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BOUNDARY VALUE PROBLEMS OF THERMOELASTIC DIFFUSION THEORY
WITH MICROTEMPERATURES AND MICROCONCENTRATIONS

LEVAN GIORGASHVILI* AND SHOTA ZAZASHVILI

Abstract. The paper deals with the linear theory of thermoelastic diffusion for elastic isotropic
and homogeneous materials with microtempeatures and microconcetrations. For the system of the
corresponding differential equations of pseudo-oscillations the fundamental matrix is constructed
explicitly in terms of elementary functions. With the help of Green’s identities the general integral
representation formula of solutions is derived by means of generalized layer and Newtonian potentials.
The basic Dirichlet and Neumann type boundary value problems are formulated in appropriate func-
tion spaces and the uniqueness theorems are proved. The existence theorems for classical solutions
are established by using the potential method.

1. INTRODUCTION

Construction of a refined mathematical model of continuum mechanics with regard for different
physical fields and their investigation is a very important problem from the theoretical and practical
points of view, due to the rapidly increasing use of composite materials in modern technological
processes, as well as in geology, biology, medicine, etc.

One such refined model, a thermoelastic diffusion theory with microtemperatures and microcon-
centrations, is proposed by M. Aouadi, M. Ciarletta, and V, Tibullo [1]. In this paper, the dynamical
problems for a thermoelastic material with diffusion, whose microelements are assumed to possess mi-
crotemperatures and microconcentrations, are considered. The constitutive and field equations of the
thermodynamic for the homogeneous and isotropic bodies are derived. Using the semigroup theory for
linear operators, they show that a wide class of mixed problems with appropriate initial and boundary
conditions are well posed, and the asymptotic behavior of solutions is established for a sufficiently
large time parameter.

Recently, in [2], a linear dynamical problem involving a thermoelastic material with diffusion, whose
microelements are assumed to possess microtemperatures and microconcentrations, has been analyzed.
The problem is studied from the numerical point of view, introducing a fully discrete approximation
by using the finite element method and the implicit Euler scheme. A discrete stability property is
established and some a priori error estimates are obtained.

The system of differential equations of thermodynamic diffusion linear theory for isotropic homoge-
neous elastic materials with microtemperatures and microconcentrations with respect to the displace-
ment vector, microconcentration vector, microtemperature vector, chemical potential function and
temperature function, represents a fully coupled complex system of second order partial differential
equations (see [1]).

If the physical characteristics involved in the dynamical system of differential equations are time
harmonic dependent (i.e., they are represented as the product of the time dependent exponential
function exp(—iot) with a complex parameter o = o1 + iog, 01 € R, 09 > 0, and a function of the
spatial variable z € R®), then we have the so- called system of pseudo-oscillation equations. The
corresponding matrix differential operator is strongly elliptic, formally non-self-adjoint operator with
constant coefficients.

2020 Mathematics Subject Classification. 31B10, 47G10, 47G30, 74F05, 74A15.

Key words and phrases. Microtemperatures; Microconcentrations; Thermoelastic diffusion; Potential theory; Integral
equations.

*Corresponding author.



278 L. GIORGASHVILI AND S. ZAZASHVILI

The present paper is devoted to the investigation of the basic boundary value problems for the
system of pseudo-oscillation equations for homogeneous isotropic materials by using the potential
method.

To this end, we construct the matrix of fundamental solutions explicitly in terms of elementary
functions for the pseudo-oscillation equations and investigate mapping properties of the corresponding
volume and layer potential operators.

Using the approaches developed in [5,6,8,12,15], with the help of the potential method we reduce
the Dirichlet and Neumann type boundary value problems to the corresponding system of singular
integral equations and prove the existence theorems in the space of regular vector functions.

2. CONSTITUTIVE RELATIONS AND BASIC DIFFERENTIAL EQUATIONS

Denote by R? the three-dimensional Euclidean space and let Q7 C R? be a bounded domain with
boundary S := 9Q*, QF = QF U S. Further, let @~ = R3\QF. We assume that Q € {QF, Q-1
is filled with a thermoelastic diffusion isotropic and homogeneous material with microtemperatures
and microconcentration. Denote by u = (uy,ug,u3) ', C = (C1,Co,C3)", and T = (Ty, T, T3) " the
displacement vector, the microconcentration vector and the microtemperatures vector, respectively.
By P we denote the chemical potential of material and by ¢ the temperature, measured from fixed
absolute temperature Ty. We assume that Tj is a given positive constant. The symbol (-)T denotes
transposition.

Denote by t;;, 745, @5, 75, and g; the stress tensor, the first mass diffusion flux moment tensor, the
first heat flux moment tensor, the flux vector of mass diffusion, and the heat flux vector, respectively.
By C*, §*, o}, (7, QF, and € we denote the concentration of the diffusive material, the microentropy,
the micromass, the microheat flux average, the first moment of mass diffusion, and the first moment
of energy vector, respectively.

In the case of an isotropic and homogeneous thermoelastic diffusion material, with microtempera-
tures and microconcentration, the constitutive equations read as follows [1]

tij =1;;(U) := p (0 u;i + 0 uj) + 05 (Ao divu —y2 P — 71 9), (2.1)
=1;;(U) := —hy 0;; divC — h50; C; — he 0; C, (2.2)

gij = qij (U) = —ky 0y divT — k5 0; T, — ke 0, T}, (2.3)
n, =n;(U) :=h1C; + h0; P, (2.4)
=qU)=kT,+ k0, (2.5)

pS*(U) v divu + ¢ + > P,
C*(U) =7y divu+ x99+ mP,
o;(U) == (h—h3)0; P+ (h1 — h2) Cj,
GU) = (k—k3)0; 0+ (k1 — k2) T,
P U) :=—-m1 C; — s Ty,
pe;(U) = —31C; — 1 Ty,
where U = (u,C,T, P,9)", 6;; is the Kronecker delta, 0 = (01,0s,03), 9; = 0/0x;, j = 1,2,3;

B3 wﬁz B2
A=A-—2 1 =p+—, pp="—,
0 0 o
A and p are Lame’s constants, f1 = (3\ + 2u)ay, B2 = (3X\ + 2p)ae, where «; is the coeffi-
cient of linear thermal expansion and «. is the coefficient of linear diffusion expansion; w and o

are the measures of thermodiffusion and diffusive effects, respectively; p is the mass density and

h, k, hj, kj, 7 =1,2,...,6, are the thermoelastic material constants;
72 J—
c w w 1
p L + B = —, m= -,
To 0 0 0

where cg is the specific heat at constant strain; ¢; and m; are the constants of microthermal and
microdiffusion conductivity, respectively; s is measure of microthermodiffusion.
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In the sequel, we assume that the above constitutive coefficients satisfy the following assumptions [1]
p>0, n>0, 3\g+2u>0, ¢>0, ¢; >0, em— 32 >0, cymy — 32 >0,
h >0, 3hg4+ hs+hg >0, hg+hs >0, 4dhhy — (h1 + h3)2 >0, (26)
k>0, 3ky +ks+keg>0, kgt ks >0, 4T0kk2—(]€1 —|—T0/<J3)2 > 0.

The linear field equations of dynamics of the thermoelasticity diffusion theory with microtempera-
tures and microconcentrations of homogeneous and isotropic bodies have the form [1]

2
pAu(z,t) + (Ao + p) grad divu(x,t) — o grad P(z,t) — v1 grad d(x,t) + p F(z,t) = p%7
T
he AC(x,t) + (hy + hs) grad div C(z,t) — haC(x,t) — hs grad P(z,t) = my ac{;j,t) 4o 0 é?t)’
ke AT (z,t) + (ks + ks5) grad div T(z,t) — koT'(x,t) — k3 grad J(z, t) — p G(z, 1)
_,, Y 0T t) (2.7)
= I ot Cc1 o ,
0 .. : _0P(x,t) 09 (z,t)
T2 divu(z,t) + hy divC(z,t) + hAP(z,t) =m ot
p OP(z,t) = 09(z,t)

0 . ki .. k
_71Edlvu(x’t)—’—f)leT(x’t)+TOAﬁ(x’t)—FTOS(CE’t)_% 9 +c ETa

where A is the Laplace operator, ¢ is the time variable, F' = (Fy, Fy, F3) T is the body force vector per
unit mass, G = (G1,Ga,G3) " is the first moment of the heat source vector, s is the heat source per
unit mass.

If all the vector and scalar functions in (2.7) are harmonic time dependent, i.e.,

u(z,t) =u(x) exp{—ito}, C(z,t)=C(x)exp{—ito}, T(z,t)=T(z) exp{—ito},
P(z,t) =P(x) exp{—ito}, ¥(z,t)=3(x) exp{—ito},
F(xz,t) =F(z) exp{—ito}, G(zx,t) =G(x) exp{—ito}, s(x,t) = s(z) exp{—ito},

with 0 € R and ¢ = /—1, we obtain the system of steady state oscillation equations of the thermoe-
lastic diffusion linear theory with microtemperatures and microconcentrations:

pAu(z) + (No + p) grad div u(z) + po?u(z) — 2 grad P(z) — v, gradd(z) = —p F(x), (2.8)

he AC(x) + (ha + hs) grad div C(z) + d C(z) + i0s0,T(x) — hs grad P(x) = 0, (2.9)

ke AT (z) + (kg + ks) grad div T (z) + 3¢9 T(x) + io3C(x) — ks grad d(z) = pG(x), (2.10)

ioye divu(z) + hy divC(x) + h A P(x) + iom P(x) + ioxd(x) = 0, (2.11)

ioy1 To divu(z) + k1 divT(z) + iox Ty P(x) + k Ad(x) +iccTod(z) = —p s(x), (2.12)
where

6 =iomq — ho, 9 =i0c) — ko;

u, C, T, F, and G are complex-valued vector functions, while P, 9}, and s are complex-valued scalar

functions, and o is a frequency parameter. If ¢ = o1 + i09 is a complex parameter with oo # 0,

then the above equations are called the pseudo—oscillation equations, while for o = 0, they represent

the equilibrium equations of statics. Note that the pseudo—oscillation equations are obtained from the

equations of dynamical system (2.7) by the Laplace transform with the complex parameter o.
Throughout the paper, we assume that o is a complex parameter,

oc=o01+i09, 01 €R, o09>0. (2.13)
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Let us introduce the matrix differential operator

LM(9,0) LO0,0) LOY(D,0) LU90,0) LEY(9,0)
L?0,0) LM(0,0) LU2(0,0) LUD(,0) LZ2(9,0)
L(0,0) := |L®(9,0) L®(0,0) LI(,0) LU®,0) L*)(9,0) , (2.14)
LW(d,0) LO0,0) LI,0) L190,0) LY, 0)
L) (9,0) LU9d,0) LI(d,0) LEYD,0) LEYd,0)] .,
where
LY(0,0) :=(uA + po®)Is + (Ao + 1)Q(0), L (9,0) := [0]sxs,
LG (0,0) :=[0]3x3, LW (d,0) :=ioyV, L®(0,0):=ionT,V,
L98,0) :=[0]3x3, L7(,0) := (he A+ )13+ (ha + hs5)Q(0),
L®(,0) :=iosw Is, L9(0,0):=hmV, LI, 0):=[0]1xs,
L(“)(E),a) Z:[O}3X37 L(12) (8,0') = io%l Ig,
(2.15)
LU, 0) :=(ke A + 50) I3 + (ks + k5)Q(0), LUV (0,0) := [0]1x3,
LU, 0) =k V, LU, 0):= - V", LUD 0):=—h3V',
LU, 0) :=[0]sx1, LI(d,0) :=hA+iom, L(8,0):=iocsxTy,
L®(D,0) := -V, L®D,0):=[0zx1, L*(,0):=—ksV',
LY (0,0) :=ios, L(25)(8, o) :=kA+ioccTy.
Here and in the sequel, I} stands for the k x k unit matrix and
Q(0) := [0k0j]3x3, V := [01,02,05), O = 0/0s,.
It is easy to show that for V = (V;, Vo, V3) T,
Q) = graddivV, Q(9)=[Q(d)]", Q)] =AQ(d). (2.16)

Due to the above notation, system (2.8)—(2.12) can be rewritten in a matrix form as
L(9,0)U(z) = ®(x),

where U = (u,C,T,P,9)", ®(z) = (—pF(x), 0, pG(z), 0, —p s(:c))T. The operator L(9, o) is not
formally self-adjoint differential operator.

Here, the central dot denotes the real scalar product a - b = Z}vaﬂ aiby, for a,b € CN | and [c x d]
denotes the cross product of two vectors ¢, d € C3.

In view of the constitutive equations (2.1)-(2.3), the components of the stress vector t( (U), the
first mass diffusion flux moment vector 7™ (U), and the first heat flux moment vector ¢ (U), acting
on a surface element with a unit outward normal vector n = (ny,ns,n3) ", read as

3 3 3
) =3ty U np, 0 0) = 0 (U)np, @V U) =Y ap(U)ny, G =1,2,3. (2.17)
p=1 p=1

p=1
It is easy to see that (2.17) can be rewritten as
tM(U) =20, u+ Non divu + p[n x curl u] —yan P — 4 nd,
™ (U) = —(hs + hg) 0, C — hyn divC — hs|n x curl C,
= —(ks +kg)0n T — kan divT — ks[n x curl T,

where 9, = 9/0n stands for the normal derivative.
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Due to the constitutive equation (2.4) and (2.5), the normal components of the flux vector of
mass diffusion and the heat flux vector across a surface element with a unit outward normal vector
n = (ny,na, ng)T, are expressed as follows:

3
m(U) = Z n;({U)n; =hin-C+h 0,P, @ (U) = Z ¢;(U)n; =kin-T+k 0,9.
=1 j

j=1

Throughout the paper, we will refer the eleventh vector (t(”)7 ™, ¢, n,, ¢n) " as the generalized
stress vector. Further, let us introduce the generalized stress operator

PM(8,n) [0]3x3 [0]3x3 —Y2m =N
0sxs  P@(0,n)  [0)sxs  [0)sx1 [0]3x1
P(0,n) = | [0]3x3 [0]3xs  P®(0,n) [05x1 [0]3x1 ; (2.18)
[0]1x3 hin' [0]1%3 h O, 0
[0]1x3 [0]1x3 kin' 0 ko |1

where
PO(8,n) = [P,ﬁ?(a,n)}m, 1=1,2,3,
P}E-;) (0,n) = pog; On + Noni 05 + un; Oy,
7’;&? (0,n) = he Okj Op + hany 0 + hsny O,
PIS’) (9,n) = ke Okj On + kanu, 05 + ks mj O

Note that for an arbitrary vector U = (u, C,T, P,) ", the eleventh vector P(d,n) U is related to the
components of the generalized stress vector as follows:

P@,n)U = (™, - —¢™ ., q,)7.

Let us introduce the associated boundary operator which is related to the adjoint differential
operator L*(0,0) := L' (-0,0),

(2.19)

PM(9,n) [0]3x3 [0]3x3 —ioyan  —ioy1Ton
[0]3xs PP (0,n) [0]3x1 [0]351 [0]351
P(0,n) == | [0]3xs [0l3x1  P®(0,n) [0]3x1 [0]3x1 ; (2.20)
[0]1x3 hsn' [0]1x3 h o, [0]1x3
[0]1x3 [0l1x3 ksn' [0]1x3 kOn ] 1u11

where PU)(9,n), j = 1,2,3, are given by (2.19).

3. GREEN’S FORMULAS

Here we assume that the boundary Q% of Q% is a Lyapunov surface and n stands for the outward
unit normal vector to 9QF.

Definition 3.1. Mector function U = (u,C,T, P,9)" is said to be regular in the domain Q7 if
UeC*(Qh)nct(Qh).

For regular vector functions U = (u, O, T, P,9)" and U’ = (u/,C",T', P',9')T in the domain Q7,
we have the following Green’s formulas:

/U’~L(8,U)de: /{U’}+-{P(a,n)U}+ds—/E(U’,U)dx, (3.1)
Q+ o+ Q+

/U-L*(a,U)U’dm: /{U}+-{7>*(a,n)U/}+ds—/E(U',U)dx, (3.2)
Q+ o0+ Q+
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where the differential operator L(9, o) is given by (2.14), L*(d,0) = LT (-0, o) is the formally adjoint
operator to L(0, o), the boundary operators P(0,n) and P*(0,n) are defined by (2.18) and (2.20),
respectively; the symbols {-}* denote one-sided limiting values on 9QF from Q% respectively; E(-, )
is the so-called energy bilinear form

E(U',U)= EOW u)+ ED(C,0)+ E®N(T',T) - po*u -u— (yo P+ y 9)dive/ —5C" - C
—i01C'- T+ h3C' -grad P — 50T - T —iocsq T - C+ ks T’ - grad 9
—iomP' P—iocy P divu —ioc» P 9+ h; C-grad P' + hgrad P’ - grad P
+kgrad ¥ -grad ¥ —ioccTod' 9 —ioy To ¥ divu+ kT - grad @' — io 3Ty PV,

(3.3)

where

3o + 2
EW (W, u) :% diva/ divu

LB (O O (O Oy
3kj=1 8xk aib'j 8xk al'j

3 / /
W ul, Guj> (8uk auj)
+= ( +L ) (52 + 52, (3.4)
2k,j=;k;éj ij 8$k 8a:j 5':zzk
_3h4 + hs + hg
B 3
3
hs +h oC, oC!, oC oC,;
et s (GE+) (5 5d)
ke, kitj .Z‘] Tl IJ Tk
3
hs +h ocy,  oC! oC aC;
P S (G52 (G 5) (5.5)
k=1 Tk T Tk T
:3k4 + ks + kg

he — s curlC' - curl C

E®(C',C) div ¢’ div C +

EG)(T', T) div T divT + 6 g Pl 77 curl T

Jathe S (om0 om om
4 hjT Ox;  Oxy Or;  Oxy,

ks + kg 5 8T,§ 81}/ 0Ty, 8Tj
7% k;1 (63% Oz; ) \ Oz, Ozj ) (36)

With the help of relations (3.1) and (3.2) we can show that the following second Green’s identity

/ U L(D,0)U —U - L*(8,0)U’] dz

O+
- [ [wy vy -y .y as (37)
aQ+
holds.
Let us note that the differential operator
L(9) := L(9,0) (3.8)
corresponds to the static equilibrium case, while the formally self-adjoint differential operator
£7(@)  [Osxs  [Osxs  [0)sxa [0)axa
[0]3x3 L(()7)(5) [0]sx3  [0]3x1 [0]3x1
Lo(@):= 1 [0lsxs  [O)sxs  LG(D) [0lsxa [0)sxa (3.9)
[0]ixs  [0]ixs  [0]ix3 h A 0
[0lixz3  [0lixs  [0ix3 0 kA

11x11
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with )
L (0) = uAIs + (o + 0)Q(D),
L67(9) = hoATs + (ha + h5)Q(9), (3.10)
L(0) = ke AL + (ks + k5)Q(),

represents the principal homogeneous part of operators (2.14) and (3.8). With the help of inequalities

(2.6), one can show that the differential operators Lo(9) and L(9,0) are strongly elliptic and the
following inequality

11
DalePICP? = Lo(€)¢ - ¢ = > Lo(€)y;¢iCk = Dal¢fI¢)?

k=1

holds with some constants Dy, > 0 (k = 1,2) for an arbitrary £ € R? and arbitrary complex vector
¢ eC,

4. THE MATRIX OF FUNDAMENTAL SOLUTIONS
Note that the construction of the fundamental matrix is carried out by the same method as indicated
in [6,7,14]. Let Fy_¢ and ]-'g;lm denote the direct and inverse distributional Fourier transform in the

space of tempered distributions (Schwartz space S’(R3)), which for regular summable functions f and

f reads as follows:

i - 7 17 1 ey —ia
Feuilf] = [ @)=t = (). FLIT = g [ T e = f(o),

R3 R3
where x = (21, 22, 23) and £=(£1,&2,&3). Note that for an arbitrary multi-index o= (a1, e, @3) and
fes'(R?)

Flo“f] = (=i&)*FIfl, F e f]=9)*F ), (41)
where |a| = a1 + ag + a3 and £* = 7" €52 £5°. Denote by I'(x,0) = [I'kj(x,0)]11x11 the matrix of
fundamental solutions of the operator L(9,0) (see (2.14), (2.15))

L(9,0)T(z,0) = 6(x) I3, (4.2)

where §( ) is Dirac’s distribution.
We represent the matrix I'(z, o) in the blockwise form

I'Y,0) I'®(z,0) T'(z,0) TW(x,0) I'®(z,0)

Iz o) TO(z,0) T®(z,0) TO(z,0) T (z 0)
[(z,0)= | TN (z,0) T (z,0) T (z,0) T (z,0) T (z,0) ,

Iz, o) 10N (2,0) T (z,0) T (z,0) ') (z,0)

ez, o) T (z,0) T (z,0) TCY(z,0) I'®)(z,0) Lixil

where

(g, :[FU) , ] . j=1,2,3,6,7,8,11,12, 13,
@)= [t@a)] .

F(ﬁ(x,a):[rgﬁ(x,a)] . j=4,5,9,10,14, 15,
3x1

q

FU)(x,a):[F;Q(x,a)] . j=16,17,18,21,22,23,
1x3

and T(19) (2, 0), 120 (z, ¢), T (2, 0), and ') (z, ¢) are scalar functions. By I'(¢, o) and T®) (¢, o)
we denote the Fourier transforms of the matrices I'(z, o) and T'®) (z,0), k = 1,2,...,25. Applying the
Fourier transform to equation (4.2) and taking into consideration (4.1) and the equality F[§(-)] = 1,
we get

L(—ig 0)I(&,0) = I (4.3)
We have to find f(f,a) from (4.3) and afterwards with the help of the inverse Fourier transform
construct the fundamental matrix I'(x, o) explicitly in terms of the standard elementary functions.
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First of all, we have to represent the matrix I['(¢, o) = [L(—i &, 0)] ! in such a form which is convenient
for calculation of the inverse Fourier transform. To this end, we proceed as follows. We set r := [{| =

VE + €2 + £ and introduce the notation
A(€) =LV (=i&,0) = (po® — pr®) I — (Mo + 1) Q&)
B(¢) =L (=i&,0) = (6 — her*) Is — (ha + h5)Q(E), (4.4)
D(&) ==L (—i&,0) = (30 — ker®) Is — (ks + k) Q(&),
where Q(-) is defined by (2.16). Applying the relations (2.16) and (4.4) we can easily show that
A() = A(=€) = AT(€),  B(&) = B(-¢) = B'(9),
D(§) = D(=§) =DT(€), Q&) =QT (&), Q) =r"Q(©),

and the matrices A, B, and D commute to each other.
In view of (2.14)—(2.16) from (4.3) we derive

AT, 0) +inpe T TUT(g, 0) +ime TUP)(g,0) = 61,13,

B()TUT(&,0) +i0 0 T (g, 0) +ihg €T TUT (€, o) = 85515,

io 3 TUTO (g, 0) + D TUHO (& o) +iks €T TUTO(E, 0) = 85,15,

026 TU (€, 0) — i hi DU (€ o) + (iom — hr?) TUT) (£, o) + io 2 TUT20) (¢ 5) = d4j, 9

o To LU (€, 0) —iky ETUHO(E o) +io 5 Ty LU (€, 0) + (i ¢ Ty — kr?) TUH20(¢,0) = 655,
j=1,2,...,5.

From the system (4.5), by direct calculations, we can show that the elements of the matrix f(f ,0)
have the form

TV 0) = fElw©B+5©QC), j=1,781213,
T, 0) = A%)bj@)Q(g), j=2,3,6,11,
(¢ o) = 3 ¢ (€)ET, j=4,5,9,10,14,15,

Lo ¢, o) = (5) ¢; ()€, j=16,17,18,21,22,23,

L0 (¢, o) = A(lg) a;(€), j=19,20,24,25.

Here,
A(§) = det L(—i€, 0) = a'(€) (d/(€) + ' (€)r®) a(€) (a(€) +b(€)r*) Ao(€) = dn [](* = A3),

d(€) =po® —pr?=—p(r’ =), A =pa’u, V() =-(No+p)
d'(§) + V(&)1 = po® — (ho+2u)r* = (Ao +2u)(r* = A3), A3 =po*(ho+20) 7",
dlz—/ﬁ()\o-i-Qu)hokohﬁkgd, d:()\o-‘rQ,u)th‘ohk‘, ho = ha + hs + hg, ko = ks + ks + k;

+A3, A4 and +X5, £Xg are the roots, with respect to r = |£], of the equations a({) = 0 and
a(€) + b(&) r? = 0, respectively;

a(§) = (hg r? — 0) (ke r?— ) + 02%f = hg ke (7’2 — /\g)(r2 — )\Z),
b(&) = (hy + hs) (ks + ks)r? + (kg + ks)(he 72 — 6) + (ha + hs) (ke 72 — 5), (4.7)
a(€) + (&) r* = (hor® — 8) (ko 1? — 500) + 07 56§ = hoko (r® — A2)(r* — Xe),

(4.6)
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£, j=7,8,...,11, are the roots of the equation Ay(£§) = 0 with respect to r = |{|, where

Ao(§) = [h1 hs(30 — ko r?) 1* = (iom — hr?)(a(§) + b(&) r?)] [ioc Tori r* — (iocTy — kr?)(po”—
— (Ao +20) )] + [ To (a(€) + b(&) r?) + 501 (h1 ks To + k1 ha)r?] [0? ¢ (po® — (Ao + 2p) %) —
— 0?12 r?] + ki ks(po® — (Ao +2p) %) [h1 har® — (iom — hr?) (6 — hor?)]r*— (4.8)
— 0?1927 To (a(€) + b(€) 1?) +io 73 12 [k1 Ky (§ — hor2)r? —

—(ioeTy — kr?) (a€) + (&) r?)] = —d [[(* - 3
=7

a1 (&) = (a'(€) + ' (€)r?) a(€) (a(€) + b(&)r*) Ao (€)
a7 (&) = a'(§) (@' (&) + V' (&)r?) (al€) + b(&)r*) (300 — ke 7)Ao (£),
ag(€) = —io a1 a'(€) (a'(€) +V'(€)r?) (a(€) + b(€)r?)Ao(€), (4.9)
a19(€) = —io 51 d'(€) (a'(€) + V' (€)r*) (a(€) + b(€)r*) Ao (£),
a13(€) = a'(€) (@ (&) +'(€)r?) (a(§) +b(E)r*)(6 — he 7*) Ao (£),
a1g(€) = a'(€) (a' (&) + ' (&)r) a(€) (a(§) + b(€)r?) vaa(£),
a(€) = a' (&) (@ (&) + ' ()r?) a(§) (a(§) + b(E)r?) 7as(£), (4.10)
a4 (&) = a'(€) (' (&) + ' (€)r) a(€) (a(€) + b(€)r?) v54(8),
ags (€) = a' (&) (@ (&) + ' ()r?) a(€) (a(§) + b(E)r?) 7s5(£),

714(8) =(a(§) +b(&)r?) [(a' () + V' (&)r?)(io ¢ Ty — kr?) — io 77 Tor?]
*klk?u( ()+b/() )6 —hor?)r?
Ya5(§) =io (a(§ ) [y v2r? — s ( (f) +V(&)r?)] —io 31 hy ks (d'(€) + V' (E)r®) r?,

154(9) =i To(a < ) ( ) 198 12 = 5 (0 (€) + V()] — i o s ((€) + H(€r2) 2, )
V55(€) =(a(&) + b(E)r?) [(a/ (&) + V' (&)r®)(iom — hr?) —io 75 r?]
— ha hy (a'(€) + V' (€)r?) (520 — ko %) .
b1(&) = —a(&)(a(€) + b(&)r*) {b' (&) Ao(&) +id’ (&) [r2va1 () + 1 ¥51(8)] ]
by(€) = —id(€)a(€)(a(€) + b()r?) [72 742( )+ 7 v52(8)]
b3(€) = —ia’(€)a(€)(a(§) + b(&)r?) [v21as(€) + 71 753(6)],
b(&) = a’(€)(a'(€) + V' (&)r*)a(é) [i hs (ko1 — 50) Y41 (§) — 0 301 k3 51 (€)], (4.12)
b7(€) = ' (€)(a' () + V' (&)r?) {Ao(€) [(ke 7 — 30) b(§) — (ka + ks) a(€)] '
+ a(€)[ihs (ko 1* — 520)va2(€) — 0 501 k3 ¥52()] }
bs(€) = a’(€)(a’(€) + b/ (§)r?) {icr 51 b(§) Ao (€)
+ a(&)[ihs (ko r* — 520)v43(€) — 0 31 ks v53(€)] }
b11(§) = d'(§)(a (5) + V' (O)r*) a(€)[i ks (hor” — 8)751(€) — 0 321 h3 141 (€)],
b12(&) = a'(§)(a’ (&) + V(¢ {a(ﬁ) [iks (ho 1 — 8)7¥52()
— 0 h3742(§)] —w'%lbﬁ)/\o( )}, (4.13)
bi3(&) = a'(€)(a' (&) + V' (&)r*){a(&) [iks (ho1* — 0)y53(E) — 0 31 b3 1a3(E)]

[(h4+h5) a(§) + ( he %) b(€)] Ao(§)},
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ca(€) = —ia’ (€)a(§)(a(€) + b(€)r?) [v27aa (&) + 71 v54(8)],
c5(€) = —ia/ (€)a(€)(a(§) + b(&)r?) [v27a5(€) + 71 755(6)],
co(&) = a’(&)(d'(€) + V' (&)r*)a(é) [i by (kor* — 520) Y44 (§) — 0 301 k3 y54(€)],
c10(8) = ' (€)(a' (&) + V' (§)r*)a(§) [i ha (ko r® — 50) Ya5() — 0 221 ks 155(€)],
c1a(€) = ' (§)(a' (&) + V' ()r*)a(§) [i ks (hor® — 0) ¥54(€) — 0 31 hy 44 (§)],
e15(€) = ' (§)(a (&) + V' (&)r*)a(€) [i ks (hor® — 8) v55(€) — 0 31 hy v5(E)], (4.14)
c16(€) = a'(€)(a (&) + b'(&)r*)a(€) (a(€) + b(E)r?)var (), .
ci7(€) = d'(€) (@ (&) + V' (€)r?)a(€) (a(€) + b(€)r?)ya2(£),
c18(€) = a'(€)(a' (&) + V' (&)r*)a(€) (a(€) + b(§)r?)vaz(£),
e21(€) = d'(€) (@ (&) + V' (€)r?)a(€) (a(€) + b(€)r?)ys1(€),
e22(€) = a' (€)(a' (&) + V' (&)r*)a(€) (a(€) + b(§)r?)752(£),
ca3(€) = d'(€) (@ (&) + V' (€)r?)a(€)(a(€) + b(€)r?)ys3(£),
141(€) =(a(§) +0(&)r?) [io® e 71 Ty — 0 Y2 i ¢ Ty — k?)]
+ [i0” 3e1 v1 h1 ks Ty + oky k3 y2(6 — hor?) |r?,
Ya2(&) =072 hy To 1 (520 — ko %) 4 102 s¢1 ky 71 Y2 12
— (d'(&) + V/(&)r?) [io® sese1 ky + i hy k1 kg r? — i hy (59 — ko r?) (i ¢ Ty — k1?)],
Y43(€) =0 k1 v1 72 (ho 1% — 8)12 — i0? 520 hy 73 Ty
. (4.15)
+ (' (&) + V' ()r?) [0 k1 (6 — hor®) + 0 31 hy (0 cTy — kr?)],
151(6) =T (a(€) + B(EW)[i0 372 — o (iom — hr?)]
+ 0 y1 hy ha To (500 — ko 72)1? + i0? 501 ky hg ya 12,
V52(&) =0 h1v1 v2 To (ko r?— ) r? —ic? s ke 73 r?
— (d'(&) + V' (&)r?) [0 3a1 k1 (h1? —iom) — 0 3chy Ty (ko r* — 34)],
v53(€) =0 k1 Y2 (8 — ho %) 12 + 0% 521 hy v1 72 To 2+
+ (a' (&) + V' (&)r?) [i k1 (6 — hor?)(iom — hr?) — iky hy hyr® — i0® 52300 by Tp),
Now, we can represent the matrix I'(¢, o) in the form
B(60) = [L(=i€. )™ = g7 MIE.0). (4.16)
where
[ a1(§) I3 [0]zx3 [0]3x3  [0]3x1 [0]3x1 ]
Olsxs  ar(§) Iz as(§) Iz [0]sx1  [0]sx1
M(& o) = | [Osxs @a2(§) s a3(§) Iz [0]sx1 [0]sxa
[0]1x3 [0]1x3 [0l1xz  a19(§) a20(§)
L [0]ix3 [0]1x3 [Olixa  a24(§) a2s(§) |
bi1(§) Q)  b2A6)Q(E)  b3(E) Q)  [0lsx1 [Olsx1 ]
bs() Q(E) b7 Q)  bs(§)Q(E)  [0zx1 [Osxa
+ | 01§ Q(E) b12(§) Q(E) b13(§) Q(E)  [Olsx1  [0]sx1 (4.17)
[0]1x3 [0]1x3 [0]1x3 0 0
[0]1x3 [0]1x3 [0]1x3 0 0
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[Olsxs  [O0]axz  [0]axz  ca(§)
[0lsxz  [0]sxs  [Olsxs  co(§)€T  c10(€) €T
+ [0]sxs  [Olsxs  [Olsxs c1a(§) €T es(§)ET
cas(§)§ ar(§)€ as(§)é
| e1(§) € () E ()€

Note that the entries of the matrix M(&, o) are polynomials in £. Therefore, to invert the Fourier
transform and find an explicit form for the fundamental matrix I'(x, o) we need the roots with respect
to r = || of the equation

A(§) =det L(—i &, 0) = 0. (4.18)
Due to the evenness of the function A(§) with respect to r = ||, it is clear that if r = rg is a root
of the equation A() = 0, then so is r = —r¢. In view of (4.6) the roots of the equation A(£) = 0
are £);, j = 1,2,...,11. For the sake of simplicity, we assume that A\; # Ag, for j # k, ImA; > 0,
and if Im A; = 0, then A; > 0, (see Appendix A). Therefore, in view of (4.16) we can represent the
fundamental solution as

1 1 1
I(z, L0 | = = Fol[me ]:7 2, (=] @
(:17 J) €—>.L (§ ) dl f—)a: (5 ) (I)(T) M(Z U) 5—)1 (I)(T‘) ( )
where
11
o(r)=[[0* =X, dv=—p(No+ 2p) ho ko he ke d.
j=1
Note that
1 11 »;
_ j
= Z 5T
D(r) = Af
where the parameters pi1,ps,...,p11 solve the system of linear algebraic equations

A" pr+ A" pr A+ A p =0, m=0,1,....9,

A0+ A pp 4+ Ay = L
They can be represented as follows:

—1
11

pi=| [I &i-X)

I=1,1#5

Note that if Im A; > 0, then

71 1 _ et Al
o |2 /\? Ar|z|
Therefore,

et |:1:\

Now, from (4.19), we deduce

11 ;
1 . eZ)‘J‘|I|
I'(z,0) = ird M(id, o) ;pj T (4.20)
or
I(z,0) = M(i0,0)¥(z,0),

4’/Td1
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where the differential operator M(¢ 0, o) is given by (4.17) with ¢ 0 for £ and
11 ei Aj |z
\I/(Jj’ 0) = ij

2P

We can simplify M (i 9, 0)¥(x,0) and rewrite the fundamental solution in a more explicit form.
this end, let us note that
ei)‘jlx‘ ei)‘jlm‘

= )2

]
and apply formulas (4.7)—(4.15) to obtain

) 61)\ |z PR |z|
a(id Zpg a . b(io ij 7,
11 . ei)‘jlm‘
a(i0)¥(z,0) =Y pjal’) e 1=1,7,8,12,13,19, 20, 24, 25,
xr
j:l
etAi |z|
bi(i 0 Z p;bt . 1=1,2,3,6,7,8,11,12,13,
i\j|z|
a(io Z pic S 1=4,5,9,10,14,15,16,17,18,21,22, 23,

where
a9 = heke(A3 — A3)(AF — A7),

bU) = (hy + hs) (ks + ks)A3 + (ks + ks) (he A3 — 6) + (ha + hs) (kg A3 — 540),
11

() = ()\0 + 2#)}10 kO h6 k6 d H()‘3 - >‘l2)a
=2
‘ 2 11
a/,(7j) :—/j/()\o-i-Q/J,)tho %Q_kG)\2 H H A_)\lz)a
=1 =5
' 2 11
af) = io s (o + 2mho ko d JTO2 = Np) TTOZ =),
=1 =5
=
2 11
afl) = —j (Ao + 2uho ko d (6 — he A3) TTA2 = 39) (X2 - A3),
=1 =5

a%l) = 1 (No + 2u)ho ko e ke H()‘? =M
=1

6
ag%) =K (>\O + 2#)}10 k‘o h6 kﬁ H(A? _ ) ,%%)7
=1

6
a) = it (o + 2p)ho ko hs ks TTOF = A7) 57,
=1

(4)

6
asl) = 1 (Xo +2u)ho ko he ks [J(A2 — AP 12,
=1
A3 [( )

v = hoko (A2 = A3 (A2 — Xo +20) (A2 = A3) (kX2 —io e Tp) — i v2A2]
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+ k1 ks (Ao + 21) (AF = A3) (6 — ho AD)A]

Y =0 ho ko (A2 = A2)(A2 = A2) [y 7222 + 3¢ (Ao + 2u) (A2 — A2)]
+io 1 hl k‘3()\0 + 2”) ()\? — )\%))\?,

V) = o ho ko To (A2 = A2) (A2 = A2) [m1 7222 + 52 (Ao + 201) (A2 — A3)]
+i0 e k1 hg(Xo + 2u) (A3 — A3)AZ,

12 = hoko (A2 = A2)(A2 = A2) [(Ao + 2) (A2 = A3)(h A2 —iom) — io 73 A2]

+ hy ha(Ao +20) (A2 = A2) (500 — ko A2)A2,
11

6
o = —ho ko h ko { (Mo + 1) d [TOF = A) —in(3? = A3) TTOZ =) [r2 80 + 7451}
3 =3

(A7 = AD) [z v +m %5,2)]

'.:1°W

b5 = i pho ko he kg (A2 — A2)

Il
@

A2 =) [r2rE + ),

o

b5 =i pho ko he ks (A2 — A2)

=3
4
b = 11 (Mo + 20) h kg [ (N2 = M) [ihs (ko2 — s0)7§) — 0 521 ks 7S],
=1
b = i (ho + 21) (A2 — -A){ - dH ) [(k6A? = 520) bY) — (kg + ks)a)]

+ CL(j) [Zhg(ko)\? — %0)’}/4(52) — 0 i1 kg 7(])} },

11
b = 11 (Mo +20)(A2 = M) (A2 = ) { —io s dbD [[ (A2 = 2P)
=7

+ a(]) [Zhg(ko/\ — %0)’}/4&3) — 0 k‘3 7(])} },

b§j1) = (Ao + 2u)he ke H()\f - A7) [ik3(ho)\? - 5)’75(&) — o hs %g)],
=1
11

by = 1 (o + 20) (] = AN = M) {a [iks(hoA] — 9)183 — 0301 hs 7y ] + iosard b TT(N?

=7
bl —u(/\o+2u)()\ = M) F = X9){a [ika(hoA] — )Y — o 521 hy Y]

+dH )[(ha + hs)a?) + (5 — heA?)p\P]},

(2 = A [z vt + 71950,

e

Ci‘j) = Z/Lho ]CQ h@ k@ ()\? - )\%)

Il
w

(A2 =) [r2 78D + D),

::]m

8 =i pho ko he ks (A2 — A2)

Il
w

4
e§ = (Mo +20) ho kg [[(A2 = M) [ihs (koA? — s00) 1) — 0 501 ks 8%,
=1

et = 1 (Mo + 24) h kg H M) [ihs (ko] — 220) i) — o 561 ks 4],
=1

289
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4
094) = (Ao + 2p) he ke H(AJZ — A7) [iks (hoAT — 6) “Yrgi) — o h %ﬁ)],
=1

4
C%) = (Ao + 2p) he ke H()\? — ) [iks (ho)\? —0) 7;” — o hs %(Ljs)],
=1
6

cig = 1 (o +2p1) ho ko ho ko TTOF = AP 47,
=1

6

% = 1 (Mo + 20) ho kg ho ko [[(A2 = AP) 742,
=1
6

i = 1t (o +241) ho ko ho ko [TOF = AP 735,
=1

6

=1
. u j
e = 1o +2p) he kg ho ko [[(A2 = A2) 12,
=1

6
=1

v = hoko (A2 = A3 (A2 — A2) [i0? se Ty — o (io e Ty — kA2)]
+ [i0? 31 y1 ha ksTy + 0 k1 ks y2(8 — ho A7) A2,
%(é) =oh v To )\?(%0 — ko )\?) +i0? 501 k1 1172 A?
+ (Ao + ZM)(/\? Y [i02 i ki +i1hi by kg)\? —th1 (3 — koz\?)(iacTo —k /\?)],
'y‘g)) =okiv1 v (ho /\? — 6))\? — 402 3 hy ’yf To /\?
— (Ao +2u) (A7 = A3) [0 5¢k1 (6 — ho A3) + 0 501 hy (i0 ¢ Ty — kA3)],
WY = hoko Ty (A2 = A)(A2 = \) [i0? 5272 — o i (iom — h A2)]
+ o y1 ha hs To(s00 — ko A?))\? +i0? s k1 haye /\57
Vé]é) =0 hi1v1 7T (ko /\? - %0))\? —io? s ki /\§
+ (Ao + 2#)()\? —\3) [0 51 Ky (R )\? —idom) — o »xhy To(ko )\5 —5)],
’Yéé) =0k (6 —ho )\jz) A? +i0? 31 hy 1 v2 To )\?
— (o + 2/1)(/\§ Y [z k1 (6 — ho )\?)(iam - h/\?) — ik hi hs /\? —i02 35 g TO]7

From (4.17) and (4.19), for the fundamental matrix, we get the following representation:

[ Vi(2,0) 13 [UESS [UESE [UESS! [0]3x1
[0l3x3 Vr(z,0) I3 Vs(z,0)l3  [Ol3x1 [0]31
I'(z,0) = 47rld1 [0]3x3 Uio(z,0) I3 Uis(z,0)l3 [0]3x1 [0]3x1
[0]1x3 [0]1x3 [0]13 Vig(z,0) Wa(z,0)
L [0]ixs [0]1x3 [0]1x3 Uou(z,0) WUos(z,0) |
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Q)i (z,0)  QO)T2(x,0)  QO)Ts(w,0) [O]sx1 [0]sx1
Q) ¥s(z,0)  QO)Tr(x,0)  Q@O)Ts(w,0) [Olsx1 [0]sx1
| QO)Tn(r,0) QO)Tia(r,0) QO)Tis(x,0) [Olaxi [0)sxa (4.21)
[0]1x3 [0]1x3 [0]1x3 0 0
L [0]1x3 [0]1x3 [0]1x3 0 0
[ [O3xs [0]x3 Osxs  V'¥4(x,0) V' ¥i(x,0) |
[0]3x3 [0]3x3 [0]3x3 VIWy(z,0) VIWi(z,0)
+ [0]5x3 [0]3x3 Olsxs VI y(z,0) VIWi5(z,0) ;
VU is(x,0) VUi (x,0) VIig(x,0) 0 0
| VY hiz,o) VUL (z,0) VUL(z,0) 0 0 |
where
1 el Azl
U(z,0) =Y p o< P 1=1,7,8,12,13,19, 20, 24, 25,
- j_lﬂ iz
Uy(z,0) = = > p b7 " o IS L2seTsILIZ,
]1;1 L\t Azl
Ui(z,0) =i pje” |;£| . 1=4,5,9,10,14,15,16,17,18,21, 22, 23.
j=1

Remark 4.1. Note that (4.20) can be rewritten in the form

11

[(z,0) =Y ®Y(z,0), (4.22)
j=1
where
G P 50,00 S 4.23
(LE,O')— 47Td1 (Z 70—)W7 ( . )

and M(i0,0) is defined by (4.17). Since M(i0,0) is a matrix differential operator with constant
coefficients, from the representation (4.23) it follows that the entries of the matrix ®U)(z,0) =

[@,(fé (w,o)} are metaharmonic functions corresponding to the wave number };, i.e., they are
11x11
solutions of the Helmholtz equation

(A+X2) @) (z,0) =0, |z #0,

and decay exponentially at infinity:
o i , ; _
Bl W) (z,0) —iX; @0 (2,0) = exp{—Im \; |2} O(|z| ), p,q=T,11,

as |z| — 4o0o. The entries of the matrix ®U)(x, ) and its derivatives likewise satisfy at infinity the
following decay conditions [16]:

05 (x,0) = exp{—Im \; ||} O(|z| 1),
9 ,

= W@ .
o pq(x,a) A

These asymptotic relations can be differentiated any times with respect to the variable z.

x . ~
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In accordance with formulas (4.22), (4.23) and Corollary A.2 (see Appendix A) we see that for
Imo = o2 > 0 the entries of the matrix I'(x,0) decay exponentially as || — oo, since Im A; > 0,
j=T,11.

Remark 4.2. Note that the matrix I'*(z,0) := [['(—x,0)] " represents a fundamental solution to the
formally adjoint differential operator L*(9,0) = [L(-0, O')]T,
. T
L*(0,0)[T(—z,0)] =1I116().
In the case of repeated roots the fundamental solution can be obtained from (4.20) by the standard
limiting procedure.
5. PRINCIPAL SINGULAR PART OF THE FUNDAMENTAL MATRIX

The principal singular part T'o(x) of the fundamental matrix (4.21) represents an 11 x 11 funda-
mental matrix of the operator Lo(9) defined by (3.9), (3.10) and solves the equation

Lo((?)l“o(a:) = 6(.’13)[11.
It is easy to show that

V() [Olsxs  [Olaxs  [Olaxs  [0)sxs
[0]sx3 Féﬂ(iﬂ) [0]5x3 [0]3x1 [0]3x1
[

I
Co(z) = | [0]3x3  [0]3x3 F(()IS)(JJ) 0]3x1 [0]351 .
O0lixs  [Oixs  [Ohxs T8@) 0
0]1x3  [0]1x3 [0]1x3 0 F(()25)(x) 11x11
where
(1) 1 2 )\Q"’,U
r =—— "I
(@) m{m s AO+2Mcz<a>|ac|},
(7) 1 2 h4+h5
r - iy A
V@ = g B e Q@
1 2 ks + k
F(13) — 7] _ 4 5
0@ = gl B T Q@)
o, _ 1
Fo (@) = A h ||’
(25) 1
T = — .
S A

Note that ['g(z) = I'j (z) = [o(—z) and the entries of the matrix I'y(z) are homogeneous functions
of order —1. For an arbitrary multi-index o = (a1, @, @3) and an arbitrary complex number o it can
easily be shown that in a neighbourhood of the origin (i.e., for small |z|)

%[l (xz,0) =To(2)] = O(|z[7%), o] = a1 + a2+ as,

which shows that I'g(x) is a principal singular part of the matrix I'(z, o).

6. POTENTIALS AND THEIR PROPERTIES

Let us introduce the generalized single and double-layer potentials, and the Newton type volume
potential,

V(g)(x) = / (@ —y,0)p(y)dS,, = €R\S, (6.1)
S
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W(e)(x) = / [P0, n(y)TT (z — ,0)] " @(y)dS,. =ecR\S, (6.2)
S
No= (¥)(z) = / D(z—y,0)Y(y)dy, =cR3 (6.3)
[oF

where I'(;o) is the fundamental matrix given by (4.20) or (4.21), ¢ = (¢1,2,...,¢11) " is a density
vector-function defined on S, while a density vector-function 1 = (11,...,%11)" is defined on QF
and we assume that in the case of {1~ the support of the density vector-function ¥ of the Newtonian
potential (6.3) is a compact set, P*(9y,n(y)) is the boundary differential operator defined by (2.20).
It can be checked that the potentials defined by (6.1) and (6.2) are C*°-smooth in R3 \ S and solve
the homogeneous equation L(d,0)U = 0 in R?\ S for an arbitrary continuous vector function ¢. The

volume potential solves the nonhomogeneous equation
L(0,0)No+(¥) =¢ in QF for ¢ e C%*(QF). (6.4)

Theorem 6.1. Let S = QT be CL7 ,smooﬂwith 0<~'<1,0=01+1i0y withoy >0, and let U
be a reqular vector function of the class C?(Q%). Then the integral representation formula

U(z) for xe€QF,

W{UY ) (z) = V{PUY)(z) + No+ (LD, 0)U) (z) = {0 for @€ O

holds.

This follows from Green’s formula (3.7) (see [4, Appendix DJ).
Similar representation formula holds in the exterior domain Q7 if the vector U and its derivatives
possess some asymptotic properties at infinity. In particular, the following assertion holds.

Theorem 6.2. Let S = 92~ be CY smooth with 0 < v’ <1 and let U be a reqular vector of the
class C%(Q~) such that for any multi-indexr o = (a1, o, a3) with 0 < |a| = a3 + s + a3 < 2, the
function 0“U; is polynomially bounded at infinity, i.e., for sufficiently large |z,

|0°U;(x)] < Colz|™, j=1,2,...,11,
with some constants m and Cy > 0. Then the integral representation formula

“W{UF (@) + V{PU})(@) + No- (L(0,0)U)(x) = {Omx) o

where 0 = o1 + 1 09 with g9 > 0, holds.

The proof immediately follows from Theorem 6.1 and Remark 4.1.
From Theorem 6.2, it follows immediately that if U € C?(Q~) grows at infinity polynomially,
and L(0,0)U possesses a compact support, then actually U and its all partial derivatives decay

exponentially at infinity and the following Green’s formula

/ U' - L(0,0)Udx = — / {U"}y - A{PO,n)U}dS — /E(U’,U)dx (6.5)
Q- a0~ Q-
holds for all polynomially bounded vector functions U’ € C*(Q~).

Now let us consider the mapping and regularity properties of the single and double-layer potentials
and the boundary pseudodifferential operators generated by them in the Holder C"™7 spaces. They
can be established by standard methods. We remark only that the layer potentials corresponding
to the fundamental matrices with different values of the parameter o have the same smoothness
properties and possess the same jump relations. Therefore, using the word for word arguments given in
[3,4,8,9,11-14], we can prove the following theorems concerning the above-introduced layer potentials.
Unless otherwise stated, for simplicity, we assume that

S =00 € ™" with integerm >2 and 0 <y’ <1;

(6.6)
oc=01+1i09, 01 €R, Imo=ay>0.
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Theorem 6.3. Let S, m, and vy’ be as in (6.6), 0 <’ <~v’, and let k < m —1 be an integer. Then
the operators

Vo CRY(S) o ORI @QF), W e (8) = CR O (QF) (6.7)

are continuous. For any g € CO"SI(S), h e Cl’al(S), and any x € S,

V(9)(@) % = V(g)() = Hala), (6.8)

(PO () V() (@)} = [ F2 I + K] g(a), (6.9)

{W(g)(x)}* = [ £2 Iy + N ] g(a), (6.10)

(P(B () W(h) () }F = {P(@srn(x)) W(h)(x) }~ = Lh(x), (6.11)

where

Hole) = / I(z —y.0)g(y) dS, (6.12)
S

K9(e) = [ [P@rn(@) T - 1.0)] 9(0)dS, (6.13)
S

Noa) = [ [P @) I~ v.0)] glw)ds, . (6.14)
S

Lh(x):= Qialir_r)ll_es’P(@z,n(x))/ [P*(ay,n(y)) FT(z—y,a)]Th(y) ds, . (6.15)

S

The proof of the relations (6.7)—(6.11) can be performed by standard arguments (see, e.g., [6,8,12]).
The relation (6.11) is called the Liapunov-Tauber type theorem.

With the help of the explicit form of the fundamental matrix I'(z — y,0) it can be shown that
the operators K and N are singular integral operators, H is a smoothing (weakly singular) integral
operator, while £ is a singular integro-differential operator.

Theorem 6.4. Let S, m, v, 8’ and k be as in Theorem 6.3. Then the operators

LR (S) = LS (6.16)
0’“ () = C* 9 (9), (6.17)
N CRO(8) = CR (), (6.18)
L£:CR(9) = kLS, (6.19)

are continuous. Moreover, 1) the principal homogeneous symbol matrices of the operators £27 1111 +K
and 271111+ N are non-degenerate, while the principal homogeneous symbol matrices of the operators
—H and L are positive definite; 2) the operators H, +27 I +K, £271I1+ N, and L are elliptic
pseudodifferential operators (of order —1, 0, 0, and 1, respectively) with zero index; in appropriate
function spaces, the following equalities 3)

NH=HK, LN =KL,

1 9 . 9 (6.20)
HL =4 111+N s LH=-4""11; +K=.

hold.

The mapping properties (6.16)—(6.19) are standard and can be proved as their counterparts in
[8,11,13,14]. Ttems 1) and 2) are based on the positive definiteness of the potential energy functional
and positive definiteness of the symbol matrix Lo(€) for € = (&1, &2,£3) € R3\ {0} (see (3.9), (3.10)),
(cf. [3,4,10,11,14] and [6]). Item 3) follows from the jump relations for the layer potentials and the
general integral representation formulas of solutions to the homogeneous equation L(9,0)U = 0.
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7. FORMULATION OF BOUNDARY VALUE PROBLEMS AND UNIQUENESS THEOREMS

Let us formulate the basic interior and exterior boundary value problems for the domains Q% and
Q~. We assume that S =90+ ¢ O, 0 <y ' < 1.

Problem (I(°))* (The Dirichlet problem). Find a regular solution vector function U =
(u, C, T, P,¥)" to the system of differential equations

L(0,0)U(z) = ®*(z), =€ QF, (7.1)
satisfying the boundary condition
{U(2)}* =f(z), z€8. (7.2)
Problem (I1(°))* (The Neumann problem). Find a regular solution vector function U =
(u,C, T, P,9)" to system (7.1), satisfying the boundary condition
{PO,n)U()} =F(2), z€8. (7.3)
We assume that the data of the boundary value problems belong to the appropriate classes,
ot e CON(Q)E, fFeCh(S), FecC™(S), 0<d <v'<1.

In addition, in the case of exterior problems we assume that the vector function ®~ is compactly
supported in 2~. Now we prove the following uniqueness theorem.

Theorem 7.1. Let ¢ = 01 + i02, with 01 € R and o9 > 0. Then the homogeneous boundary value
problems (I'9)* and (ITC9)* have only the trivial solution in the class of reqular vector functions.

Proof. Let U = (u,C,T, P,¥)" be a regular solution of the homogeneous boundary value problem
(1% or (IT(9))*. Apply Green’s formula (3.1) or (6.5) for the vector functions U and U’, where

e = m o5 LT
U =(izw, C, T, P, Toﬁ) )
Keeping in mind (3.3)—(3.6), we get the following relation:
+ /{U’}i PO, n)UYEAS — /E(U’,U)da: —0, 7
o0+ O*
where
E(U',U) =igEY (G, u)+ E?(C,C)+ E®(T,T) —i7 (2 P +79)divi — i po|o|? [ul?
—0|C)? —i0 s C- T+ hsC-grad P — 34 |T|? —i0o 3T - C + k3T - grad 9
—iom|P|* —ioyy Pdivu —io % PVY+hy C-grad P + h|grad P|?

k — I _
+ —|gradd®> —ioc|d)? —ioy 0 divu —io x PO+ —T - grad U
To To

3 2 3 2
_ 3o+ 2u, .. I Oup  Ou, 7 Oup,  Ou;
EW (@, u) :()7| divul> + & Z — - +Z Z i (7.5)
3 3 k=1 8xk 8xj 2 ke, ktj 6Ij aﬂjk
— ha+hs +h he —h
E®@T,0) :w‘ aiv O 4 1" eun cp?
3 2 3 2
hs + hg 0C}, 8C’j hs + hg 0C}, 8Cj
phothe 5~ |00k O S [%Ck 0G| (76)
4 biet s Ox;  Oxy 6 Pt Ory, Oz
ay — ks + ks + Kk ke — k
E®)(T,T) :34+735+6| divT|? + % | curl T2
3 2 3 2
ks + kg 0Ty, 8Tj ks + kg T, 8TJ
- P e P P (7.7)
4 bkt Ox; Oz 6 Py Ory  Oxj
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Since U = (u,C,T, P,9)" solves the homogeneous boundary value problem (I(2))*, or (IT(°))* the
surface integral in (7.4) vanishes and we arrive at the equation
/ B(U', U)dz = 0.
Q=
The real part of this equation reads as
/ {o2 EW(@,u) + E®(C,C) + EG(T,T) + poa |of*|ul?
O+
+03 [m|P]? + 3¢ (PY + PY) + c|[0]*] + o2 [m1|C]> + 30, (C-T+C-T) + ¢y |T)?]
1 _ _ (7.8)
+5 [2h2|C? + (h1 + hs) (C - grad P + C - grad P) + 2h | grad P|? |

1 _ _
+om 2k Ty |T1> + (k1 + To ks) (T - grad 9 + T - grad ) + 2 k | grad 9|?] }da = 0,
0

By means of relations (7.5)—(7.7) we see that EM(@,u) > 0, E?(C,C) > 0, and E®)(T,T) > 0.
Transforming the integrand and taking into account conditions (2.6), we establish

o 1
m| P + » (PO + PY) + c|0)* = - [(me—32) P>+ %P+ cd’] >0,
mq|C|? T+T- 2_ 1 NPT 9
HCP +5a (C-T+C-T)+ 1 [T =7 [(m1cr = 5)[C]? + a0 O+ TP] >0,
1

1 — —
3 [2h2|C|? + (k1 + h3)(C - grad P + C - grad P) 4 2h | grad P|* |

1
=~ {[4hh2 — (h1 +h3)’] |C* + |(h1 + hs) C + 2h gradP|2} >0,
1 =1 —
ﬁ [2 k2 TO |7"|2 + (kl + TO k?’)(T . gradrﬂ + T. grad,ﬂ) + 2k | grad,lg'Q}
0
1
= m{ [4To k ky — (k1 + To ks)?]|T? + [(ky + To ks) T + 2k gradW} > 0.
0

Consequently, from (7.8) we derive Re E(U’,U) > 0 in QF, implying U = 0 for 2 € Q*.

8. EXISTENCE RESULTS

Now, we apply the potential method and prove the existence theorems for the above formulated
Dirichlet and Neumann type boundary value problems. We reduce these problems to the equivalent
integral equations on the boundary of the elastic body under consideration and investigate their
Fredholm properties. We show that the corresponding integral operators are invertible. Without
loss of generality, we consider the boundary value problems for the homogeneous differential equation
L(0,0)U = 0, since a particular solution to the nonhomogeneous equation (7.1) can be written
explicitly in the form of the volume potential Ng= (®%) (see (6.4)). Moreover, throughout this section
we assume that the conditions (6.6) are fulfilled, unless otherwise stated.

8.1. Investigation of the interior and exterior Dirichlet problems. We assume that &) =
0 and look for solutions in Q* in the form of the double-layer potential U = W (h) (see (6.2)).
Applying the jump relations for the double-layer potential (see Theorem 6.3) and taking into accoun

the boundary conditions (7.2), for the unknown density vector function h = (hy, ha,...,h11)" we get
the following boundary integral equations:
[27' 11+ N]h=f on S, (8.1)

in the case of Problem (I(®))* and
[—27' 1 +N]h=f on S, (8.2)
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in the case of Problem (1(?))~.
Here, the operator N is given by (6.14). Due to Theorem 6.4, the operators £2~11;; + N are singular
integral operators of normal type with index zero. This leads to the following existence theorems.

Theorem 8.1. Let S € C*V and f € C7(S) with 0 < 7 < v < 1. Then the boundary value problem

(IN* is uniquely solvable in the space C*7(QF) and the solution can be represented by the double-
layer potential W (h) defined by (6.2), where the density h € CY7(S) is uniquely defined from the
integral equation (8.1).

Proof. The uniqueness follows from Theorem 7.1. Now, let us show that the singular integral operator
27 I+ N - CBT(S) = OB T(S) (8.3)

is invertible. Due to Theorem 6.4, we conclude that (8.3) is a Fredholm operator with zero index.
Further, we show that ker [2_1111 + N] is trivial. Indeed, let hy € CH7(S) be a solution of the
homogeneous equation

[2_1111 +/\/] ho=0 on S. (8.4)

We construct the double-layer potential W (hg). Evidently, W (ho) € C*7(QF) by Theorem 6.3. In
view of equation (8.4), we have {W(ho)(z)}* = 0 for € S and by the uniqueness Theorem 7.1,
we get W(ho)(x) = 0 for z € QF. Consequently, { P(9,n) W(ho)(x)}T = 0 for z € S. By the
Liapunov-Tauber theorem (see Theorem 6.3)

{P(0.n) W(ho)(x)}* = {P(8,n) W(ho)(x)}~ =0, z €S,
i.e., W(hg) solves the homogeneous exterior Neumann type boundary value problem (I7(®))~ and
decays at infinity exponentially. Therefore, W (ho)(z) = 0 in Q= by Theorem 7.1. Since
{W(ho)(2)}" — {W(ho)(2)}~ =2ho(z), z€S,
we conclude that hg = 0 on S, which shows that the null space of the operator 271I;; + N is trivial.
Therefore, (8.3) is invertible. O

Quite similarly, with the help of Theorem 7.1, we can show that the operator
27 N ChT(S) = ChT(9) (8.5)

is invertible, which leads to the existence theorem for the Dirichlet type exterior boundary value
problem.

Theorem 8.2. Let S € C*" and f € CV"(S) with 0 < 7 < v < 1. Then the boundary value
problem (I'9))~ is uniquely solvable in the class of vector functions belonging to the space C*7 ()

and decaying at infinity, and the solution is represented by the double-layer potential W (h) defined by
(6.2), where h € C1:7(S) is defined by the integral equation (8.2).

8.2. Investigation of the interior and exterior Neumann problems. These problems are for-
mulated in Section 7 as problems (I7(®))* and (I1¢°))~. As above, we assume that ®*) = 0 and look
for solutions in Q% in the form of the single-layer potential U = V(g) (see (6.1)). Taking into consid-

eration the boundary conditions (7.3), for the unknown density vector function g = (g1,92,...,911)"
we get the following boundary integral equations:
[—27'[11 +K]g=F on S, (8.6)
in the case of Problem (I7(?))* and
[27'11+K]g=F on S, (8.7)

in the case of Problem (I1(?))~. Here, the operator K is given by (6.13). Due to Theorem 6.4, the
operators #2711, 4+ K are singular integral operators of normal type with index zero. This leads to
the following existence theorems.

Theorem 8.3. Let S € C1V and F € CO’T(S)]Eth 0 <7 <v <1 Then the boundary value problem
(ITN* is uniquely solvable in the space C*™(QF) and the solution is represented by the single-layer
potential V(g) defined by (6.1), where g € C*7(S) is uniquely defined by the integral equation (8.6).
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Proof. The uniqueness is a consequence of the uniqueness Theorem 7.1. Now, we show that the
operator

27+ K 2 CYT(S) = CVT(S) (8.8)
is invertible. Due to Theorem 6.4, the operator (8.8) is a Fredholm operator with zero index. Therefore,
it remains to show that the null space of the operator —2711;; + K is trivial. Let go € C%7(S) solve
the homogeneous equation

[7 271[11 + IC]QO =0 on S.

Construct the single-layer potential V' (go). Evidently, V(go) € C*7(QF) due to Theorem 6.3. More-
over, V(go) solves the homogeneous Problem (I7(?))* and therefore it vanishes identically in Q, due
to Theorem 7.1. Further, by Theorem 6.3, we have { V(go)(z) } ™ = {V(go)(z) }~ =0 for x € S, and
since it exponentially decays at infinity, by the uniqueness theorem for the Dirichlet exterior boundary
value problem, we conclude V(go)(xz) = 0 for € Q. Finally, with the help of the jump relation

{P@,n) V(go)(x)}~ = {P.n) V(go)(w) }" =20 (2), z €S,
we derive gg = 0 on S. Thus, the operator (8.8) is invertible. O

By the word for word arguments we can prove that the operator
27+ K 2 C%7T(S) = %7 (S) (8.9)

is invertible, which leads to the existence theorem for the Neumann type exterior boundary value
problem.

Theorem 8.4. Let S € CYY and F € C%7(S) with 0 < 7 < v < 1. Then the boundary value problem
(119~ is uniquely solvable in the class of vector functions belonging to the space C7(Q~) and
decaying at infinity, and the solution is represented by the single-layer potential V (g) defined by (6.1),
where g € C%7(S) is a unique solution of the integral equation (8.7).

8.3. Investigation of the basic boundary value problems by the first kind integral equa-
tions. Here we apply an alternative approach and reduce the basic interior and exterior boundary
value problems, considered in the previous subsections, to the first kind integral equations (cf. [14]).
These results play a crucial role in the study of mixed boundary value problems.

9.3.1. Investigation of the Dirichlet problem with the help of the first kind integral
equations. We look for a solution to the problems (I®))* and (I(®))~ (see (7.1)-(7.2) with @) = 0)
in the form of the single-layer potential U = V' (g) (see (6.1)). In both cases, for the interior and exterior
boundary value problems, we arrive at the equation

Hg=f on S, (8.10)
where H is defined by (6.12). We have the following existence theorem.
Theorem 8.5. Let S € C*V and f € CY7(S) with 0 < 7 < v < 1. Then the boundary value problems
(I'NE are uniquely solvable in the class of vector functions belonging to the space C%7(QF) and

decaying at infinity, and the solution is represented by the single-layer potential V (g) defined by (6.1),
where g € C%7(S) is a unique solution of the integral equation (8.10).

Proof. The uniqueness follows from Theorem 7.1. Evidently, it remains to show the invertibility of
the operator

H o CVT(S) — ChT(S). (8.11)
To this end, we apply the operator £ (see (6.15)) to both sides of equation (8.10) and take into
consideration the operator equalities (6.20),

LHg = [—4_111 +K2}g:£f on S. (8.12)

Clearly, Lf € C%7(S) due to Theorem 6.4. Since the operators (8.8) and (8.9) are invertible, we
conclude that the singular integral operator

LH=[-2""In+K][27' n+K] : CV7(S) = C”7(9)
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is invertible, as well. Therefore, from (8.12), we get the following representation of a solution of
equation (8.10),

g=[ -4tk Lfec™T(s).
With the help of the uniqueness Theorem 7.1, one can easily show that the operators

H o CO7(S) = ChT(S), L :CHT(S) = CYT(S) (8.13)
are injective. Therefore, equations (8.10) and (8.12) are equivalent and the operator (8.11) is invertible,
which completes the proof. O

Corollary 8.6. A solution U € CV7(QF) of the boundary value problems (I©)* with &) = 0 is
uniquely representable in the form
Ux) =V(H f)(x), =€
where f = {U}* on S and
HL 2 ONT(S) = COT(S)
is the inverse to the operator (8.11).

This representation plays a crucial role in the investigation of mixed boundary value problems
(cf. [14]).

9.3.2. Investigation of the Neumann problem with the help of the first kind integral
equations. We look for a solution to the problems (I7(°))* and (IT(®))~ (see (7.1), (7.3) with
®* = 0) in the form of the double-layer potential U = W (h) (see (6.2)). In both cases, for the interior
and exterior boundary value problems, we arrive at the equation

Lh=F on S, (8.14)
where L is defined by (6.15). We have the following existence theorem.

Theorem 8.7. Let S € C*V and F € C%7(S) with 0 < 7 < v < 1. Then the boundary value problems
(ITNE are uniquely solvable in the class of vector functions belonging to the space C*7(QF) and
decaying at infinity, and the solution is represented by the double-layer potential W (h) defined by (6.2),
where h € CY7(S) is a unique solution of the integral equation (8.14).

Proof. The uniqueness follows from Theorem 7.1. Evidently, it remains to show the invertibility of
the operator
L:CH7(S) = C¥7(9). (8.15)
To this end, we apply the operator H (see (6.12)) to both sides of equation (8.14) and take into
consideration the operator equalities (6.20),
HLh=[—4"'"I;1 + N?|h=HF on S. (8.16)
Clearly, HF € C1'7(S) due to Theorem 6.4. Since the operators (8.3) and (8.5) are invertible, we
conclude that the singular integral operator
HL = [-27' T+ N [27 T + N 2 CH7(S) — CH7(S)

is invertible, as well. Therefore, from (8.16), for a solution of equation (8.14), we get the following
representation formula:

h=[—-4"'L + N2 HF € CVT(S).
Since the operators (8.13) are injective, we conclude that equations (8.14) and (8.16) are equivalent
and the operator (8.15) is invertible, which completes the proof. O

Corollary 8.8. A solution U € C*7™(QF) of the boundary value problems (II©O)* with ®* = 0 is
uniquely representable in the form

Ulz) =W(LF)(x), zeQF,
where F = {P(9,n)U}* on S and
£t CYT(S) = CHT(S)

is the inverse to the operator (8.15).
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9. APPENDIX A: PROPERTIES OF THE CHARACTERISTIC ROOTS

Here, we investigate the properties of roots of equation (4.6) with respect to r. In particular, we
prove the following assertion.

Lemma A.1. Let us assume that o = o1 + i 09 is a complex parameter, where o1 € R and oo > 0.
Then

det L(—i&,0) #0
for arbitrary ¢ € R3.

Proof. We prove the lemma by contradiction. Let det L(—i&,0) = 0, & € R3. Then the system of
linear equations L(—i&,0) X = 0 has a nontrivial solution X € C*!' \ {0} which can be Written as
X = (XD X® XxO® x® XxON)T where X0 = (XY x xUT ec3, j=1,2,3 and X0 € C,
j = 4,5, are scalars. Taking into consideration (2.14), the system L(—i{,0) X = 0 can be rewritten
as follows:

L(j)(—zf,a) xM 4 L(j+5)( i&,0)X? + L J+10)( i&0) X
+LU) (g, o) XW 4 LU20(—i¢ o) XO) = 0,

J=1,2,3,4,5,
implying
[(pl€l® + po®) Is = (Mo + ) Q)] XV +imag TXW 4im ¢TXO =0, (A1)
(6 = ho |€]*) I — (ha + hs) Q(E)] X P +ic 0 X®) +ihz e XW =0, (A.2)
i030 X + (500 — ko|€]*) Is — (ka + ks) Q(g)]X<3> +iks€TX® =0, (A.3)
oy XY —ih & XPD 4 iom—nh|g) XP +i0xXO =0, (A.4)
onToé XYW —iki £ X® +ioTo X + (iocTy — k[¢)?) X® = 0. (A.5)

Let us take the dot products of equations (A.1), and (A.2) by the vectors —ig X(1) and — X (2) respec-
tively, multiply equality (A.3) by the vector —X (3), then multiply complex conjugates of equations
(A.4) and (A.5) by the functions — X4 and — 2 X(5) respectively and sum up the results to obtain

o [ple? — po?] | XD +i7 (Ao + m) [€- XD + [h |62 = 6] XD + (ha + hs) | € - XP)?
—igm[XP . XO £ X@ . XO] —ihy (¢ X@) XO 4 [k €] — 5] | X
F (ks ks) |- X —iky (€ XO)XO) —ipy (¢ X@)XW 4 [iam +h|EP] X

+iTx [XWX6) + X@ xO)] - ”“1

(g X@) XG4 i7e+ |§|]\X(" = 0.

By separating the real part from this equation, we deduce

a2 [ €1 + p 1o 2] [ XD + 000 + ) |6 - XOP + he |62 |XP)? + (hy + hs) |€ - X
+ k:6 €12 X P 4 (ka + ks) |€ - XOP 4 0o [my [ XPP 456 (XP - X + X@ . XO) ¢, | X))

+ = {2h IX®)? —i (b + hg) [(£- XP)XD — (6 XP) XD] 4 2h ¢ | XV} (A.6)
{2T0 ko | X =i (ky + Toks) [(€- X)X — (¢ XO) XO) ] 4 2k ¢ | X O *}

+02[m‘X(4)‘ —|—%(X(4) .X(5)+W.X(5)) —|—C‘X(5)‘2] -0
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With the help of the following relations and inequalities (2.6),
|§|2|X(j)|2 _ ‘g.X(J’)‘Q — |5 « X@) |2, j=1,2,3,
he|€] | X * + (ha + hs)|€ - XP1F = ho|¢ - X 4 k| [¢ x XP] | >0,

ko |€)2 [ X ) + (ks + ks)|€ - X = ko € XP* + k| [¢ x XP] [ >0,

m ’X(2)|2+%1 (X@. X6 4 X@ . X®) 1 ¢ ‘X<3)‘2
_ é{[ml e — A XOP 4 | X 4o, XOP) >0,
m‘X(4>‘2 +o (XW. X6 4 x@ . X)) +C|X(5>|2
. 1{[mc_%2]|x<4>|2+ e X@ 4 eX® ) >0,
20y | XD — i (b1 + hs) [(£- XP) XD — (€ XP) XD] 4 2h ¢ | x|

= o7 Llahhe = (h + haP][X O 4 |(h + ha) X = 20neT XD} > 0,

2T ko ’X(3)’ —i(kl + Ty kj3> [(f ﬁ)X@) _ (5 . X(3)>m} + 2%k |€|2 ’X(5)’2
= i { [4T0kk2 - (kl +T0 k3)2] |X(3)|2 + |(k1 +T() kg) X(3) — 2’Lk£TX(5)|2} > 0,

from (A.6), we conclude that

XU =0, j=1,2,34,5.
Thus, the system L(—i&,0) X = 0 possesses only the trivial solution for arbitrary & € R®. This
contradiction proves the lemma. O

Corollary A.2. Let 0 = 01+t 09 be a complex parameter with 01 € R and o2 > 0. Then the equation
A€) =det L(—i&,0) =0
with respect to |£] possesses only complex roots £\;, j = 1,11 with Im A\; > 0, j = 1,11.
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