Hom(H∗(F, Ḟ ),Z)

}
−→ lim

←−

{
Z∗(U)⊗Hom(H∗(F, Ḟ ),Z)

}
−→

−→ lim
←−

{
Hom(H∗(U))⊗Hom(H∗(F, Ḟ ),Z)

}
−→ · · · . (21)

Since B∗−1(U) and H∗(F, Ḟ ) are free abelian groups, by Lemma 4, B∗−1(U) ⊗ HC(F, Ḟ ) is a free abelian
group. Using Lemma 7, we have

a) an epimorphism

lim
←−

Ext(B∗−1(U)⊗H∗(F, Ḟ ),Z) −→ lim
←−

(2) Hom(B∗−1(U)⊗H∗(F, Ḟ ),Z) −→ 0;

b) an isomorphism

lim
←−

(i) Ext(B∗−1(U)⊗H∗(F, Ḟ ),Z) ≈ lim
←−

(i+2) Hom(B∗−1(U)⊗H∗(F, Ḟ ),Z) for i ≥ 1;

Therefore, there is the equality

lim
←−

(i) Hom(B∗−1(U)⊗H∗(F, Ḟ ),Z) = 0, i ≥ 2. (22)

From the exact sequence (21) and equality (22) it follows that for i ≥ 2, there is an isomorphism

lim
←−

(i){Z∗(U)⊗Hom(H∗(F, Ḟ ),Z)} ≈ lim
←−

(i){Hom(H∗(U)⊗H∗(F, Ḟ ),Z)}.
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Consider the commutative diagram

lim
←−

(i){Z∗(U)⊗Hom(H∗(F, Ḟ ),Z)} ≈

��

lim
←−

(i){Hom(H∗(U)⊗H∗(F, Ḟ ),Z)}

lim
←−

(i){H∗(U)⊗Hom(H∗(F, Ḟ ),Z)} // lim
←−

(i){Hom(H∗(U)⊗H∗(F, Ḟ ),Z)}.

For i ≥ 2, there is a split exact sequence

0 −→ lim
←−

(i){Ext(H∗−1(U),Z)⊗Hom(H∗(F, Ḟ ),Z)} −→ lim
←−

(i){H∗(U)⊗Hom(H∗(F, Ḟ ),Z)} −→

−→ lim
←−

(i){Hom(H∗(U)⊗H∗(F, Ḟ ),Z)} −→ 0. (23)

Using the exact sequence (19), the split exact sequence (23), Lemma 6 b), Lemma 7 b) and the Yoneda
method, we have a finite exact sequence

0 −→ lim
←−

(2∗−3){H1(U)⊗H∗(F, Ḟ )} −→ · · · −→ lim
←−

(1){H∗−1(U)⊗H∗(F, Ḟ )} −→

−→ H∗(B)⊗H∗(F, Ḟ ) −→ lim
←−
{H∗(U)⊗H∗(F, Ḟ )} −→ lim

←−
(2){H∗−1(U)⊗H∗(F, Ḟ )} −→

−→ · · · −→ lim
←−

(2∗−2){H1(U)⊗H∗(F, Ḟ )} −→ 0. (24)

Exact sequences (13), (24) and the homomorphisms Φ∗ and {Φ∗U} induce a commutative diagram

· · · // lim
←−

(3)
{
H∗−2(U)⊗H∗(F, Ḟ )

}
//

lim
←−

(3)Φ∗U

��

lim
←−

(1)
{
H∗−1(U)⊗H∗(F, Ḟ )

}
//

lim
←−

(1)Φ∗U

��

H∗(B)⊗H∗(F, Ḟ ) //

Φ∗

��
· · · // lim

←−
(3)H∗−2(EU , ĖU ) // lim

←−
(1)H∗−1(EU , ĖU ) // H∗(E, Ė) //

// lim
←−

{
H∗(U)⊗H∗(F, Ḟ )

}
//

lim
←−

Φ∗U

��

lim
←−

(2)
{
H∗−1(U)⊗H∗(F, Ḟ )

}
//

lim
←−

(2)Φ∗U

��

· · ·

// lim
←−

H∗(E, Ė) // lim
←−

(2)H∗−1(E, Ė) // · · · .

(25)

By Theorem 5.7.10 [7], for each U ∈ U = {U}, there is an isomorphism

Φ∗U : H∗(U)⊗H∗(F, Ḟ )
∼−→ H∗(EU , ĖU ).

Hence the homomorphism {Φ∗U} of inverse systems

{Ψ∗U} : {H∗(U)⊗H∗(F, Ḟ )} −→ {H∗(EU , ĖU )}

is an isomorphism and for i ≥ 0 induces an isomorphism

lim
←−

(i){H∗(U)⊗H∗(F, Ḟ )} ∼−→ lim
←−

(i){H∗(EU , ĖU )}. (26)

By five Lemma [7, Lemma 4.5.11] and isomorphisms (26), from the commutative diagram (25) it follows that
Φ∗ is an isomorphism. �
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