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PROJECTION APPROACH TO DISTRIBUTION-FREE TESTING FOR POINT

PROCESSES. REGULAR MODELS

ESTATE V. KHMALADZE

Abstract. We create the notion of equivalence between different martingale models for point pro-
cesses. This allows to map one model into another model in the same equivalence class. Therefore

the distribution of test statistics for goodness of fit testing needs to be calculated in only once, for

“standard” model, in each equivalence class. The equivalence classes are surprisingly broad, and
thus the economy on computational work is considerable.Namely, any such class includes a non-time

homogeneous Poisson model. Therefore it is sufficient to know the distribution of test statistics only

for Poisson models.
The situation, therefore, becomes comparable to testing simple hypothesis about a continuous

distribution function for a sample of i.i.d. random variables with continuous distribution F , when it
is sufficient to consider F , uniform on [0, 1]. However, for point processes we consider here parametric

cases, and the nature of equivalence is entirely different.

1. In Place of Introduction

This text was mainly written as a basic background material for the project which I was working on
with Dr. S. Umut Can and Prof. R. Laeven from the University of Amsterdam. The aim of the project
is to establish equivalence between testing parametric models for point processes with different forms
of random intensities. Eventually, we intend to show that a huge majority of testing such models is
equivalent to that of the non-time-homogeneous Poisson process which involves estimated parameters.

The text is not yet the final version, it is even not completely finished, but as it is, it may be useful
for many readers. It is the first general and unified text with the material, which can be either found
in various papers, or is new.

Umut Can greatly helped in preparation of the text and Roger Laeven made a number of useful
remarks and I am grateful to both.

2. Basic Asymptotic Set-up

The method we want to develop for the testing problems for intensities of point processes can be
first explained by drawing parallels between point processes and empirical processes, as the method
for the latter has already been developed (see [6–8]).

Given a sample, i.e., a collection of independent and identically distributed (i.i.d.) positive random
variables X1, . . . , Xn, let us first consider the so-called binomial process

Zn(t) =

n∑
i=1

1{Xi≤t} =

n∑
i=1

1{X(i:n)≤t}, t ≥ 0. (1)

Here, X(i:n) denotes the ith order statistic of the sample X1, . . . , Xn, with X(1:n) = min{X1, . . . ,
Xn} and X(n:n) = max{X1, . . . , Xn}. Also, 1E denotes the indicator function of the event E, so for
example,

1{Xi≤t} =

{
1 if Xi ≤ t
0 otherwise

, t ≥ 0.

2020 Mathematics Subject Classification. 62C07, 62E20, 62F03, 60G55.
Key words and phrases. Martingale models for point processes; Models with estimated parameters; Asymptotic

methods; Unitary operators.



156 E. V. KHMALADZE

For a given Xi, the indicator function 1{Xi≤t} is a step function of t, and since X1, . . . , Xn are i.i.d.
random variables, 1{X1≤t}, . . . ,1{Xn≤t} are i.i.d. stochastic processes in t. If we fix the value of t > 0,
then 1{X1≤t}, . . . ,1{Xn≤t} become independent Bernoulli random variables with

P [1{Xi≤t} = 1] = P [Xi ≤ t] = F (t),

where F denotes the common distribution function of the Xi’s. It now follows from the first equality
in (1) that Zn(t) ∼ Binom(n, F (t)) and, in particular, E[Zn(t)] = nF (t). It also follows from the
Central Limit Theorem that for any t > 0,

vn(t) :=
1√
n

[Zn(t)− nF (t)] (2)

is asymptotically Gaussian as n→∞. In fact, we know from the Functional Limit Theorem that not
just vn(t) for any given t > 0 is asymptotically Gaussian, but the stochastic process {vn(t) : t ≥ 0} is
asymptotically Gaussian as well, in the sense that it converges weakly to a Gaussian process v. The
process vn is called the empirical process associated with the sample X1, . . . , Xn, and the limiting
Gaussian process v is called the F -Brownian bridge. Occasionally, it will be convenient to use the
notation Fn(t) = Zn(t)/n for an empirical distribution function and write empirical process vn in the
equivalent form

vn(t) :=
√
n[Fn(t)− F (t)].

For these and many more nice facts about empirical processes we refer the readers to the monograph
[10]. Some of these facts may not be, however, very visible from the second definition in (1). Indeed,
the random variables X(1:n), . . . , X(n:n) are neither independent nor identically distributed. Although
1{X(1:n)≤t}, . . . ,1{X(n:n)≤t} are still the Bernoulli random variables for any fixed t ≥ 0, they are now
very much dependent, and the distribution functions

F(i:n)(t) := P [X(i:n) ≤ t]
are very different for different i. The properly centered form of Zn(t) taken from the second definition
in (1) is, therefore,

Zn(t)−
n∑
i=1

F(i:n)(t), t ≥ 0, (3)

and it is almost an accident that
n∑
i=1

F(i:n)(t) = nF (t).

The second definition in (1) has, however, the advantage that it represents Zn(t) as a point process
with order statistics corresponding to arrival times: X(i:n) can be interpreted as the arrival time of

the ith event.
As the martingale theory of point processes is well-developed and widely known, almost nobody

would center point processes by their unconditional expected values as in (3). What is done instead
is the conditional centering of increments of Zn(t) given the past history of this process:

dZn(t)− E[dZn(t) |Zn(s), 0 ≤ s ≤ t] =: dMn(t). (4)

The resulting process {Mn(t) : t ≥ 0} is a martingale and the equality (4) itself is called the Doob-
Meyer decomposition of Zn(t), which we now view as a submartingale.

Let us now define
λn(t) = E[dZn(t) |Zn(s), 0 ≤ s ≤ t]/dt, t ≥ 0,

which is called the intensity of the point process Zn(t), and

wn(t) =
1√
n
Mn(t) =

1√
n

[
Zn(t)−

t∫
0

λn(s) ds

]
,

which is also a martingale in t. Thus from Zn(t) we have produced, using different methods of
centering, two different processes, namely, the empirical process vn(t) and the process wn(t), which
we will refer to as an innovation martingale of the process Zn(t). Yet, we will see below that there is a
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very important similarity between the asymptotic behavior of vn and wn in the practically important
case when the underlying distribution function F depends on some finite-dimensional parameter θ,
and when the random intensity λn also depends on such a parameter.

In the context of goodness of fit testing, when the null hypothesis does not completely specify the
distribution function F , but only states that it belongs to a parametric family {Fθ : θ ∈ Θ}, with
Θ ⊂ Rm, we call this hypothesis a parametric hypothesis. The same term is used if we hypothesize
that the intensity of Zn belongs to a parametric family of intensities {λn,θ : θ ∈ Θ}. In the case of
a parametric hypothesis, we will need to estimate the parameter θ and then to make a judgment on
whether the hypothesis is true or not, by observing the behavior of the processes

1√
n

[Zn(t)− nFθ̂(t)] = vn,θ̂(t) = v̂n(t)

and

1√
n

[
Zn(t)−

t∫
0

λn,θ̂(s) ds

]
= wn,θ̂(t) = ŵn(t),

respectively. The ‘similarity’ that was alluded to above consists in the fact that v̂n is asymptotically

a projection of vn, and ŵn is asymptotically a projection of wn; substituting the estimate θ̂ in place
of the true parameter θ is asymptotically equivalent to projecting the initial process. Thus if we have
a method that exploits this geometric fact in the case a parametric hypothesis about distribution
functions, it should be possible to develop a similar method in the situation with point processes.

Let us now review why we have a projection in the case of a parametric hypothesis about F .
Suppose that {Fθ : θ ∈ Θ} is a regular parametric family of distributions in the following sense:

(a1) the space Θ of feasible parameter values is an open subset of the Euclidean space Rm;
(a2) the vector of the derivatives

∂

∂θ
ln fθ(x) = [ḟ/f ]θ(x)

is square-integrable, i.e., the Fisher information matrix

Rθ =

∫
[ḟ/f ]θ(x) [ḟ/f ]Tθ (x) fθ(x) dx

is finite and non-degenerate for every θ ∈ Θ,
(a3) for any θ ∈ Θ; ∫

[ḟ/f ]θ(x) fθ(x) dx = 0.

The openness of Θ is useful because then every θ has a neighborhood in Θ and we can differentiate at
θ without worrying about boundary effects. Conditions (a2) and (a3) are ubiquitous in all asymptotic
statistics with regular parametric families.

To describe the difference between v̂n and vn we first need an asymptotic representation of the

maximum likelihood estimator (MLE) θ̂, or rather, of
√
n(θ̂ − θ). The MLE is the (correctly chosen)

root of the maximum likelihood equation

n∑
i=1

[ḟ/f ]θ̂(Xi) = 0. (5)

Using the regularity condition (a3), we can rewrite (5) as∫
[ḟ/f ]θ̂(x) [dZn(x)− ndFθ̂(x)] = 0,

that is, ∫
[ḟ/f ]θ̂(x) dvn,θ̂(x) = 0. (6)
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Replacing the left-hand side of (6) by the Taylor expansion around θ, we obtain

0 =

∫
[ḟ/f ]θ(x) dvn,θ(x) +

∫
∂

∂θ
[ḟ/f ]θ(x) dvn,θ(x)(θ̂ − θ)

−
√
n

∫
[ḟ/f ]θ(x) ḟθ(x)Tdx(θ̂ − θ) + oP (1). (7)

Here, the assumption that the residual term is indeed oP (1) is, actually, another regularity assumption,
(a4), on the family {Fθ : θ ∈ Θ}. Note that we can write the second term in the right-hand side of
(7) as

1√
n

∫
∂

∂θ
[ḟ/f ]θ(x) dvn,θ(x)

√
n(θ̂ − θ)

=

∫
∂

∂θ
[ḟ/f ]θ(x) d [Fn(x)− Fθ(x)]

√
n(θ̂ − θ),

which is asymptotically negligible as long as the matrix

∂

∂θ

[
ḟ/f

]
θ

(x) =
∂2

∂θ2
ln fθ(x)

is integrable with respect to Fθ – this follows from the Law of Large Numbers. Using the regularity
assumption (a2) for the third term on the right-hand side of (7), we obtain

0 =

∫
[ḟ/f ]θ(x) dvn,θ(x)−Rθ

√
n(θ̂ − θ) + oP (1),

or equivalently,
√
n(θ̂ − θ) = R−1

θ

∫
[ḟ/f ]θ(x) dvn,θ(x) + oP (1), (8)

which is the asymptotic MLE representation we wanted.
Now, let us apply the Taylor expansion again and write

vn,θ̂(t) = vn,θ(t)−
[
∂

∂θ
Fθ(t)

]T√
n(θ̂ − θ) + oP (1),

or, by virtue of (8),

vn,θ̂(t) = vn,θ(t)−
t∫

0

[ḟ/f ]Tθ (s)fθ(s) ds R−1
θ

∫
[ḟ/f ]θ(x) dvn,θ(x) + oP (1). (9)

The main part on the right-hand side of (9) is a linear transformation of vn,θ; moreover, as the
proposition below shows, it is a projection.

Proposition 2.1. The linear operator Π defined by

Πγ(t) = γ(t)−
t∫

0

[ḟ/f ]Tθ (s) dFθ(s)R
−1
θ

∫
[ḟ/f ]θ(x) dγ(x)

is an orthogonal projector, i.e., it satisfies the conditions

(i) ΠΠγ(t) = Πγ(t),

(ii) Πγ(t) ≡ 0 ⇔ dγ

dF
(t) = cT[ḟ/f ]θ(t) for some c ∈ Rm,

(iii)

∫
[ḟ/f ]θ(s) dΠγ(s) = 0.

This fact has several useful consequences which we will discuss later. Right now we would like to
establish the analogous result for point processes.

Given a point process {Nn(t) : t ≥ 0}, let

λn,θ(t)dt = E[dNn(t) |Nn(s), 0 ≤ s ≤ t]
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denote the intensity as above, and let t0 = 0 < t1 < · · · < tk = T be a partition of the interval [0, T ),
where we are considering our point process. If the partition is sufficiently fine, the likelihood of the
vector (Nn(t1), . . . , Nn(tk))T is given as a product of Bernoulli’s likelihoods:

k∏
j=1

[
λn,θ(tj)∆tj

]∆Nn(tj)[
1− λn,θ(tj)∆tj

]1−∆Nn(tj)

= exp

{ k∑
j=1

∆Nn(tj) ln
[
λn,θ(tj)∆tj

]
+

k∑
j=1

(
1−∆Nn(tj)

)
ln
[
1− λn,θ(tj)∆tj

]}
. (10)

The likelihood of the same vector under the assumption that Nn is a Poisson process with constant
intensity λ has a similar form, with λn,θ replaced by λ. This Poisson likelihood is only a reference
likelihood and we could have used many other measures in order to create likelihood ratios. If we take
the limit of the likelihood in (10) as k →∞ and maxj{∆tj : 1 ≤ j ≤ k} → 0, we will obtain zero, but
the likelihood ratio below will have a non-trivial limit:∏k

j=1

[
λn,θ(tj)∆tj

]∆Nn(tj)[
1− λn,θ(tj)∆tj

]1−∆Nn(tj)∏k
j=1

[
λ∆tj

]∆Nn(tj)[
1− λ∆tj

]1−∆Nn(tj)

= exp

{ k∑
j=1

∆Nn(tj) ln
λn,θ(tj)

λ
+

k∑
j=1

(
1−∆Nn(tj)

)
ln

1− λn,θ(tj)∆tj
1− λ∆tj

}

→ exp

{ T∫
0

ln
λn,θ(t)

λ
dNn(t)−

T∫
0

[λn,θ(t)− λ] dt

}
.

Differentiating this log-likelihood ratio with respect to θ and setting the result equal to zero, we obtain
the maximum likelihood equation

T∫
0

[λ̇/λ]n,θ(t) dNn(t)−
T∫

0

λ̇n,θ(t) dt = 0,

which can be rewritten as
T∫

0

[λ̇/λ]n,θ(t) [dNn(t)− λn,θ(t)dt] = 0,

or
T∫

0

[λ̇/λ]n,θ(t) dwn,θ(t) = 0.

Now we need regularity assumptions on λn,θ as a function of θ, namely:

(b1) differentiation with respect to θ, integration with respect to dNn(t), and dt can be inter-
changed,

(b2) the ratio [λ̇/λ]n,θ(t) is well-defined on {t : λn,θ(t) > 0}, and can be defined as a constant on
{t : λn,θ(t) = 0},

(b3) we have

1√
n

T∫
0

∂

∂θ
[λ̇/λ]n,θ(t) dwn,θ(t) =

T∫
0

∂

∂θ
[λ̇/λ]n,θ(t)

[dNn(t)

n
− λn,θ(t)

n
dt
]

= oP (1),

which is a form of Law of Large Numbers for the processNn and the vector function [λ̇/λ]n,θ(t).
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To obtain a suitable asymptotic expansion for the MLE θ̂, we use the Taylor expansion once again,
and rewrite the maximum likelihood equation

T∫
0

[λ̇/λ]n,θ̂(t) dwn,θ̂(t) = 0

as follows:

0 =

T∫
0

[λ̇/λ]n,θ(t) dwn,θ(t) +
1√
n

T∫
0

∂

∂θ
[λ̇/λ]n,θ(t) dwn,θ(t)

√
n(θ̂ − θ)

− 1

n

T∫
0

[λ̇/λ]n,θ(t)[λ̇/λ]Tn,θ(t)λn,θ(t) dt
√
n(θ̂ − θ) + oP (1).

Here, the last oP (1) is our regularity assumption (b4) and we will also use

(b5) the random matrix

Rn,θ =
1

n

T∫
0

[λ̇/λ]n,θ(t) [λ̇/λ]Tn,θ(t)λn,θ(t) dt

is well-defined and non-degenerate for all θ ∈ Θ and all n sufficiently large. Moreover, there
is a non-degenerate matrix Rθ such that Rn,θ → Rθ as n→∞.

This leads to the desired asymptotic representation

√
n(θ̂ − θ) = R−1

n,θ

T∫
0

[λ̇/λ]n,θ(t) dwn,θ(t) + oP (1), (11)

which is an analog of (8) for point processes.
Now we turn to the difference between wn,θ and wn,θ̂. Using Taylor’s expansion again, we obtain

wn,θ̂(t) = wn,θ(t)−
1

n

t∫
0

[λ̇/λ]Tn,θ(s)λn,θ(s) ds
√
n(θ̂ − θ) + oP (1),

or, by virtue of (11),

wn,θ̂(t) = wn,θ(t)−
1

n

t∫
0

[λ̇/λ]Tn,θ(s)λn,θ(s) dsR−1
n,θ

T∫
0

[λ̇/λ]n,θ(t) dwn,θ(t) + oP (1),

an expression analogous to (9). The main part on the right-hand side is a linear transformation of
wn,θ. Moreover, defining

Λn,θ(t) =

t∫
0

λn,θ(s) ds,

we have the following analog of Proposition 2.1.

Proposition 2.2. The linear operator Πn defined by

Πnγ(t) = γ(t)− 1

n

t∫
0

[λ̇/λ]Tn,θ(s) dΛn,θ(s)R
−1
n,θ

T∫
0

[λ̇/λ]n,θ(t) dγ(t)

is an orthogonal projector, i.e., it satisfies the conditions

(i) ΠnΠnγ(t) = Πnγ(t),

(ii) Πnγ(t) ≡ 0 ⇔ dγ

dΛn,θ
(t) = cT[λ̇/λ]n,θ(t) for some c ∈ Rm,
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(iii)

T∫
0

[λ̇/λ]n,θ(s) dΠnγ(s) = 0.

Therefore, substitution of ML estimation in place of the ‘true’ value of the parameter again is
asymptotically equivalent to taking a projection of the martingale wn,θ. Heuristically speaking, this
makes the process wn,θ̂ stochastically ‘smaller’, less volatile, less ‘noisy’, and makes the tests based

on wn,θ̂ better, more powerful, as it is the case for the process vn,θ̂ (see, e.g., [4]).

3. Function Parametric Versions and Unitary Operators

We realised that the empirical process vn,θ̂ with estimated parameter θ̂ is essentially a projection of

the corresponding empirical process vn,θ (see (9)). However, for different parametric families we have

different score functions ḟ/f , and therefore different projections. Even within the same parametric

family, different values of the parameter θ again lead to different ḟ/f , and vn,θ̂ will have different limit

behavior. Consequently, the limiting distribution of any given test statistic T (vn,θ̂) will be different

in any new testing problem.
In the goodness of fit problems, the test statistics T , as functionals of vn,θ̂, are non-linear and their

limiting distributions are difficult to calculate, so that numerical methods have to be used. The theory
becomes fragmented. Our eventual goal is to unify the theory again. We will see that what looks like
many similar but different problems actually is one single problem, which requires the calculation of
limiting distributions of test statistics T (vn,θ̂), for many “similar” vn,θ̂, only once. The same is true

for testing parametric hypotheses about (random) intensities of point processes.
The main idea behind the methods we are going to employ consists in building a unitary operator,

or rotation, of one testing problem into another, thus creating surprisingly broad families of equivalent
testing problems. However, it may look awkward to “rotate” empirical processes. We introduce now
a form of empirical processes which will create a natural setting to apply unitary operators.

Let vF denote an F -Brownian bridge, i.e., a Gaussian process with mean zero and covariance
function

E[vF (t)vF (t′)] = min{F (t), F (t′)} − F (t)F (t′).

This process is the limit in distribution of the empirical process vn in (2). It is convenient to recall
that if wF is an F -Brownian motion, i.e., a Gaussian process with mean zero and covariance

E[wF (t)wF (t′)] = min{F (t), F (t′)},

then one well-known connection between wF and vF is

vF (t)
d
= wF (t)− F (t)wF (∞), (12)

and if we agree to choose F supported on the unit interval [0, 1] so that F (0) = 0 and F (1) = 1, then
we can write wF (1) instead of wF (∞).

If {Fθ : θ ∈ Θ} is a regular parametric family, then from (9) it is possible to derive that the
Gaussian process

v̂F (t) = vF (t)−
t∫

0

[ḟ/f ]Tθ (s) dFθ(s)R
−1
θ

∫
[ḟ/f ]θ(x) dvF (x)

is the limit in distribution of the parametric empirical process vn,θ̂ with θ denoting the true parameter

value. Now let us rewrite v̂F in what is called function parametric form.
Suppose, as before, that θ is an m-dimensional parameter. Then [ḟ/f ]θ(·) is an m-dimensional

vector function with linearly independent components. Let us introduce the notation

qθ(·) = R
−1/2
θ [ḟ/f ]θ(·)
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for the ortho-normalised form of the score function [ḟ/f ]θ. Indeed, qθ is a vector function with
orthogonal and normalized components in the space L2(F ), since∫

qθ q
T
θ dFθ = R

−1/2
θ

∫
[ḟ/f ]θ[ḟ/f ]Tθ dFθ R

−1/2
θ = I.

Below, we will drop the subscript θ in Fθ when Fθ is used as a subscript.
Now, given a function ϕ ∈ L2(Fθ), let us introduce what is called function parametric version of

our processes. Consider the integral

v̂F (ϕ) :=

∫
ϕ(x) dv̂F (x) =

∫
ϕ(x) dvF (x)−

∫
ϕ(x)qTθ (x) dFθ(x)

∫
qθ(y) dvF (y). (13)

This is a Wiener stochastic integral, well-defined on L2(Fθ). It is clear that

vF (ϕ) =

∫
ϕ(x) dvF (x)

is linear in ϕ, that is, if ϕ1, ϕ2 ∈ L2(Fθ) and α1, α2 ∈ R, then

vF (α1ϕ1 + α2ϕ2) = α1vF (ϕ1) + α2vF (ϕ2).

This implies that v̂F (ϕ) is also linear in ϕ, and (13) can be rewritten as

v̂F (ϕ) = vF (ϕ)− 〈ϕ, qθ〉TF vF (qθ) = vF
(
ϕ− 〈ϕ, qθ〉TF qθ

)
, (14)

where 〈ϕ, qθ〉F denotes the vector of inner products in L2(F ) of ϕ and the components of qθ:

〈ϕ, qθ〉F :=

∫
ϕ(x)qθ(x) dFθ(x).

Thus we have the following reformulation of Proposition 2.1. To formulate its (ii) part, we extend the
m-dimensional vector of score functions qθ to the (m + 1)-dimensional vector having q0 as the first
coordinate:

q =

(
q0

qθ

)
=


q0

q1

...
qm

 .

Here q0 is the function, which is constant and equals 1 for all x. Note that the extended q will still
be a vector with orthonormal coordinates, because our regularity assumption (a3) implies∫

[ḟ/f ]θ(x) dFθ(x) = 〈[ḟ/f ]θ, q0〉F = 0, or 〈qθ, q0〉F = 0,

Proposition 3.1 ([4]). For the limiting processes of vn,θ and vn,θ̂ we have

(i)
v̂F (ϕ) = vF

(
ϕ− 〈ϕ, qθ〉TF qθ

)
,

which represents v̂F as a projection of function parametric Brownian bridge vF , and
(ii)

v̂F (ϕ) = wF
(
ϕ− 〈ϕ, q〉TF q

)
, (15)

which represents v̂F as a projection of function parametric Brownian motion wF .

Proof. To see that (i) is true, note that the form of the argument of vF in (i) follows from (14), and
since qθ is orthonormal, this is the orthogonal projection of ϕ, parallel to qθ,

πϕ = ϕ− 〈ϕ, qθ〉TF qθ.
To see that (ii) is true, we use the projection structure behind the function parametric form of
Brownian bridge vF (ϕ), ϕ ∈ L2(F ), as well. According to (12),

vF (ϕ) =

∫
ϕ(x) dvF (x) =

∫
ϕ(x) dwF (x)−

∫
ϕ(x) dFθ(x)wF (∞)

= wF (ϕ)− 〈ϕ, q0〉F wF (q0), (16)
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where we recall that q0 denotes the function, identically equal to 1, q0(·) ≡ 1. Again, since wF (ϕ) is
linear in ϕ, we can rewrite the last expression as

vF (ϕ) = wF
(
ϕ− 〈ϕ, q0〉F q0

)
, (17)

and the argument of wF here is the orthogonal projection of ϕ, parallel to q0. Now we substitute (16)
into (14). This will represent v̂F as a projection of wF :

v̂F (ϕ) = wF (ϕ)− 〈ϕ, q0〉F wF (q0)− 〈ϕ, qθ〉TF wF (qθ). (18)

We replaced the term vF (qθ) in (14) by the term wF (qθ), and we can indeed do this: as it follows
from (17),

vF (qθ) = wF (qθ − 〈qθ, q0〉F q0),

while 〈qθ, q0〉F = 0, and therefore vF (qθ) = wF (qθ). �

Now let us consider two different regular parametric families {Fθ : θ ∈ Θ} and {Gθ : θ ∈ Θ}, with
two different score functions q and r (extended and orthonormal, as above). We assume, however, that
the vector functions q and r are of equal dimensions. In this notation we use the same letters θ and
Θ, but we do not mean to say that these are in any sense the “same” parameters, say shift and scale
parameters in both cases. They may be parameters of entirely different nature in these two different
families. They only should be of the same dimension and they should lead to linearly independent,
and therefore eventually orthonormal, score functions.

Consider two limiting Gaussian processes

v̂F (ϕ) = wF

(
ϕ−

m∑
i=0

〈ϕ, qi〉F qi
)
, ϕ ∈ L2(Fθ), 〈qi, qj〉F = δij ,

andv̂G(ψ) = wG

(
ψ −

m∑
i=0

〈ψ, ri〉G ri
)
, ψ ∈ L2(Gθ), 〈ri, rj〉G = δij .

What we will show now is that, under the additional assumption of equivalence (mutual absolute
continuity) between the distributions Fθ and Gθ, we can map v̂F to v̂G in a one-to-one way, and the
mapping has a practically convenient form. More specifically, we will construct a unitary operator
K = Kq,r mapping L2(Gθ) onto L2(Fθ), so that

v̂F (Kψ)
d
= v̂G(ψ), ψ ∈ L2(Gθ).

Because this K is a unitary operator, we will also have

v̂G(K−1ϕ)
d
= v̂F (ϕ), ϕ ∈ L2(Fθ).

Allowing ourselves some freedom of speech, we will say that v̂F is “rotated” into v̂G.
For the sake of better transparency, let us construct K in a sequence of three problems. In the

first, or “zero problem,” let us map wF into wG isometrically. Here, the dependence on the parameter
θ will play no role, and it can be skipped from the notations. Consider the square root of the density
of G with respect to F :

`(x) =

(
dG(x)

dF (x)

)1/2

.

Since F and G are equivalent measures, we have

` ∈ L2(F ), with ‖`‖2F =

∫
`2(x) dF (x) = 1,

1/` ∈ L2(G), with ‖1/`‖2G =

∫
1

`2(x)
dG(x) = 1.

Let `ψ(·) = `(·)ψ(·) denote the operator of multiplication by the function `, acting on functions
ψ ∈ L2(G).

Lemma 3.2. The operator ` is an isometry from L2(G) to L2(F ), and we have wF (`ψ) = wG(ψ).
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Proof. Indeed, ∫ [
l(x)ψ(x)

]2
dF (x) =

∫
ψ2(x) dG(x),

and therefore,
Ew2

F (`ψ) = ‖`ψ‖2F = ‖ψ‖2G = Ew2
G(ψ). �

The next problem is to rotate the Brownian bridge vF into the Brownian bridge vG. Now we have
one-dimensional functions q0(·) = 1 and r0(·) = 1. Note that the latter function is identically equal to
1 in L2(G), but its image under the operator ` will not be identically equal to 1 in L2(F ). We know
that

vG(ψ) =

{
wG(ψ) if ψ ⊥ r0

0 if ψ = r0

and vF (ϕ) =

{
wF (ϕ) if ϕ ⊥ q0

0 if ϕ = q0

.

Therefore, in order to rotate vF into vG we need a unitary operator from L2(G) to L2(F ) which
will map the linear subspace LG(r0) = {cr0(·) : c ∈ R} into the linear subspace LF (q0), and which,
therefore, will map the orthogonal complement of LG(r0) in L2(G) (denoted by LG,⊥(r0)) into the
orthogonal complement of LF (q0) in L2(F ) (denoted by LF,⊥(q0)). In order to do this, consider first
the operator Ka,b mapping L2(F ) to L2(F ) via

Ka,b(·) = I − 2
〈a− b, ·〉F
‖a− b‖2F

(a− b), (19)

where a, b ∈ L2(F ) are two fixed functions of unit norm, and I is the identity operator. It is easy to
check that this operator has the following properties:

1. Ka,b is unitary, i.e., ‖Ka,bϕ‖F = ‖ϕ‖F ,

2. Ka,b = K−1
a,b , i.e., Ka,bKa,b = I,

3. Ka,b is self-adjoint, i.e., 〈Ka,bϕ, γ〉F = 〈ϕ,Ka,bγ〉F ,
4. Ka,b a = b and Ka,b b = a.
Now let us choose a = q0 and b = `r0, and consider the process vF (Kq0,`r0`ψ) for ψ ∈ L2(G). We

claim that this process has the same distribution as vG(ψ). Together with the statement on Brownian
motions, above, we obtain

Proposition 3.3. If distributions F and G are equivalent, then

wF (`ψ) = wG(ψ) and vF (Kq0,`r0`ψ)
d
= vG(ψ).

Proof. Indeed, if ψ = r0, then Kq0,`r0`ψ = q0, and so

vF (Kq0,`r0`r0) = vF (q0) = 0 = vG(r0).

On the other hand, if ψ ⊥ r0, then `ψ ⊥ `r0, and therefore Kq0,`r0`ψ ⊥ q0. From the equality
vF (ϕ) = wF (ϕ) when ϕ ⊥ q0, it follows that

vF (Kq0,`r0`ψ) = wF (Kq0,`r0`ψ),

and the variance of the right-hand side for any such ψ is

Ew2
F (Kq0,`r0`ψ) = 〈Kq0,`r0`ψ,Kq0,`r0`ψ〉F = 〈`ψ, `ψ〉F = 〈ψ,ψ〉G = Ew2

G(ψ).

Therefore, indeed, vF was “rotated” into vG. �

We are now ready to tackle the third problem in our sequence, the rotation of v̂F into v̂G. Let
us first consider the case of regular parametric families with one-dimensional parameter, leading to
two-dimensional extended score functions (q0, q1)T for one family and (r0, r1)T for the other. Now we
have

v̂F (ϕ) = wF
(
ϕ− 〈ϕ, q0〉F q0 − 〈ϕ, q1〉F q1

)
, ϕ ∈ L2(Fθ),

v̂G(ψ) = wG
(
ψ − 〈ψ, r0〉Gr0 − 〈ψ, r1〉Gr1

)
, ψ ∈ L2(Gθ).

Consider the operator Kq0,`r0 used for the previous problem above and apply it to `r1, thus creating˜̀r1 := Kq0,`r0`r1.
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The operator Kq0,`r0 correctly rotates the function `r0 into q0, but it does not necessarily rotate `r1

into q1, but only into ˜̀r1. Since it is a unitary operator, it preserves angles, and therefore ˜̀r1 ⊥ q0.

Now we can rotate ˜̀r1 further into q1 using the operator K
q1, ˜̀r1 . Note that this operator leaves

all functions orthogonal to q1 and ˜̀r1 unchanged, so it will leave q0 unchanged. Now consider the
operator K

q1, ˜̀r1Kq0,`r0 . We have

Proposition 3.4. If distributions Fθ and Gθ are equivalent and if q0, q1 ∈ L2(Fθ) are orthonormal
as well as r0, r1 ∈ L2(Gθ), then

v̂F (K
q1, ˜̀r1Kq0,`r0`ψ)

d
= v̂G(ψ), ψ ∈ L2(Gθ).

Proof. Indeed, if ψ = r0, then

v̂F (K
q1, ˜̀r1Kq0,`r0`r0) = v̂F (K

q1, ˜̀r1q0) = v̂F (q0) = 0 = v̂G(r0),

and similarly, if ψ = r1,

v̂F (K
q1, ˜̀r1Kq0,`r0`r1) = v̂F (K

q1, ˜̀r1 ˜̀r1) = v̂F (q1) = 0 = v̂G(r1).

Moreover, K
q1, ˜̀r1Kq0,`r0 is a product of unitary operators, hence it is itself a unitary operator. As we

have just seen, it maps `r0 into q0 and `r1 into q1. Therefore, it will map `ψ, for any ψ ⊥ r0, r1, into
a function, orthogonal to q0 and q1. It follows that for any such ψ,

v̂F (K
q1, ˜̀r1Kq0,`r0`ψ) = wF (K

q1, ˜̀r1Kq0,`r0`ψ),

and the variance of the right-hand side is

〈K
q1, ˜̀r1Kq0,`r0`ψ,Kq1, ˜̀r1Kq0,`r0`ψ〉F = 〈`ψ, `ψ〉F = 〈ψ,ψ〉G.

This means that for ψ ⊥ r0, r1,

v̂F (K
q1, ˜̀r1Kq0,`r0`ψ)

d
= wG(ψ) = v̂G(ψ),

as claimed. �

Finally, for parametric families with an m-dimensional parameter, we use induction. Given
j ∈ {0, 1, . . . ,m − 1}, suppose we have a unitary operator Uq,`r(j) that maps `ri to qi for 0 ≤ i ≤ j.
For example, we have constructed above Uq,`r(0) = Kq0,`r0 and Uq,`r(1) = K

q1, ˜̀r1Kq0,`r0 . Now define

the function

`̃rj+1 := Uq,`r(j)`rj+1

and introduce

Uq,`r(j + 1) = K
qj+1,˜̀rj+1

Uq,`r(j).

Then Uq,`r(j + 1) is a unitary operator that maps `ri to qi for 0 ≤ i ≤ j + 1. Continuing in this
fashion, we see that Uq,`r(m) is a unitary operator that maps `ri to qi for 0 ≤ i ≤ m. Therefore we
obtain our final statement.

Proposition 3.5 ( [7]). If distributions Fθ and Gθ are equivalent and if q and r are orthonormal
systems of m+ 1 functions (as described above) from L2(Fθ) and L2(Gθ), respectively, then

v̂F (Uq,`r(m)`ψ)
d
= v̂G(ψ). (20)

It can be proved by an argument analogous to the previous case.
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4. The Case of Point Processes. Unitary Transformations Again

In this section we describe similarities in rotation between the situation with parametric families
of distribution and parametric models for intensities of point process. Let us consider a sequence of
point processes Nn with (random) intensity functions λn,θ and compensators

Λn,θ(t) =

t∫
0

λn,θ(s) ds.

One of the key facts for us is that, if Λn,θ(t)/n converges to a deterministic function, say B(t), as
n→∞, then the normalized martingale

wn,θ =
1√
n

[Nn(t)− Λn,θ(t)]

converges to the Brownian motion (see, e.g., [2,3]), while the same process with the estimated param-
eter wn,θ̂, can be approximated by a projection of wn,θ:

wn,θ̂(t) = wn,θ(t)−
1

n

t∫
0

[λ̇/λ]Tn,θ(s)λn,θ(s) dsR−1
n,θ

T∫
0

[λ̇/λ]n,θ(s) dwn,θ(s) + oP (1).

The key regularity assumptions ate such that

[λ̇/λ]n,θ(t)→ α(t),
1

n
λn,θ(t)→ β(t), n→∞, (21)

for some deterministic functions α and β. As a consequence, we expect that

wn,θ
d→ wB , wn,θ̂

d→ ŵB ,

with B(t) =
∫ t

0
β(s) ds, and

ŵB(t) = wB(t)−
t∫

0

αT(s)β(s) dsR−1
θ

T∫
0

α(s) dwB(s). (22)

If we have another parametric model with the same regularity assumptions, then we will end up with

another Brownian motion wB̃(t), in time B̃, and another projection ŵB̃(t), parallel to a different score
function α̃. If the parameters in the two cases are of the same dimension, then it again becomes
possible to “rotate” ŵB(t) into ŵB̃(t), and back if we wish. The form of the unitary operator needed
for this task will be exactly the same as the one we have obtained for the case of i.i.d. samples.

There is, however, one difference that for the case of empirical processes the first coordinate of the
score function always is the function q0(·) = 1, while this is not the case for the point processes: the
first coordinate of the vector α may be any function, square-integrable with respect to the limiting
“time” B.

As in the i.i.d. case, there is a question how to choose the “standard” problem in which to rotate
the other problems. Indeed, one has here multiplicity of choices. As a simple choice, we suggest
below to use Poisson processes with a variable intensity. At the first glance this looks somewhat
strange, because then the function λn,θ will be a deterministic function from the very beginning and
the regularity assumptions (21) will be easily satisfied. This is surprisingly simple, but, on the other
hand, it is convenient.

Specifically, let us start with the space L2(ω) of square-integrable functions on [0, T ], T ≤ ∞, with
a weight function ω and choose orthonormal functions p0, . . . , pm−1 from L2(ω), i.e., such that

T∫
0

pj(s)pk(s)ω(s)ds = δj,k.
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One example can be given by the Laguerre polynomials with ω(t) = e−t, t ≥ 0. If we agree to consider
a finite time horizon T <∞, then it would be natural to use the constant weight function ω. Define
now the intensity function

µn,θ(t) = n exp

(m−1∑
j=0

θjpj(t)

)
ω(t), 0 ≤ t ≤ T.

Another possibility is to choose

µn,θ(t) = n exp

(m−1∑
j=0

θjpj(t)ω
1/2(t)

)
, 0 ≤ t ≤ T. (23)

In this latter case one can choose as a true “target” distribution the distribution of the time-
homogeneous Poisson process with intensity n. This distribution is a part of the parametric family
above with the vector θ = 0. As the target parametric family we choose distributions of Poisson pro-
cesses with parameter θ = (θ0, θ1, . . . , θm−1)T, which takes values in a small open neighbourhood of 0.
We need an open neighbourhood such that differentiation with respect to θ will not meet with difficul-
ties, and it suffices to have this neighbourhood small. For this neighbourhood, at θ∗ = (0, 0, . . . , 0)T

and t ∈ [0, T ] we have

[µ̇/µ]n,θ∗(t) =
(
pj(t)ω

1/2(t)
)m−1

j=0
,

while
1

n
µn,θ∗(t) = 1,

and one can easily see the consequence of the assumption of orthonormality of the functions (pj)
m−1
j=0 :

the matrix

Rθ∗ =

[ T∫
0

pj(t)pk(t)ω(t)dt

]m−1

j,k=0

= I.

Therefore the coordinates of [µ̇/µ]n,θ∗ are already ortho-normal.

Now we can show, in more or less explicit form, the rotation of wn,θ̂(t) into the process, w̃n,θ̂(t),

which would arise from our Poisson model above. As in Section 3, it is notationally convenient to
introduce orthonormal version of the vector-functions [λ̇/λ]n,θ(t) and of these functions for Poisson
process. For the intensity λn,θ(t) we could have done it already after Proposition 2.1. Namely, denote

qn,θ(t) = R
−1/2
n,θ [λ̇/λ]n,θ(t).

This is the vector-function with orthonormal coordinates in L2(Λn,θ/n):

1

n

∫
qn,θ(t)q

T
n,θ(t)λn,θ(t)dt = I.

The limits of [λ̇/λ]n,θ(t) and 1
nλn,θ(t) in (21) suggest the limiting form of this vector-function:

q(t) = R
−1/2
θ α(t) = (q0(t), q1(t), . . . , qm−1(t))T

with the orthonormality property ∫
q(t)q(t)Tβ(t)dt = I.

For our Poisson process we have already the vector-function [µ̇/µ]n,θ∗ , whose coordinates are ortho-
normal on [0, T ]. It does not change with n.
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Now the procedure will look literary the same as the rotation of Brownian bridges vF and vG.
Adopting (23) as the target parametric model, denote

Mn,θ(t) =

t∫
0

µn,θ(s)ds, so that Mn,θ∗(t) = nt.

Now choose a function ` (the Hellinger function) as

`n,θ(t) =

(
dMn,θ∗

dΛn,θ
(t)

)1/2

=

(
µn,θ∗

λn,θ
(t)

)1/2

or

`n,θ(t) =

(
n

λn,θ(t)

)1/2

.

Thus, if ψ ∈ L2(Mn,θ∗/n), then `ψ ∈ L2(Λn,θ/n).
In limiting form, this expression becomes

`θ(t) =

(
1

β(t)

)1/2

,

and if ψ ∈ L2(M), then `ψ ∈ L2(B), where, as above, B(t) =
∫ t

0
β(s)ds. Thus, for the possibility to

rotate to the Poisson model we need to require that ` be well defined, that is, λn,θ(t) > 0 and β(t) > 0
for all t > 0.

In the expression of Ka,b (see (19)), we first will go straight to the limiting expressions, that is, we
will prepare for the case of large n. If it happens that the result of our rotation behaves close to what
is expected in the Poisson case, then we will fond out that the values of n, which we have used in our
simulations, are “large enough”. We can use expressions for finite n and compare the outcomes later.

Let us use a = q0(t) and b = `p0(t) = `(t). This leads to the transformation

ŵB(Kq0,``ψ)
d
= ŵM (ψ),

and again, if we choose ψ = p0, then Kq0,``p0 = q0, and therefore

ŵB(Kq0,``p0) = ŵM (p0) = 0,

which is, certainly, correct.

As the next step, we create the function Kq0,``p1 = ˜̀p1 and use it to construct our next operator,
K
q1, ˜̀p1 . The product K

q1, ˜̀p1 Kq0,` will map `p0 and `p1 into q0 and q1, respectively. Now we have,

again,

ŵB(K
q1, ˜̀p1 Kq0,`ψ)

d
= ŵM (ψ),

and if the parameter θ is two-dimensional, then this equality is the final result. For a general dimension
m we proceed as in the previous section: for

Uq,p(0) = Kq0,` and Uq,p(1) = K
q1, ˜̀p1 Uq,p(0)

we continue with ˜̀pj = Uq,p(j − 1)`pj

and then define
Uq,p(j) = K

q1, ˜̀pjUq,p(j − 1).

It is the final operator Uq,p(m) which will be needed in the sequel: a unitary operator which will map
p0, . . . , pm−1 into q0, . . . , qm−1, and, therefore, will map all functions, orthogonal to p0, . . . , pm−1, to
functions, orthogonal to q0, . . . , qm−1.

The situation should be clearer described in terms of subspaces. Decompose L2(M) into the
subspace L(p) spanned by p0, . . . , pm−1 and its orthogonal complement L⊥(p). Similarly, decompose
L2(B) into the subspace L(q) spanned by q0, . . . , qm−1 and its orthogonal complement L⊥(q). Then
considering multiplication by ` as an isometry from L2(M) to L2(B),

ψ ∈ L2(M) =⇒ `ψ ∈ L2(B), ‖ψ‖ = ‖`ψ‖,
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then this operator will map L⊥(p) into some subspace in L2(B),

`L⊥(p) ⊂ L2(B).

Then it is the operator Uq,p(m), as an operator in L2(B), acting on `ψ, which will map `L⊥(p) into
L(q):

Uq,p(m)`pj = qj , j = 1, . . . ,m.

It would be better to consider why the mapping of any testing problem for intensities of the point
process, with only usual regularity assumptions, is basically the same problem always. This is true
because in any model with these regularity assumptions we will end up with a Brownian motion
in some time B – it will be specific for the model, and with a projection of this Brownian motion,
parallel to the functions q0, . . . , qm−1 – also specific for the model. While the method of unitary
mapping remains applicable and the same.

We will need to apply the operator Uq,p(m) to empirical processes with estimated parameters, that
is, to the situation with finite n. Then we need to be sure that the transformed process wn,θ̂(Uq,p`ψ),

ψ ∈ Ψ, where Ψ ⊂ L2(M) is a class of functions of our choice, does converge in distribution to the
limiting process ŵM (ψ), ψ ∈ Ψ. The most natural choice will be the set of indicator functions ψt(s) =
1{s≤t}) indexed by t ≥ 0. It is obvious that as the function-parametric process, ŵM (ψt) coincides
with its point-parametric version ŵM (t), and therefore the transformed empirical process wn,θ̂(Uq,p`ψt)

should asymptotically behave as the point-parametric projected Brownian motion ŵM (t).

It is very interesting to see what will be the graph of “rotated” ψt, that is, the graph of Uq,p`ψt. A
sample of three graphs is shown in Figures 5.1 and 5.2 in the case of a point process model described in
Example A of the next section. There the parameter is two-dimensional and we wished to transform
the process into the projected Poisson process described above. The graphs have been calculated by
S. Umut Can.

5. Some Specific Examples

Before we turn to specific examples, let us have a look on the expression of the limiting process
(22) in the situation when the parameter of the intensity λn,θ of the point process is one-dimensional.

In this situation α is a scalar function and Rθ =
∫ T

0
α2(s)β(s)ds is a number. Then, considering the

integral from α with respect to ŵB :

t∫
0

α(s)dŵB(s) =

t∫
0

α(s)dwB(s)−
∫ t

0
α2(s)β(s) ds∫ T

0
α2(s)β(s)ds

T∫
0

α(s) dwB(s),

we see that the right-hand side is just the Brownian bridge in time

τ =

∫ t
0
α2(s)β(s) ds∫ T

0
α2(s)β(s)ds

, t ∈ [0, T ].

Therefore, all classical goodness of fit statistics from the Brownian bridge will be distribution free as

statistics from the process
∫ t

0
α(s)dŵB(s). The projection argument behind ŵB was used here, but to

achieve distribution freeness no “rotation” was necessary. Full details are given in [9].

Example A. Consider a sequence of point processes Nn(t) with compensated form

Nn(t)−
t∫

0

cθ(t
′)[n−Nn(t′)]dt′;

in other words, the difference above is a martingale. Here we choose cθ as the failure rate of Weibull
distribution

cθ(t) =
fθ(t)

1− Fθ(t)
=
θ1

θ0

(
t

θ0

)θ1−1

,



170 E. V. KHMALADZE

with parameters such that the corresponding Weibull’s distribution behaves close to the distribution
of life-times of, say, New Zealand population. These values are θ0 = 86 and θ1 = 9.
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Figure 5.1. These are images of indicator functions 1{s≤t} for t = 10, 25 and 40
after first rotation by the operator Kq0,`p0`.
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Figure 5.2. These are images of indicator functions 1{s≤t} for t = 10, 25 and 40
after two rotations, i.e., by the operator Uq,p`. Who would think that if you inte-
grate these three functions with respect to dwθ̂,n(s) the resulting three integrals will

asymptotically jointly behave as ŵM (t), t = 10, 25, and 40?
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We know that our process is, actually, a binomial process based on n i.i.d. observations from the
distribution with the failure rate cθ, i.e., from Weibull’s distribution. If we would center Nn by nFθ(t)
and normalize by

√
n, we would obtain an empirical process, of which the limiting process will be

the Fθ-Brownian bridge. Centered as in the above display, and again normalized by
√
n, we obtain a

basic martingale (cf. [1, 5, 10]), and its weak limit will be the Fθ-Brownian motion.

The vector-function [λ̇/λ]n,θ(t) is now two-dimensional,

˙λn,θ
λn,θ

(t) =
ċn,θ
cn,θ

(t) =

(
−θ1

θ0
,

1

θ1
+ ln

t

θ0

)T

.

The function λn,θ/n and its limit is

1

n
λn,θ(t) = cθ(t)

n−Nn(t)

n
→ βθ0,θ1(t),

where

βθ0,θ1(t) =
θ1

θ0

(
t

θ0

)θ1−1

exp

(
−(

t

θ0
)θ1
)

is density of the Weibull distribution. The distribution function itself, in the current parametrisation,

is Fθ(t) = 1− exp
(
−( t

θ0
)θ1
)

.

The covariance matrix R in its limiting form becomes

Rθ =

∫ [
(θ1/θ0)2, −(1 + θ1 ln(t/θ0))/θ0

−(1 + θ1 ln(t/θ0))/θ0, (1 + θ1 ln(t/θ0))2/θ2
1

]
βθ0,θ1(t)dt

or, changing the variable t to τ = t/θ0 and separating the constant terms, we obtain a slightly simpler
expression

Rθ =

∫ [
(θ1/θ0)2, −(1 + θ1 ln τ)/θ0

−(1 + θ1 ln τ)/θ0, (1 + θ1 ln τ)2/θ2
1

]
β1,θ1(τ)dτ.

We note, as a side remark, that the matrix under the integral sign is, certainly, degenerate for every
t, but the matrix Rθ is non-degenerate, it is invertible.

Now consider the integral on the anti-diagonal of this matrix. Since

d

dϑ
ϑtϑ−1 = (1 + ϑ ln t)tϑ−1,

one can write ∫
(1 + ϑ ln t)tϑ−1θ1 exp

(
−tθ1

)
dt =

d

dϑ

∫
ϑtϑ−1θ1 exp

(
−tθ1

)
dt.

In the last integral we change the variable tθ1 = z so that t = z1/θ1 , dt = (1/θ1)z1/θ1−1. This leads to

d

dϑ

∫
ϑtϑ−1θ1 exp

(
−tθ1

)
dt =

d

dϑ

∫
ϑz(ϑ−1)/θ1 exp (−z) z1/θ1−1dz

=
d

dϑ

∫
ϑz(ϑ/θ1−1) exp (−z) dz =

d

dϑ
ϑΓ(

ϑ

θ1
)

which at ϑ = θ1 becomes Γ̇(1). This implies that we know explicitly the elements of the matrix Rθ,
except one integral

Rθ =

 ( θ1θ0)2

, − 1
θ0

Γ̇(1)

− 1
θ0

Γ̇(1), 1
θ21

∫
(1 + θ1 ln τ)2β1,θ1(τ)dτ

 .
Example B. One real life situation where this process appears is, as we said, the analysis of life times
in human populations. However, in general human populations the huge bulk of life times belongs to
the interval of 50-100 years. For example, according to New Zealand life tables for 2012-14 for general
populations 50 (years) is only 4%-point and 100 (years) is about 99%-point. Therefore, it makes sense
to analyse the life times only after age of fifty. If Xi is a life time of an i-th individual, then we
consider Xi,x0

= max(0, Xi − x0) and the point process Nn,x0
based on these “over the threshold”
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values, and then we can choose x0 equal to 50, or to any other value of interest. We can also assume
that we know how many people of age over x0 we have in the population under study. Thus, for

Nn,x0
(t) =

n∑
i=1

1(Xi,x0
≤ t),

we have the representation

Nn,x0(t)−
t∫

0

cθ(x0 + t′)[n−Nn,x0(t′)]dt′,

where the difference is a martingale. The functions [λ̇/λ]n,θ(t) and λn,θ/n now take the form

λ̇n,θ
λn,θ

(t) =
ċn,θ
cn,θ

(x0 + t) =

(
−θ1

θ0
,

1

θ1
+ ln(

t+ x0

θ0
)

)T

and
1

n
λn,θ(t) = cθ(x0 + t)

n−Nn,x0(t)

n
→ βθ0,θ1(x0 + t)

1− Fθ0,θ1(x0)
.

The matrix Rθ will also change, but in an obvious way. It is more interesting to note that we will need,
in applications, to consider life-times not exceeding some value x1, say, x1 = 100, so that Nn,x0

(t) will
be stopped at some duration x1 − x0, equal, say, to 50 years (of life over age 50).

Example C. Now consider the same situation, but with n−Nn(t) replaced by the process of “those
at risk” (see, e.g., [1]). More specifically, consider a sequence of pairs (Xi, Ci)

n
i=1, where Xi is the

survival time of i-th individual, and Ci is a censoring random variable of this survival time. Our main
interest is in these survival times, however, one can only observe X̃i = min(Xi, Ci) together with the

indicator function δi = I(Xi = X̃i) = I(Xi < Ci). The point process of interest is given as

N c
n(t) =

n∑
i=1

1(X̃i ≤ t)δi

which counts the number of “genuine” survival times observed no later than t. Another point process,
of those at risk at time t is given as

Yn(t) =

n∑
i=1

1(X̃i ≥ t).

With the help of this process, the process N c
n can be compensated to the martingale as follows:

N c
n(t)−

t∫
0

cθ(t
′)Yn(t′)dt′, (24)

and the difference is a martingale (see [1]). Here cθ, as in Example A, is the failure rate (or the force of
mortality in demographic applications) of the hypothetical distribution Fθ, depending on parameter θ.

If one is interested in computer simulation of N c
n, one should somehow choose not only parametric

family Fθ, of interests for practitioner, but also a distribution G of truncating variables Ci’s. Evolution
in time of Yn will strongly depend on this choice. However, this evolution is not looked at too much
and evolution of N c

n is studied, as it is implied by (24).
With λn,θ(t) = cθ(t)Yn(t), let us clarify now the limit behaviour of the functions λn,θ(t)/n and

[λ̇/λ]n,θ. From the definition of Yn(t) and the Law of Large Numbers, it follows that, as n→∞,

cθ(t)
Yn(t)

n
→ cθ(t)[1− Fθ(t)][1−G(t)] = fθ(t)[1−G(t)],

while

[λ̇/λ]n,θ(t) = [ċ/c]θ(t).
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Therefore, if we choose cθ(t) the same as in Example A, i.e., the failure rate of Weibull’s distribution,
then all will not differ from what we said in that example. However, this time the limit of λn,θ(t)/n
is not a probability density.

Example D. Marked point processes. The example is interesting and has many applications, but is
not treated here. We think it will be another example of regular models which permit the treatment
as described in Section 3.
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