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INVERTIBILITY OF FOURIER CONVOLUTION OPERATORS WITH

PIECEWISE CONTINUOUS SYMBOLS ON BANACH FUNCTION SPACES

CLÁUDIO FERNANDES1, ALEXEI KARLOVICH1 AND MÁRCIO VALENTE2

Dedicated to Professor Roland Duduchava on the occasion of his 75th birthday

Abstract. We extend results on the invertibility of Fourier convolution operators with piecewise

continuous symbols on the Lebesgue space Lp(R), p ∈ (1,∞), obtained by Roland Duduchava in the

late 1970s, to the setting of a separable Banach function space X(R) such that the Hardy–Littlewood
maximal operator is bounded on X(R) and on its associate space X′(R). We specify our results in

the case of rearrangement-invariant spaces with suitable Muckenhoupt weights.

1. Introduction

Let PC be the C∗-algebra of all bounded piecewise continuous functions on the one-point com-
pactification of the real line Ṙ = R ∪ {∞}. By definition, a ∈ PC if and only if a ∈ L∞(R) and the
finite one-sided limits

a(x0 − 0) := lim
x→x0−0

a(x), a(x0 + 0) := lim
x→x0+0

a(x)

exist for each x0 ∈ Ṙ. The set of all discontinuities (i.e., jumps) of a function a ∈ PC is at most
countable (see, e.g., [5, Chap. II. Section 3, Theorem 3]).

We denote by S(R) the Schwartz class of all infinitely differentiable and rapidly decaying functions
(see, e.g., [16, Section 2.2.1]). Let F denote the Fourier transform defined on S(R) by

(Ff)(x) :=

∫
R

f(t)eitx dt, x ∈ R,

and let F−1 be the inverse of F defined on S(R) by

(F−1g)(t) =
1

2π

∫
R

g(x)e−itx dx, t ∈ R.

It is well known that these operators extend uniquely to the space L2(R). As usual, we will use the
symbols F and F−1 for the direct and inverse Fourier transform on L2(R). It is well known (see,
e.g., [16, Theorem 2.5.10]) that the Fourier convolution operator

W 0(a) := F−1aF (1.1)

is bounded on the space L2(R) for every a ∈ L∞(R). The function a is called the symbol of the
operator W 0(a).

Let X(R) be a Banach function space and X ′(R) be its associate space. Their technical definitions
are postponed to Section 2.1. The class of Banach function spaces is very large. It includes Lebesgue,
Orlicz, Lorentz spaces, variable Lebesgue spaces and their weighted analogues (see, e.g., [1, 7]). Let
B(X(R)) denote the Banach algebra of all bounded linear operators acting on X(R).
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Recall that the (non-centered) Hardy–Littlewood maximal function Mf of a function f ∈ L1
loc(R)

is defined by

(Mf)(x) := sup
I3x

1

|I|

∫
I

|f(y)| dy,

where the supremum is taken over all intervals I ⊂ R of finite length containing x. The Hardy–
Littlewood maximal operator M defined by the rule f 7→ Mf is a sublinear operator.

If X(R) is separable, then L2(R) ∩X(R) is dense in X(R) (see, e.g., [12, Lemma 2.2]). A function
a ∈ L∞(R) is called a Fourier multiplier on X(R) if the convolution operator W 0(a) defined by (1.1)
maps L2(R)∩X(R) into X(R) and extends to a bounded linear operator on X(R). The function a is
called the symbol of the Fourier convolution operator W 0(a). The setMX(R) of all Fourier multipliers
on X(R) is a unital normed algebra under pointwise operations and the norm

‖a‖MX(R)
:=
∥∥W 0(a)

∥∥
B(X(R)) .

If, in addition, the Hardy–Littlewood maximal operator M is bounded on the space X(R), or on its
associate space X ′(R), then for all a ∈MX(R),

‖a‖L∞(R) ≤ ‖a‖MX(R) . (1.2)

The constant 1 on the right-hand side of (1.2) is best possible (see [19, Corollary 4.2] and [20, The-
orem 2.3]). Once (1.2) is available, one can show that MX(R) is a Banach algebra (see [20, Corol-
lary 2.4]).

Suppose that a : R→ C is a function of the finite total variation V (a) given by

V (a) := sup

n∑
k=1

|a(xk)− a(xk−1)|,

where the supremum is taken over all partitions of R of the form

−∞ < x0 < x1 < · · · < xn < +∞

with n ∈ N. The set V (R) of all functions of finite total variation on R with the norm

‖a‖V (R) := ‖a‖L∞(R) + V (a)

is a unital Banach algebra. By [13, Theorem 3.27], V (R) ⊂ PC.
Let X(R) be a separable Banach function space such that the Hardy–Littlewood maximal operator

M is bounded on X(R) and on its associate space X ′(R). It follows from [17, Theorem 4.3] that if
a ∈ V (R), then the convolution operator W 0(a) is bounded on the space X(R), and

‖W 0(a)‖B(X(R)) ≤ cX‖a‖V (R) (1.3)

where cX is a positive constant depending only on X(R).
For the Lebesgue spaces Lp(R), 1 < p <∞, inequality (1.3) is usually called Stechkin’s inequality.

Its proofs can be found, e.g., in [3, Theorem 17.1], [9, Theorem 2.11], [10, Theorem 6.2.5].
For a subset S of a Banach space E, let closE(S) denote the closure of S with respect to the norm

of E. Let PC0 denote the set of all piecewise constant functions with finitely many jumps. It is clear
that PC0 ⊂ V (R) ⊂ PC. It follows from [9, Lemma 2.10] that PC = closL∞(R)

(
PC0

)
. Hence

PC = closL∞(R)
(
PC0

)
= closL∞(R)

(
V (R)

)
. (1.4)

For a separable Banach function space X(R) such that the Hardy–Littlewood maximal operator
M is bounded on X(R) and on its associate space X ′(R), consider the following Banach algebras of
Fourier multipliers:

PC0
X(R) := closMX(R)

(
PC0

)
, PCX(R) := closMX(R)

(
V (R)

)
.

It follows from (1.2) and (1.4) that

PC0
X(R) ⊂ PCX(R) ⊂ PC.
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Therefore, it is natural to refer to PC0
X(R) and PCX(R) as algebras of piecewise continuous Fourier

multipliers. For 1 < p < ∞, the algebras PC0
Lp(R) and PCLp(R) were introduced by Duduchava

(see [9, Chap. 1, Section 2]).
The aim of this paper is to study the invertibility of convolution operators W 0(a) with piecewise

continuous symbols a ∈ PC0
X(R) on the Banach function spaces. Our main result is the following

Theorem 1.1. Let X(R) be a separable Banach function space such that the Hardy–Littlewood max-
imal operator M is bounded on the space X(R) and on its associate space X ′(R). Suppose that
a ∈ PC0

X(R). For the operator W 0(a) to be invertible on the space X(R), it is necessary and sufficient

that
ess inft∈R |a(t)| > 0.

For the Lebesgue spaces Lp(R), 1 < p < ∞, the above result was obtained by Roland Duduchava
in [9, Theorem 2.18].

Question 1.2. Let X(R) be a separable Banach function space such that the Hardy–Littlewood
maximal operator M is bounded on the space X(R) and on its associate space X ′(R). Is it true that
PC0

X(R) = PCX(R)?

Note that for the Lebesgue spaces Lp(R), the positive answer follows from [9, Remark 2.12]:

PC0
Lp(R) = PCLp(R), 1 < p <∞. (1.5)

Let P(R) denote the set of all measurable a.e. finite functions p(·) : R→ [1,∞] such that

1 < p− := ess inf
x∈R

p(x), ess sup
x∈R

p(x) =: p+ <∞.

By Lp(·)(R) we denote the set of all complex-valued measurable functions f on R such that

Ip(·)(f/λ) :=

∫
R

|f(x)/λ|p(x)dx <∞

for some λ > 0. This set becomes a separable and reflexive Banach function space when equipped
with the norm

‖f‖Lp(·)(R) := inf
{
λ > 0 : Ip(·)(f/λ) ≤ 1

}
,

and its associate space is isomorphic to the space Lp
′(·)(R), where

1/p(x) + 1/p′(x) = 1 for a.e. x ∈ R
(see, e.g., [7, Chap. 2] or [8, Chap. 3]). It is easy to see that if p is constant, then Lp(·)(R) is nothing
but the standard Lebesgue space Lp(R). The space Lp(·)(R) is referred to as a variable Lebesgue
space. By [8, Theorem 5.7.2], the Hardy–Littlewood maximal operator M is bounded on Lp(·)(R) if

and only if it is bounded on Lp
′(·)(R). As it is shown in [18, Theorem 4.2], in this case

PC0
Lp(·)(R) = PCLp(·)(R).

The proof of this equality is based on an analogue of the Riesz-Thorin interpolation theorem for
variable Lebesgue spaces. In Section 3, we show that the answer to Question 1.2 is positive also for
rearrangement-invariant Banach function spaces with suitable Muckenhoupt weights. Our proof is
based on the Boyd interpolation theorem [6].

For general Banach function spaces, interpolation tools are not available. Hence one cannot prevent
that the answer to Question 1.2 might be negative. In this situation it would be interesting to answer
the following.

Question 1.3. Does Theorem 1.1 remain true for the algebra PCX(R) in the place of PC0
X(R)?

The paper is organized as follows. Section 2 contains definitions and properties of a Banach function
space and its associate space (see, e.g., [23] and [1, Chap. 1]), of a rearrangement-invariant Banach
function space (see, e.g., [1, Chap. 3]) and its Boyd indices [6], and of a weighted rearrangement-
invariant Banach function space with a suitable Muckenhoupt weight (see, e.g., [2, Chap. 2]). In
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Section 3, we first prove that the answer to Question 1.2 is positive for the Lebesgue spaces Lp(R, w),
1 < p < ∞, with Muckenhoupt weights w ∈ Ap(R) using the stability of Muckenhoupt weights and
the Stein-Weiss interpolation theorem. Further, we extend this result to the case of a weighted Banach
function space X(R, w) built upon a separable rearrangement-invariant space X(R) with the Boyd
indices αX , βX ∈ (0, 1) and a suitable Muckenhoupt weight w ∈ A1/αX (R) ∩ A1/βX (R). In Section 4,
we recall the definition of M -equivalence of elements of a Banach algebra and formulate the Gohberg-
Krupnik local principle [14, 15]. We apply it two times. First, we show that the algebra PC0

X(R) is

inverse closed in the algebra L∞(R). Finally, we prove Theorem 1.1 employing the local principle.
We would like to dedicate this work to Roland Duduchava, whose ideas penetrate the entire paper.

This work was started as the Undergraduate Research Opportunity Project of the third author at the
NOVA University of Lisbon in January-February of 2020 under the supervision of the second author.

2. Preliminaries

2.1. Banach function spaces. Let R+ := (0,∞) and S ∈ {R+,R}. The set of all Lebesgue mea-
surable complex-valued functions on S is denoted by M(S). Let M+(S) be the subset of functions in
M(S) whose values lie in [0,∞]. The Lebesgue measure of a measurable set E ⊂ S is denoted by |E|
and its characteristic function is denoted by χE . Following [23, p. 3] and [1, Chap. 1, Definition 1.1],
a mapping ρ : M+(S)→ [0,∞] is called a Banach function norm if, for all functions f, g, fn (n ∈ N) in
M+(S), for all constants a ≥ 0, and for all measurable subsets E of S, the following properties hold:

(A1) ρ(f) = 0⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),
(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),
(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),
(A4) E is bounded⇒ ρ(χE) <∞,
(A5) E is bounded⇒

∫
E
f(x) dx ≤ CEρ(f)

with CE ∈ (0,∞) which may depend on E and ρ, but is independent of f . When functions differing
only on a set of measure zero are identified, the set X(S) of all functions f ∈M(S) for which ρ(|f |) <∞
is called a Banach function space. For each f ∈ X(S), the norm of f is defined by

‖f‖X(S) := ρ(|f |).

Under the natural linear space operations and under this norm, the set X(S) becomes a Banach space
(see [23, Chap. 1, §1, Theorem 1] or [1, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function
norm, its associate norm ρ′ is defined on M+(S) by

ρ′(g) := sup

{∫
S

f(x)g(x) dx : f ∈M+(S), ρ(f) ≤ 1

}
, g ∈M+(S).

It is a Banach function norm itself [23, Chap. 1, §1] or [1, Chap. 1, Theorem 2.2]. The Banach function
space X ′(S) determined by the Banach function norm ρ′ is called the associate space (Köthe dual) of
X(S). The associate space X ′(S) is naturally identified with a subspace of the (Banach) dual space
[X(S)]∗.

Remark 2.1. We note that our definition of a Banach function space is slightly different from that
found in [1, Chap. 1, Definition 1.1]. In particular, in Axioms (A4) and (A5) we assume that the set E
is a bounded set, whereas it is sometimes assumed that E merely satisfies |E| <∞. We do this so that
the weighted Lebesgue spaces with Muckenhoupt weights satisfy Axioms (A4) and (A5). Moreover, it
is well known that all main elements of the general theory of Banach function spaces work with (A4)
and (A5) stated for bounded sets [23] (see also the discussion at the beginning of Chapter 1 on page 2
of [1]). Unfortunately, we overlooked that the definition of a Banach function space in our previous
works [11, 12, 17, 19, 21] had to be changed by replacing in Axioms (A4) and (A5) the requirement
of |E| < ∞ by the requirement that E is a bounded set to include weighted Lebesgue spaces in our
considerations. However, the results proved in the above papers remain true.



INVERTIBILITY OF FOURIER CONVOLUTION OPERATORS 53

2.2. Rearrangement-invariant Banach function spaces. Suppose that S ∈ {R,R+}. Let M0(S)
and M+

0 (S) be the classes of a.e. finite functions in M(S) and M+(S), respectively. The distribution
function µf of f ∈M0(S) is given by

µf (λ) :=
∣∣{x ∈ S : |f(x)| > λ}

∣∣, λ ≥ 0.

Two functions f, g ∈ M0(S) are said to be equimeasurable if µf (λ) = µg(λ) for all λ ≥ 0. The
non-increasing rearrangement of f ∈M0(S) is the function defined by

f∗(t) := inf{λ≥ 0 : µf (λ) ≤ t}, t ≥ 0.

We here use the standard convention that inf ∅ = +∞.
A Banach function norm ρ : M+(S) → [0,∞] is called rearrangement-invariant if for every pair

of equimeasurable functions f, g ∈ M+
0 (S) the equality ρ(f) = ρ(g) holds. In that case, the Banach

function space X(S) generated by ρ is said to be a rearrangement-invariant Banach function space
(or simply, rearrangement-invariant space). The Lebesgue, Orlicz, and Lorentz spaces are classical
examples of rearrangement-invariant Banach function spaces (see, e.g., [1] and references therein).
By [1, Chap. 2, Proposition 4.2], if a Banach function space X(S) is rearrangement-invariant, then its
associate space X ′(S) is rearrangement-invariant, too.

2.3. Boyd indices. Suppose X(R) is a rearrangement-invariant Banach function space generated
by a rearrangement-invariant Banach function norm ρ. In this case, the Luxemburg representation
theorem [1, Chap. 2, Theorem 4.10] provides a unique rearrangement-invariant Banach function norm
ρ over the half-line R+ equipped with the Lebesgue measure, defined by

ρ(h) := sup

{ ∫
R+

g∗(t)h∗(t) dt : ρ′(g) ≤ 1

}
,

and such that ρ(f) = ρ(f∗) for all f ∈M+
0 (R). The rearrangement-invariant Banach function space

generated by ρ is denoted by X(R+).
For each t > 0, let Et denote the dilation operator defined on M(R+) by

(Etf)(s) = f(st), 0 < s <∞.

With X(R) and X(R+) as above, let hX(t) denote the operator norm of E1/t as an operator on

X(R+). By [1, Chap. 3, Proposition 5.11], for each t > 0, the operator Et is bounded on X(R+)
and the function hX is increasing and submultiplicative on (0,∞). The Boyd indices of X(R) are the
numbers αX and βX defined by

αX := sup
t∈(0,1)

log hX(t)

log t
, βX := inf

t∈(1,∞)

log hX(t)

log t
.

By [1, Chap. 3, Proposition 5.13], 0 ≤ αX ≤ βX ≤ 1. The Boyd indices are said to be nontrivial
if αX , βX ∈ (0, 1). The Boyd indices of the Lebesgue space Lp(R), 1 ≤ p ≤ ∞, are both equal to
1/p. Note that the Boyd indices of a rearrangement-invariant space may be different [1, Chap. 3,
Exercises 6, 13].

The next theorem follows from the Boyd interpolation theorem [6, Theorem 1] for quasi-linear
operators of weak types (p, p) and (q, q). Its proof can also be found in [1, Chap. 3, Theorem 5.16]
and [22, Theorem 2.b.11].

Theorem 2.2. Let 1 ≤ q < p ≤ ∞ and X(R) be a rearrangement-invariant Banach function space
with the Boyd indices αX , βX satisfying

1/p < αX ≤ βX < 1/q.

Then there exists a constant Cp,q ∈ (0,∞) with the following property. If a linear operator
T : M(R) → M(R) is bounded on the Lebesgue spaces Lp(R) and Lq(R), then it is also bounded
on the rearrangement-invariant Banach function space X(R) and

‖T‖B(X(R)) ≤ Cp,q max
{
‖T‖B(Lp(R)), ‖T‖B(Lq(R))

}
. (2.1)
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Notice that estimate (2.1) is not stated explicitly in [1, 6, 22]. However, it can be extracted from
the proof of the Boyd interpolation theorem.

2.4. Lebesgue spaces with Muckenhoupt weights. A measurable function w : R → [0,∞] is
called a weight if the set w−1({0,∞}) has measure zero. For 1 < p < ∞, the Muckenhoupt class

Ap(R) is defined as the class of all weights w : R→ [0,∞] such that w ∈ Lploc(R), w−1 ∈ Lp
′

loc(R) and

sup
I

(
1

|I|

∫
I

wp(x) dx

)1/p(
1

|I|

∫
I

w−p
′
(x) dx

)1/p′

<∞,

where 1/p + 1/p′ = 1 and the supremum is taken over all intervals I ⊂ R of finite length |I|. Since

w ∈ Lploc(R) and w−1 ∈ Lp
′

loc(R), the weighted Lebesgue space

Lp(R, w) := {f ∈M(R) : fw ∈ Lp(R)}
is a separable Banach function space (see, e.g., [21, Lemma 2.4]) with the norm

‖f‖Lp(R,w) :=

(∫
R

|f(x)|pwp(x) dx

)1/p

.

2.5. Rearrangement-invariant Banach function spaces with suitable Muckenhupt weights.
LetX(R) be a Banach function space generated by a Banach function norm ρ. We say that f ∈ Xloc(R)
if fχE ∈ X(R) for every bounded measurable set E ⊂ R.

Lemma 2.3 ([21, Lemma 2.4]). Let X(R) be a Banach function space generated by a Banach function
norm ρ, let X ′(R) be its associate space, and let w : R→ [0,∞] be a weight. Suppose that w ∈ Xloc(R)
and 1/w ∈ X ′loc(R). Then

ρw(f) := ρ(fw), f ∈M+(R),

is a Banach function norm and

X(R, w) := {f ∈M(R) : fw ∈ X(R)}
is a Banach function space generated by the Banach function norm ρw. The space X ′(R, w−1) is the
associate space of X(R, w).

Lemma 2.4 ([11, Lemma 2.3]). Let X(R) be a separable rearrangement-invariant Banach function
space and X ′(R) be its associate space. Suppose that the Boyd indices of X(R) satisfy 0 < αX , βX < 1
and let

w ∈ A1/αX (R) ∩A1/βX (R). (2.2)

Then
(a) w ∈ Xloc(R) and 1/w ∈ X ′loc(R);
(b) the Banach function space X(R, w) is separable;
(c) the Hardy–Littlewood maximal operator M is bounded on the Banach function space X(R, w)

and on its associate space X ′(R, w−1).

We say that a weight w is suitable for a rearrangement-invariant Banach function space X(R) with
the Boyd indices αX , βX satisfying αX , βX ∈ (0, 1) if (2.2) is fulfilled.

3. PCX(R,w) as the Closure of the Set of Piecewise Constant Functions

3.1. The case of Lebesgue spaces with Muckenhoupt weights. Let us start with an important
lemma due to Duduchava.

Lemma 3.1 ([9, Lemma 2.10]). For every function a ∈ V (R), there exists a sequence {an}n∈N in
PC0 such that

lim
n→∞

‖an − a‖L∞(R) = 0, sup
n∈N

V (an) ≤ V (a).

We now extend equality (1.5) to the case of Lebesgue spaces with Muckenhoupt weights.
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Theorem 3.2. Let 1 < p <∞ and w ∈ Ap(R). Then

PC0
Lp(R,w) = PCLp(R,w). (3.1)

Proof. The proof is analogous to that of [18, Theorem 4.2] (see also [11, Lemma 3.1]). First of
all, we observe that if w ∈ Ap(R), then the Stechkin-type inequality (1.3) is fulfilled in Lp(R, w)
(see [3, Theorem 17.1] and also Lemma 2.4).

Since PC0 ⊂ V (R), we, obviously, have

PC0
Lp(R,w) ⊂ PCLp(R,w). (3.2)

If w ∈ Ap(R), then w1+δ2 ∈ Ap(1+δ1)(R) whenever |δ1| and |δ2| are sufficiently small (see, e.g., [2,
Theorem 2.31]). If p ≥ 2, then one can find sufficiently small δ1, δ2 > 0 and a small number θ ∈ (0, 1)
such that

1

p
=

1− θ
2

+
θ

p(1 + δ1)
, w = 11−θw(1+δ2)θ, w1+δ2 ∈ Ap(1+δ1)(R). (3.3)

If 1 < p < 2, then one can find a sufficiently small number δ2 > 0, a number δ1 < 0 with sufficiently
small |δ1|, and a number θ ∈ (0, 1) such that all conditions in (3.3) are fulfilled. Let us use the
following abbreviations:

Mp :=MLp(R,w), Mpθ :=MLp(1+δ1)(R,w1+δ2 ),

Bp := B(Lp(R, w)), Bpθ := B(Lp(1+δ1)(R, w1+δ2)).

Let a ∈ PCLp(R,w) and ε > 0. Then there exists b ∈ V (R) such that

‖a− b‖Mp < ε/2. (3.4)

By Lemma 3.1, there exists a sequence {bn}n∈N in PC0 such that

lim
n→∞

‖bn − b‖L∞(R) = 0, sup
n∈N

V (bn) ≤ V (b). (3.5)

Then there exists N ∈ N such that

sup
n≥N
‖bn‖V (R) ≤ 2‖b‖V (R). (3.6)

It follows from the Stechkin-type inequality (1.3) and inequality (3.6) that for all n ≥ N ,

‖bn − b‖Mpθ
≤ ‖bn‖Mpθ

+ ‖b‖Mpθ
≤ 3cθ‖b‖V (R), (3.7)

where cθ := cLp(1+δ1)(R,w1+δ2 ).

Taking into account (3.3), we obtain from the Stein-Weiss interpolation theorem (see, e.g.,
[1, Chap. 3, Theorem 3.6]) that for all n ∈ N,

‖bn − b‖Mp
= ‖W 0(bn − b)‖Bp
≤ ‖W 0(bn − b)‖1−θB(L2(R))‖W

0(bn − b)‖θBpθ
= ‖bn − b‖1−θL∞(R)‖bn − b‖

θ
Mpθ

. (3.8)

Combining (3.5), (3.7) and (3.8), we see that there exists n0 ∈ N such that

‖bn0
− b‖Mp

< ε/2. (3.9)

Inequalities (3.4) and (3.9) imply that for every ε > 0, there exists c = bn0
∈ PC0 such that

‖a− c‖Mp < ε, whence a ∈ closMp

(
PC0

)
= PC0

Lp(R,w). Then

PCLp(R,w) ⊂ PC0
Lp(R,w). (3.10)

Gathering embeddings (3.2) and (3.10), we arrive at equality (3.1). �
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3.2. The case of separable rearrangement-invariant spaces with suitable Muckenhoupt
weights. We are now in a position to prove the main result of this section and to answer Ques-
tion 1.2 for separable rearrangement-invariant spaces Banach function spaces with suitable Mucken-
houpt weights.

Theorem 3.3. Let X(R) be a separable rearrangement-invariant Banach function space with the Boyd
indices satisfying 0 < αX , βX < 1. Suppose that a weight w belongs to A1/αX (R) ∩A1/βX (R). Then

PC0
X(R,w) = PCX(R,w). (3.11)

Proof. Since PC0 ⊂ V (R), we, obviously, have

PC0
X(R,w) ⊂ PCX(R,w). (3.12)

To prove the reverse inclusion, let a ∈ PCX(R,w) and ε > 0. Then there exists b ∈ V (R) such that

‖a− b‖MX(R,w)
< ε/2. (3.13)

Since αX , βX ∈ (0, 1) and w ∈ A1/αX (R) ∩ A1/βX (R), it follows from [2, Theorem 2.31] that there
exist p and q such that

1 < q < 1/βX ≤ 1/αX < p <∞, w ∈ Ap(R) ∩Aq(R). (3.14)

Let Cp,q be the constant from estimate (2.1). As in the proof of inequality (3.9) (see the proof of the
previous theorem), it can be shown that there exists bn0 ∈ PC0 for some n0 ∈ N such that

‖b− bn0
‖MLp(R,w)

<
ε

2Cp,q
, ‖b− bn0

‖MLq(R,w)
<

ε

2Cp,q
. (3.15)

It follows from (3.14), (3.15) and Theorem 2.2 that

‖b− bn0
‖MX(R,w)

= ‖W 0(b− bn0
)‖B(X(R,w))

= ‖wW 0(b− bn0)w−1I‖B(X(R))

≤ Cp,q max
{
‖wW 0(b− bn0

)w−1I‖B(Lp(R)), ‖wW 0(b− bn0
)w−1I‖B(Lq(R))

}
= Cp,q max

{
‖W 0(b− bn0

)‖B(Lp(R,w)), ‖W 0(b− bn0
)‖B(Lq(R,w))

}
= Cp,q max

{
‖b− bn0

‖MLp(R,w)
, ‖b− bn0

‖MLq(R,w)

}
< ε/2. (3.16)

Inequalities (3.13) and (3.16) imply that for every ε > 0, there exists c = bn0 ∈ PC0 such that
‖a− c‖MX(R,w)

< ε, whence a ∈ closMX(R,w)

(
PC0

)
= PC0

X(R,w). Then

PCX(R,w) ⊂ PC0
X(R,w). (3.17)

The desired equality (3.11) follows now from the embeddings (3.12) and (3.17). �

Combining Theorem 3.3 with Theorem 1.1, we arrive at the following

Corollary 3.4. Let X(R) be a separable rearrangement-invariant Banach function space with the
Boyd indices satisfying 0 < αX , βX < 1. Suppose that a weight w belongs to A1/αX (R) ∩ A1/βX (R).

Suppose that a ∈ PCX(R,w). For the operator W 0(a) to be invertible on the Banach function space
X(R, w), it is necessary and sufficient that

ess inft∈R |a(t)| > 0.

4. The Gohberg-Krupnik Local Principle in Action

4.1. M-equivalence. Let A be a unital Banach algebra. A subset M ⊂ A is called a localizing class
if 0 /∈ M and for any f1, f2 ∈ M there exists a third element f ∈ M such that fjf = ffj = f for
j = 1, 2.

Two elements a, b ∈ A are said to be M -equivalent from the left (resp., from the right) if

inf
f∈M

‖(a− b)f‖ = 0
(

resp. inf
f∈M

‖f(a− b)‖ = 0
)
.
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If a and b are both M -equivalent from the left and from the right, then they are said to be M -

equivalent. In this case we write a
M∼ b.

Because of the completeness, let us give a simple proof of the continuity of M -equivalence, which
was mentioned implicitly in [9, p. 21].

Proposition 4.1. Let A be a unital Banach algebra, M a localizing class of A and {xn}n∈N, and
{yn}n∈N be the sequences of elements of A, convergent to x and y, respectively. Suppose that

sup
a∈M
‖a‖ <∞.

If xn
M∼ yn for all n ∈ N, then x

M∼ y.

Proof. Fix ε > 0. Let a ∈M and L := supa∈M ‖a‖. Then, for all n ∈ N, we have

‖(x− y)a‖ = ‖(x− xn)a+ (yn − y)a+ (xn − yn)a‖
≤ ‖(x− xn)a‖+ ‖(yn − y)a‖+ ‖(xn − yn)a‖
≤ ‖x− xn‖ ‖a‖+ ‖yn − y‖ ‖a‖+ ‖(xn − yn)a‖
≤ L(‖x− xn‖+ ‖y − yn‖) + ‖(xn − yn)a‖. (4.1)

Since xn → x and yn → y, there exists N ∈ N such that for all n > N ,

‖x− xn‖ <
ε

4L
and ‖y − yn‖ <

ε

4L
. (4.2)

On the other hand, xn
M∼ yn for every n ∈ N. In particular, xN+1

M∼ yN+1. Therefore, by the definition
of M -equivalence from the left, there is an a′ ∈M such that

‖(xN+1 − yN+1)a′‖ < ε

2
. (4.3)

Combining inequalities (4.1)–(4.3), we get

∀ε > 0 ∃a′ ∈M : ‖(x− y)a′‖ < ε,

i.e., x and y are M -equivalent from the left. Similarly, we prove that x and y are M -equivalent from
the right. Thus x and y are M -equivalent. �

4.2. The local principle. Let A be a unital Banach algebra and M be a localizing class in A. An
element a ∈ A is called M -invertible from the left (resp., from the right) if there are the elements
b ∈ A and f ∈ M such that baf = f (resp., fab = f). Finally, a ∈ A is said to be M -invertible if it
is M -invertible from the left and from the right.

Let T be an index set. A system {Mτ}τ∈T of localizing classes is said to be covering if from each
choice {fτ}τ∈T with fτ ∈ Mτ there can be selected a finite number of elements fτ1 , . . . , fτm whose
sum is invertible in A.

Let M := ∪τ∈TMτ and let ComM stand for the commutant of M , that is, the set of all a ∈ A
which commute with every element in M .

The following theorem was obtained by Gohberg and Krupnik [15]. Its proof can be found in several
books (see, e.g., [4, Theorem 1.32], [14, Section 5.1], [24, Theorem 2.4.5]).

Theorem 4.2 (Gohberg, Krupnik). Let A be a unital Banach algebra, let T be an index set, let
{Mτ}τ∈T be a covering system of localizing classes, and let a ∈ ComM . Suppose that, for each τ ∈ T ,
the element a is Mτ -equivalent from the left (resp., from the right) to aτ ∈ A. Then the element a is
left-invertible (resp., right-invertible) in A if and only if aτ is Mτ -invertible from the left (resp., from
the right) for all τ ∈ T .

4.3. The algebra PC0
X(R) is inverse closed in the algebra L∞(R). The first step in the proof

of Theorem 1.1 consists in establishing the inverse closedness of the Banach algebra of piecewise
continuous Fourier multipliers PC0

X(R) in the C∗-algebra L∞(R). Although the proof of the following

lemma is similar to that of [9, Lemma 2.17], because of the completeness of presentation, we give it
here.
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Lemma 4.3. Let X(R) be a separable Banach function space such that the Hardy–Littlewood maximal
operator M is bounded on the space X(R) and on its associate space X ′(R). If a ∈ PC0

X(R) and

ess inft∈R |a(t)| > 0, (4.4)

then a−1 ∈ PC0
X(R).

Proof. For each x ∈ Ṙ, consider the sets of characteristic functions of intervals of Ṙ given by

M−x :=
{
χ[c,x] : c ∈ R, c < x

}
, M+

x :=
{
χ[x,d] : d ∈ R, x < d

}
, x ∈ R, (4.5)

and

M+
∞ :=

{
χ{∞}∪(−∞,d] : d ∈ R

}
, M−∞ :=

{
χ[c,+∞)∪{∞} : c ∈ R

}
, x =∞. (4.6)

We claim that
{

M−x ,M
+
x

}
x∈Ṙ constitutes a covering system of localizing classes of PC0

X(R) (here

the index set T coincides with the union of two copies of Ṙ, one of which corresponds to the left
neighborhoods and the other corresponds to the right neighborhoods of x ∈ Ṙ). First note that every
element of M±x is a characteristic function that, obviously, belongs to PC0. Therefore M±x ⊂ PC0

X(R)

for all x ∈ Ṙ. Moreover, by the definition of M±x , we have 0 /∈ M±x for all x ∈ Ṙ.

Now fix x ∈ Ṙ and χ1, χ2 ∈ M±x . By the definition, χ1 and χ2 are characteristic functions of
intervals I1 and I2, respectively. Let χ3 be the characteristic function of I3 := I1 ∩ I2. We find that
χ3 ∈ M±x and

χ1χ3 = χ2χ3 = χ3 = χ3χ2 = χ3χ1.

Therefore,
{

M−x ,M
+
x

}
x∈Ṙ is a family of localizing classes of PC0

X(R).

Consider now an arbitrary choice of elements{
χ−x , χ

+
x

}
x∈Ṙ ⊆

{
M−x ,M

+
x

}
x∈Ṙ .

In view of the compactness of Ṙ, there exist a finite number of points x1, x2, . . . , xn in Ṙ such that
the functions χ−x1

, χ−x2
, . . . , χ−xn , χ

+
x1
, χ+

x2
, . . . , χ+

xn satisfy the following property:

g(t) :=

n∑
j=1

(
χ−xj (t) + χ+

xj (t)
)
≥ 1 for all t ∈ Ṙ. (4.7)

Since g is a linear combination of characteristic functions of intervals of Ṙ, we see that g : Ṙ→ N and
g ∈ PC0. Moreover, since g ≥ 1, we have g−1 = 1/g ∈ PC0. Hence, by the definition of PC0

X(R), we

conclude that g, g−1 ∈ PC0
X(R). Therefore,

{
M−x ,M

+
x

}
x∈Ṙ is a covering system of localizing classes of

PC0
X(R).

We have

a
M±x∼ a(x± 0) for x ∈ Ṙ, a ∈ PC0, (4.8)

since for each x ∈ Ṙ, there exist the functions χ±x ∈ M±x such that

[a(t)− a(x± 0)]χ±x (t) = 0 for a.e. t ∈ R.

It is clear that if x ∈ Ṙ, then for each χ±x ∈ M±x , we have ‖χ±x ‖V (R) = 3. Therefore, by the
Stechkin-type inequality (1.3),

sup
{
‖χ±x ‖MX(R) : χ±x ∈ M±x

}
≤ 3cX <∞. (4.9)

If a ∈ PC0
X(R), then there exists a sequence {an}n∈N in PC0 such that

‖a− an‖MX(R) → 0 as n→∞. (4.10)

Then, in view of inequality (1.2), we conclude that

‖a− an‖L∞(R) → 0 as n→∞. (4.11)
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Since a, an ∈ PC, for each x ∈ Ṙ there exist finite one-sided limits a(x ± 0) and an(x ± 0) and the

sets of discontinuities of a and an are at most countable. Hence (4.11) implies that for x ∈ Ṙ one has
an(x± 0)→ a(x± 0), as n→∞. Thus

‖an(x± 0)− a(x± 0)‖MX(R) → 0 as n→∞. (4.12)

Combining (4.8)–(4.10) and (4.12) with Proposition 4.1, we conclude that

a
M±x∼ a(x± 0) for x ∈ Ṙ, a ∈ PC0

X(R). (4.13)

On the other hand, by the hypothesis (4.4), we get a(x± 0) 6= 0 for x ∈ Ṙ. Therefore the constant

functions a(x± 0) are invertible in the Banach algebra PC0
X(R) and a(x± 0)−1 ∈ PC0

X(R) for x ∈ Ṙ.

Hence a(x± 0) is M±x -invertible for every x ∈ Ṙ. Finally, taking into account (4.13) and applying the
Gohberg-Krupnik Local Principle (Theorem 4.2), we get that a is invertible in the algebra PC0

X(R),

i.e., a−1 ∈ PC0
X(R). �

4.4. Proof of Theorem 1.1. The proof presented below follows that of [9, Theorem 2.18].
If (4.4) is fulfilled, then by Lemma 4.3, we have a−1 ∈ PC0

X(R). From the general properties of the

Fourier convolution operators on X(R), we get

W 0(a)W 0(a−1) = W 0(a−1)W 0(a) = I.

Therefore, the operator W 0(a) is invertible on X(R) and (W 0(a))−1 = W 0(a−1).

Suppose now that the operator W 0(a) is invertible on the space X(R). For each x ∈ Ṙ, let M±x be
defined by (4.5)–(4.6) and

M0,±
x :=

{
W 0(g) ∈ B(X(R)) : g ∈ M±x

}
.

We claim that
{

M0,−
x ,M0,+

x

}
x∈Ṙ constitutes a covering system of localizing classes in the Banach

algebra of bounded linear operators B(X(R)). Knowing that M±x is a localizing class in PC0
X(R), we

have 0 /∈ M±x . Therefore, 0 /∈ M0,±
x for all x ∈ Ṙ.

Consider now W 0(g1),W 0(g2) ∈ M0,±
x . Then g1, g2 ∈ M±x . Since M±x is a localizing class of PC0

X(R),

there exists g3 ∈ M±x such that

g1g3 = g2g3 = g3 = g3g2 = g3g1.

Therefore, W 0(g3) ∈ M0,±
x and

W 0(g1)W 0(g3) = W 0(g2)W 0(g3) = W 0(g3) = W 0(g3)W 0(g2) = W 0(g3)W 0(g1).

Hence
{

M0,−
x ,M0,+

x

}
x∈Ṙ is a family of localizing classes in the Banach algebra of bounded linear

operators B(X(R)).
Consider an arbitrary choice of elements{

W 0(g−x ),W 0(g+x )
}
x∈Ṙ ⊆

{
M0,−
x ,M0,+

x

}
x∈Ṙ .

Bearing in mind that
{

M−x ,M
+
x

}
x∈Ṙ is a covering system of localizing classes of the Banach algebra

PC0
X(R) (see the proof of Lemma 4.3), there exist the points x1, x2, . . . , xn ∈ Ṙ such that g−xi ∈ M−xi

and g+xi ∈ M+
xi for i ∈ {1, 2, . . . , n}, and the function

g :=

n∑
i=1

(
g−xi + g+xi

)
is invertible in the algebra PC0

X(R). It follows that the operator W 0(g) is invertible in the algebra

B(X(R)) and its inverse is equal to W 0(g−1) ∈ B(X(R)). Thus,
{

M0,−
x ,M0,+

x

}
x∈Ṙ forms a covering

system of localizing classes in the Banach algebra B(X(R)).

It follows from (4.13) that for all x ∈ Ṙ,

W 0(a)
M0,±
x∼ W 0(a(x± 0)) = a(x± 0)I.
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If there exists some x∗ ∈ Ṙ such that a(x∗−0) = 0 or a(x∗+0) = 0, then W 0(a)
M0,−
x∗∼ 0 or W 0(a)

M0,+
x∗∼ 0.

Since W 0(a) is invertible, applying Gohberg-Krupnik’s local principle (Theorem 4.2), we conclude that

0 is M0,−
x∗ -invertible or M0,+

x∗ -invertible. Therefore, 0 ∈ M0,−
x∗ ∪M0,+

x∗ which is a contradiction, since

M0,−
x∗ and M0,+

x∗ are localizing classes of B(X(R)). Thus, a(x ± 0) 6= 0 for all x ∈ Ṙ. Consequently,
(4.4) is fulfilled. �
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e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516 Caparica, Portugal
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