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ESTIMATION OF f-DIVERGENCE AND SHANNON ENTROPY BY LEVINSON
TYPE INEQUALITIES VIA LIDSTONE INTERPOLATING POLYNOMIAL

MUHAMMAD ADEEL'*, KHURAM ALI KHAN2, PILDA PECARIC3 AND JOSIP PECARIC*

Abstract. Using Lidstone interpolating polynomial, some new generalizations of Levinson-type
inequalities for 2p-convex functions are obtained. In seek of applications to information theory,
based on f-divergence, the estimates for new generalizations are also given. Moreover, inequalities
for Shannon entropies are deduced.

1. INTRODUCTION AND PRELIMINARIES

The theory of convex functions has encountered a fast advancement. This can be attributed to
a few causes: firstly, applications of convex functions are directly involved in the modern analysis,
secondly, many important inequalities are applications of convex functions which are closely related
to inequalities (see [24]).

Levinson generalized Ky Fan’s inequality for 3-convex functions in [17] (see also [20, p.32, Theorem
1]) in the form of the following

Theorem 1.1. Let f : 1= (0,2X) = R be such that f is 3-convex. Also, let 0 < x, < A and p, > 0.
Then

1 n 1 n 1 n
szpf(xp) _f<P prl"p> SJ_T prf(Q)\—xp)
" p=1 nop=1 =1

—f(;,n Ejjlppm—mp)). 1)

The difference of the right— and left-hand sides of (1) is the linear functional Ji(f(-)), which can
be written as follows:

Ji(f() = Pin prf(2)‘ —zp) = f(;n ZPP(Q/\ - xp)) - Pin prf(wp)

w15 Z_jpx> @)

In [25], Popoviciu noticed that Levinson’s inequality (1) is substantial on (0, 2)) for 3-convex functions,
while in [9], (see additionally [20, p.32, Theorem 2]) Bullen gave distinctive confirmation of Popoviciu’s
result and furthermore the converse of (1).

Theorem 1.2. (a) Let f : I = [(1,(2] — R be a 3-convex function and xg,yr € [(1,C] for k =
1,2,...,p such that

max{zy...z,} <min{y;...yn}, T1+1 =" =Ty + Yn (3)
and p, > 0, then
1 n 1 n 1 n 1 n
F prf(xp) - f(P prl'p> < F prf(yp) - f(P pryp>- (4)
no, g no no
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(b) If p, > 0, inequality (4) is valid for all xy,yr satisfying condition (3) and the function f is
continuous, then f is 3-convez.

The difference of the right— and left-hand sides of (4) is the linear functional Jo(f(+)), which can
be written as follows:

= % prf(yp) - f(Pl, ZPP?JP) - Pi prf(xp)
n =1 n =1 n =1
+ f <; prxp>. (5)
no,

Remark 1.1. It is essential to take note of the fact that under the suppositions of Theorem 1.1
and Theorem 1.2, if the function f is 3-convex, then Ji(f(-)) > 0 for k = 1,2, and Ji(f(:)) = 0 for
f(x) =z or f(x) = 2% or f is a constant function.

In the following result, Pecari¢ [21] (see also [20, p.32, Theorem 4]), proved inequality (4) by
weakening condition (3).

Theorem 1.3. Let f : 1 = [(1,¢2] = R be a 3-convex function, p, > 0, and let x,,y, € [(1,(2] such
that x, +y, = 2¢, forp=1,...,n &, + Tpn_p41 < 2¢ and p"z";fi;::ﬁ_”“ < ¢. Then inequality (4)
holds.

In [19], Mercer replaced the symmetry by the equality of the variances of points and proved in the
following result that inequality (4) still holds.

n
Theorem 1.4. Let f be a 3-convex function on [(1,(2], and let p, be positive such that » p, = 1.
p=1
Also, let z,, y, satisfy max{zy...z,} <min{y;...y,} and

n n 2 n n 2
pr («Tp - prxp> = pr (yp - pryp> , (6)
p=1 p=1 p=1 p=1

then (4) holds.

In [22], Pecarié¢ et al. gave probabilistic version of inequality (1) under condition (6). In [23] the
operator version of probabilistic Levinsons inequality is discussed.
The following Lemma is given in [28].

Lemma 1.1. If f € C*°[0,1], then

p—1

|:f(2l) )+f21 :| /G t, S f(2p) )

1=0
where O is a polynomial of degree 21 + 1 defined by the relations
Oo(t) =t, ©,(t) = Op-1(t), ©,(0) = O,(1) =0, p>1,

and
(t—1)s, s<t;
(s—=1)t, t<s,

Gi(t,s) = G(t,s) = { (7)

is homogeneous Green’s function of the differential operator % on [0,1], and with the successive
iterates of G(t, s),

1
Gylt,s) = /Gl(t,k)c:p,l(k,s)dk, p>2. (8)
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The Lidstone polynomial can be expressed in terms of G, (¢, s) as

1
/Gp (t, s)sds. (9)
0

Lidstone series representation of f € C??[(y, (2] given in [7] as follows:

p—1 p—1 T g
_ 2l (20 2l (21) — &
;@ [(G)e l( >+l_0 [7(¢2)© <62_<1>
C2
Ha-ar o (22 52_%1)1”(2”) o (10)
C1

In [8], Gazi¢ et al. considered the class of 2p-convex functions and generalized Jensen’s inequality and
converses of Jensen’s inequality by using Lidstone’s interpolating polynomials. Some other, new and
thought provoking results and their applications for various divergences, can be found in the literature
(see, for example, [1-6]). All generalizations existing in literature are only for one type of data points.
But in this paper and motivated by the above discussion, Levinson type inequalities are generalized
via the Lidstone interpolating polynomial involving two types of data points for higher order convex
functions. Moreover, a new functional is introduced based on f-divergence and then some estimates
for new functional are obtained. Some inequalities for Shannon entropies are also deduced.

2. MAIN RESULTS

Motivated by functional (5), we generalize the following results with the help of the Lidstone
interpolating polynomial given by (10).

2.1. Generalization of Bullen type inequalities for 2p-convex functions. First, we define the
following functional:
F: Let f:1; =[¢1,¢] — R be a function, z1,...,z, and y1,...,ym € [; such that

max{zy ...z, } <min{y; ... ym}- (11)

Also, let (p1,...,pn) € R™ and (¢1,...,¢m) € R™ be such that > p, =1, > ¢, = 1 and z,,y,,
p=1 o=1

Z DPpZTp, E qoYo € I;. Then
pP= 1 Q_

quf (¥o) <quyg) - Zj:lppf(mp) + f(ippwp) (12)

Theorem 2.1. Assume F with f € C*[(1, (] (p > 2) and let ©,(t) be the same as defined in Lemma
1.1. Then

JUE) =G = @I (00) + Yo (G - &) (&) I (&)
=1 =1
G2
=t [I(6,00) o 0 (13)

G
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. - G-y Co— 201 ol
J(@z(~)> :; 7,91 (<2 — Cf) -0, (@fg)

-y <2—xp) (C—E—N)
;pﬂ@l(éégl +®l <27<_1 s

H(600)) =S g0 (L= - W)
J(@l()>;%@l(<z—cl) el( G—G

p=1

-y =G ZZL—MM)
pr@l((2—C1>+®l< G — (1

. 7m G t—G Z;nzl(Igyg_Cl
(Gp<t,>)—;qgap(c2_<1 CZ_CI) Gp( e

tC1>
G2 — G

_ - Cl t_Cl Z:)L:lppxp
ZPPG (CzCl C2C1>+Gp< G2—C1

1

JFE) =Y ae [Z(@ — )2 (e ( Z — i{j) + ) (G — )P

=0

C2
Yo — C1 o \2p—1 G t—G
X@l<<2—<1>+(<2 W /G (@—41 G- G

1

p—1 B "
- [ (G2 = <1>21f<2”(<1>@z(w9=1q“’9)
-G

: G-

G2 — G G —C

G .
(G — gl)2p—1/Gp<Zg—1 oY — Cl’ t—G >f<2p>(t
&

n p—1 p—l
-Yon [T a-artr e () +
p=1 =0 l:O
G2

T, =G 21 T,— G t—C
XGZ(Cz—C1>+(Cz W /GP<C2—C17C2—C1

1
p—1 o .
+ [ (Co — Cl)Qlf (C )@l(@zl’:lp””>+
=0 (CEES!
p—1 n 3
3G - P G)ey (EPC>
=0 CG2—C

G2 —C G—C

¢z n
G — ()P ! /Gp (Zp—l DPpTp — 417 t—G )f(ZP)(t
G

_Cl t—<1>

-G )

)(G2)

) Fe) (t)dt]

)dt]

FO(G)

) f(Qp)(t)dt]

)i

(15)

(16)
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C2
o \2p—1 Yo—C t—G ) (2p) ]
Y !Gp(<2<1’<241 ACSE

After some simple calculations, we have

m p—1
=3 [z@— Prenen S22 | - | X - P e
=1 =1

(@ )] [Sn(Ge-orron(Eg))

{12_2(42 — )P (e, (@ _@E i‘gf‘””)]

m p—1 1

{;qﬁ’[z WH@e (c —G )] E M@

1

()] (S (B >f<2”<<2>ez(is:§i>)]
[Ee-armen (20|

C2

- )t Yo — C1 tCl) 2p) }
Zg{@ C1)P™ C/GP<C2—C1’C2—Q FEP (t)dt
¢
_ o1 doYe —C1 t—(
— _ 2p—1 e (2p)
[(Cz 1) C/Gp< -G Go Q)f (t)dt}
n G i
_ _ 2p—1 Lp — (1 — 61 (2p)
,;pp[(@ G /GP<<2—<1’<2—<1>f ’ (t)dt]
G
_ S PpTp—C1 b — G1 ) }
_ ()21 P (2p)
' {(CQ B </ Gp< a6 hoa)l W)
p—1 m m
— ¢)Rpe G2 =0 _ C—qu)
; @ (Cl){;qﬁ’@l(cg—cl) @l< G-G

C2—ZZ:1P;J%
pr@l( Cl) ®l< G — G ﬂ
¢ > dole — C1
Jrz )R plan {qu@l@g CI) @l< gg}ziz )

- =G W)}
;ppel(<2<)+®l< CEES!

)2p—1 Yo — C1 t_Cl)_
Te-a) /{qu (czcl’cgcl
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2 gm19eYe — 1 tc1> - <xp<1 tC1>
Gp( C—C1 -G prGp -G G—-G

p=1
Y1 Doty —C1 t—(
+G L : )] ) (t)dt
p( CES! CES! AU
Using definition of (14), (15) and (16), we get (13). O

As an application, we obtain a generalization of Bullen type inequality for 2p-convex functions for
p> 2.

Theorem 2.2. Assuming the conditions of Theorem 2.1 and
j(Gp(t, -)) > 0. (17)

If f is a 2p-convex function then

>Z<2 D () (€ )+Z<2— (G (1)) (18)

Proof. As the function f is 2p-convex and 2p-times differentiable, so

fE () 20V @ € GG,
then using (17) in (13), we get (18). O
Remark 2.1.

(i) In Theorem 2.2, the reverse inequality in (17) leads to the reverse inequality in (18).
(ii) Inequality in (18) is also reversed if f is a 2p-concave function.

If we put m = n, p, = ¢, and by using positive weights in (12), then j() converts to the functional
Ja(+) defined in (5), and also in this case, (13), (14), (15), (16), (17) and (18) become

:1 (G = * S (G) B (1) +§(<2 RO A(SYACIO)

(G- )*! 7 T (Gy(t,)) £ (0, (19)
<>z<><>
o) S () (o

S (28) e (R

-G =G\ D1 PoYo — Ci t—C1>
( ) pr p( — 4241) G”( -G a-G
-G t—Q ZZ:I Pptp =G t—( )
pr p( -G’ Cz—C1>+Gp( G —G -G/ (22)

Jo (Gp(t, -)) >0, (23)
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and

_ p—1

2: P (G) 1 (€10)) + (G~ )P (@) T (On()). (24)

=1 =1
Theorem 2.3. Let f : 1; = [(1,(] — R be a 2p (p > 2)-convex function. Also, let (p1,...,pn) be
positive real numbers such that ZZ:M% = 1. Then for the functional Ja(-) defined in (5), we have

the following:
(i) (24) holds for every 2p-convex function if p is odd.

(ii) Let (24) hold. If the function
p—1
r N2l () r—G )
)i atwe (=) e

is 3-convex, then the right-hand side of (24) is non-negative and we have the inequality

J2(f()) 2 0. (26)

Fx) =) (G- )™ ()6 (CCQZ__

=1

Proof.

(i) By (7), Gi(t,s) < 0, for 0 < ¢, s < 1. By using (8), we have G,(¢,s) < 0 for odd p and
G,p(t,s) > 0 for even p. Now, as G is 3-convex and G,_; is positive for odd p, therefore by using (8),
G, is 3-convex in the first variable if p is odd. Similarly, G}, is 3-concave in the first variable if p is
even.

Hence if p is odd, then by Remark 1.1,

J2(Gy(t,)) 2 0,

therefore (24) holds.

(i) J2(-) is a linear functional, so we can write the right-hand side of (24) in the form Jo(F(z)),
where F' is defined in (25). Since F' is assumed to be 3-convex, therefore using the given conditions
and by Remark 1.1, the non-negativity of the right-hand side of (24) is immediate and we have (26)
for n-tuples. O

In the next result we give generalization of Levinson’s type inequality given in [21] (see also [20]).
Theorem 2.4. Let f € C®[(,¢G1] (p > 2), (p1,...,pn) be positive real numbers such that

n
>opp= 1. Also, let xy,...,xy and y1,...,yn € Iy be such that x, +y, = 2¢, x, + Tp—_pt1 < 2¢ and
p=1

ppxp:p;p”“ﬁ etl < ¢ Moreover, let ©,(t) be the same as defined in Lemma 1.1, then (19) holds.
ptPn—p

Proof. The Proof is similar to that of Theorem 2.1 by assuming the conditions given in the state-
ment. O

As an application, we give generalizations of Levinson’s type inequalities for 2p-convex functions
(p>2).
Theorem 2.5. Let f € C?[(1,¢] (p > 2), (p1,...,pn) be positive real numbers such that

n
> pp = 1. Also, let xy,...,xy and y1,...,yn € 11 be such that x, +y, = 2¢, x, + Tp_pp1 < 2
p=1

and PefetProsiifo_pil < & Moreover, let ©,(t) be the same as defined in Lemma 1.1. If (23) is
Ppt+Pn— p+1

valid, then (24) is also valid.

Proof. Proof is similar to that of Theorem 2.2. O
Theorem 2.6. Let f € C*[(1,¢] (p > 2), (p1,...,pn) be positive real numbers such that
Z pp, = 1. Also, let z1,...,2, and y1,...,yn € Iy such that z, + y, = 2¢ and z, + Tp—pt1,

p”m";pj_p"“i’; ett < ¢. Moreover, let ©,(t) be the same as defined in Lemma 1.1. Then:
pTPn—p

(i) If p is odd, then for every 2p-convex function f : [C1,(2] — R, (24) holds.
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(ii) Let inequality (24) be satisfied. If the function (25) is 3-convex, the R.H.S of (24) is non-
negative, we have inequality (26).

Proof. Proof is similar to that of Theorem 2.5. g

In the next result, Levinson’s type inequality is given (for positive weights) under Mercer’s condi-
tion.

Corollary 2.1. Let f : I} = [(1,(2] — R be a 2p-convex function, xz,, y, satisfy (6) and the

max{xi ...z} < min{y:...y,}. Also, let (p1,...,pn) € R™ such that > p, = 1. Then (19) is
p=1

valid.

Remark 2.2. Cebysev, Griiss and Ostrowski-type new bounds related to the obtained generalizations

can also be discussed. Moreover, we can also give the related mean value theorems by using non-

negative functional (13) to construct new families of n-exponentially convex functions and Cauchy

means related to these functionals such as given in Section 4 of [10].

3. APPLICATION TO INFORMATION THEORY

The idea of Shannon entropy is the central job of information speculation now and again implied as

measure of uncertainty. The entropy of a random variable is described with respect to the probability
distribution and can be shown to be a decent measure of randomness. Shannon entropy grants to
assess the typical least number of bits expected to encode a progression of pictures subject to the
letters all together size and the repeat of the symbols.
Divergences between probability distributions have been familiar with measure of the difference be-
tween them. An assortment of sorts of divergences exist, for example the f-divergences (especially,
Kullback—Leibler divergences, Hellinger distance and total variation distance), Rényi divergences,
Jensen—Shannon divergences, etc. (see [18,27]). There are a lot of papers overseeing inequalities and
entropies, see, e.g., [1,14,16,26] and references therein. The Jensen inequality is an essential job
in a bit of these inequalities. Regardless, Jensen’s inequality manages one kind of data points and
Levinson’s inequality deals with two types of data points.

3.1. Csiszar divergence. In [12,13], Csiszdr gave the following

Definition 3.1. Let f be a convex function from RY to RT. Let f,ke R™ be such that Y r, =1

p=1
and Y k, = 1. Then the f-divergence functional is defined by
p=1

" r

I+(F,k):= £,

pEKk) =k f (kp)
p=1

By defining
. 0y ay a
f(0) = lim f(x). Of (O> =0, 0f (5) = lm af(2), a>0,

he stated that non-negative probability distributions can also be used.
Using the definition of the f-divergence functional, Horvath et al. [15] gave the following functional.
Definition 3.2. Let I be an interval contained in R and f : T — R be a function. Also, let T =
(ri,...,m) €ER™ and k = (k1,...,kn) € (0,00)™ be such that

Tp

— el =1,...,n.
k, P "
Then

I;(F k) = z:kzpf (Z) . (27)
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We apply Theorem 2.2 for the 2p-convex functions to I ¢ (T, l~<)

Theorem 3.1. Let T = (r1,...,r,) € R", W = (wi,...,wy) € R™, k= (ki,...,kn) € (0,00)" and
t = (t1,...,tm) € (0,00)™ be such that

Tp
—+ e, =1,...,n,
k, P

and
%GH, o=1,...,m.
(2

Also, let f € C?P[(1,(s) be such that f is 2p-convex function (for odd p), then

p—1 p—1

Tes(F()) 2 32(G = QPG (010)) + Do (G = (@) (0),  (28)

=1 =1

where
1 - - "L, |
Tl 1) ap D () - o R
D)3t e 42—>_ (@—E?lzﬁite)
J(el())—gzg_ltﬂ(@—@ T
n G — 3 @—ZL%
Zzpl (@—@) @l( oG ) (30)
ny megy TG
( ) 22?1 <C2—C1>®l( G—G )
%_Cl 22:1%—41
Zzpl <C2—Cl)+@l( G—G ) (3D
and

w0 -G oy O -G
( ) 2291 <C2—C1752—C1>Gp< G- ’Cz—C1>

Z (;Z_Cl t_C1>+G (Zz_lz‘;plk”_gl t_Q) (32)
Zpl -G GG ? G—G -G/
Proof. Since G is 3-convex and G,_; is positive for odd p, therefore by using (8), G, is 3-convex in

. . . . k tg — e 3
first variable if p is odd. Hence (17) hol(Ais. S(i using p, = m, T, = ,:—Z, Qo = v 7,0 Yo = % in
Theorem 2.2, (18) becomes (28), where I;(T, k) is defined in (27) and

7, t) :iy(‘t";). (33)

The theorem is proved. O
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3.2. Shannon Entropy.

Definition 3.3 (see [15]). The Shannon entropy of the positive probability distribution k= (k1,..., kn)
is defined by

= "k, log(ky). (34)

Corollary 3.1. Let k = (k1,...,kn) and t = (t1,...,tm) be the positive probability distributions.
Also, let T = (r1,...,7m5) € (0,00)" and W = (w1, ..., Wn) € (0,00)™.
If the base of log is greater than 1 and p=odd (n = 3,5,...), then

= (—1)2-1(20 — 1)!
Jo() < ;(@ - Q) @ J(@l(.))

p—l _1\2-1(9] _
e e CO)] (35)
=1

where

Hog(j@ .

and J(@l(~)), J(@l()), ( »(t, ) are the same as defined in (30), (31) and (32), respectively.

)
Proof. The function f(x) = log(x) is 2p-concave for odd p (p > 2) and the base of log is greater
than 1. So, by using Remark 2.1(ii), (18) holds in reverse direction. Therefore using f(z) = log(z)

k t . . .
and p, = m’ z, = ;—2, g = %, Yo = %, in reversed inequality (18), we have (35), where S
is defined in (34) and

i t,log(t, g
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