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SOLUTION FOR SYSTEM OF IMPLICIT ORDERED VARIATIONAL

INCLUSIONS

I. K. ARGYROS1 AND SALAHUDDIN2∗

Abstract. The purpose of this paper is to present an existence theorem for a new class of system of
implicit ordered variational inclusions in real ordered Banach spaces. Using the concept of resolvent

operator, we prove the convergence of sequences generated by an algorithm.

1. Brief Prehistory

Generalized nonlinear ordered variational inclusions have wide applications in many fields includ-
ing, for example, mathematical physics, optimization and control theory, mathematical programming,
economics and engineering sciences. Recently, nonlinear mappings, fixed point theory and their ap-
plications have been extensively studied in ordered Banach spaces. In 2008, H.G. Li [6] introduced
the generalized nonlinear ordered variational inequalities, studied an approximation algorithm and an
approximate solution for a class of generalized nonlinear ordered variational inequalities in ordered
Banach spaces. In 2009, by using the B-restricted accretive method of the mapping A with constants
α1, α2, Li [7] studied a new class of general nonlinear ordered variational equations and established an
existence theorem and an approximation algorithm of solutions for this kind of generalized nonlinear
ordered variational equations in ordered Banach spaces.

Motivated and inspired by the recent research works [1–5,9,13], in this paper, we consider a system of
implicit ordered variational inclusions in real ordered Banach spaces. We design an iterative algorithm
based on the resolvent operator for solving a system of implicit ordered variational inclusions. We
prove an existence, as well as a convergence theorem for our problem.

2. Prelude

Definition 2.1. Let C(6= ∅) be a closed, convex subset of X. C is said to be a pointed cone if

(i) for x ∈ C and λ > 0, λx ∈ C;
(ii) if x and −x ∈ C, then x = θ,

where θ is a zero vector in X.

Definition 2.2 ([4]). C is called a normal cone if and only if there exists a constant λC > 0 such
that θ ≤ x ≤ y implies ‖x‖ ≤ λC‖y‖, where λC is called the normal constant of C.

Definition 2.3 ([12]). For arbitrary elements x, y ∈ X, x ≤ y if and only if x − y ∈ C, then the
relation ≤ is a partial ordered relation in X. The real Banach space X with the ordered relation ≤
defined by C is called a real ordered Banach space.

Throughout this paper, we assume X to be a real ordered Banach space with norm ‖ · ‖, an order
pair 〈·, ·〉 and partial ordered relation ≤ defined by the normal cone C with a normal constant λC .
Let CB(X) be the family of all nonempty closed and bounded subsets of X, and D be the Hausdorff
metric defined on CB(X) by

D(A ,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A, y)},
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where A,B ∈ CB(X), d(x,B) = infy∈B d(x, y).

Definition 2.4 ([13]). For arbitrary elements x, y ∈ X, if x ≤ y or y ≤ x, then x and y are called
comparable and this is denoted by x ∝ y.

Lemma 2.5 ([13]). Let X be an ordered Banach space. For arbitrary x, y ∈ X, lub{x, y} and glb{x, y}
express the least upper bound of the set {x, y} and the greatest lower bound of the set {x, y} on the
partial ordered relation ≤, respectively. Suppose glb{x, y} and lub{x, y} exist. Some binary operators
can be defined as follows:

• x ∨ y = lub{x, y};
• x ∧ y = glb{x, y};
• x⊕ y = (x− y) ∨ (y − x).

∨, ∧ and ⊕ are called OR, AND and XOR operation, respectively. For arbitrary x, y, w ∈ X, the
following relations hold:

(i) if x ≤ y, then x ∨ y = y, x ∧ y = x;
(ii) if x and y are comparable, then θ ≤ x⊕ y;
(iii) (x+ w) ∨ (y + w) exists and (x+ w) ∨ (y + w) = (x ∨ y) + w;
(iv) (x+ w) ∧ (y + w) exists and (x+ w) ∧ (y + w) = (x ∧ y) + w;
(v) (x ∧ y) = (x+ y)− (x ∨ y);

(vi) if λ ≥ 0, then λ(x ∨ y) = λx ∨ λy;
(vii) if λ ≤ 0, then λ(x ∧ y) = λx ∨ λy;
(viii) x ∧ y = −(−x ∨ −y) and (−x) ∧ (x) ≤ θ ≤ (−x) ∨ x;
(ix) if x ≤ y and s ≤ t then x+ s ≤ y + t;
(x) if θ ≤ x and x 6= θ, and α > 0 then θ ≤ αx and αx 6= θ;
(xi) if X is an ordered Banach space, and if for any x, y ∈ X, either x∨ y and x∧ y exist, then X

is a Banach lattice.

Definition 2.6 ([8]). Let A : X −→ X be a single-valued mapping.

(i) A is said to be comparison mapping if for each x, y ∈ X, x ∝ y, then A(x) ∝ A(y), x ∝ A(x)
and y ∝ A(y);

(ii) A is said to be strongly comparison mapping if A is a comparison mapping and A(x) ∝ A(y),
if and only if x ∝ y;

(iii) A is said to be β-ordered compression mapping if it is a comparison mapping and there exists
a constant 0 < β < 1 such that

A(x)⊕A(y) ≤ β(x⊕ y);

(iv) A is said to be γ-order non-extended mapping if there exists a constant γ > 0 such that

γ(x⊕ y) ≤ A(x)⊕A(y),∀x, y ∈ X.

Lemma 2.7 ([4]). If x and y are comparable, then lub{x, y} and glb{x, y} exist,

x− y ∝ y − x, and θ ≤ (x− y) ∨ (y − x).

Lemma 2.8 ([4]). If for any natural number n, x ∝ yn and yn −→ y(n −→∞), then x ∝ y.

Lemma 2.9 ([4]). Let C be a normal cone with a normal constant λC in X, then for each x, y ∈ X,
we have the relations:

(i) ‖θ ⊕ θ‖ = ‖θ‖ = θ;
(ii) ‖x ∧ y‖ ≤ ‖x‖ ∧ ‖y‖ ≤ ‖x‖+ ‖y‖;
(iii) ‖x⊕ y‖ ≤ ‖x− y‖ ≤ λC‖x⊕ y‖;
(iv) if x ∝ y, then ‖x⊕ y‖ = ‖x− y‖.

Lemma 2.10 ([8,9]). Let ≤ be a partial order relation defined by the cone C with a normal constant
λC in X in Definition 2.3. Then the following relations are satisfied:

(i) x⊕ y = y ⊕ x, x⊕ x = θ;
(ii) θ ≤ x⊕ θ;
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(iii) (x⊕ θ)− (y ⊕ θ) ≤ (x− y)⊕ θ;
(iv) if x ∝ θ, then −x⊕ θ ≤ x ≤ x⊕ θ;
(v) if x ∝ y, then (x⊕ θ)⊕ (y ⊕ θ) ≤ (x⊕ y)⊕ θ;

(vi) allow λ to be real, then (λx)⊕ (λy) =| λ | (x⊕ y);
(vii) if x, y and w are comparable, then (x⊕ y) ≤ (x⊕ w) + (w ⊕ y);
(viii) if x, y, r, w are comparable, then

(x ∧ y)⊕ (r ∧ w) ≤ ((x⊕ r) ∨ (y ⊕ w)) ∧ ((x⊕ w) ∨ (y ⊕ r));

(ix) let (x+ y) ∨ (s+ t) exist, and if x ∝ s, t, and y ∝ s, t, then

(x+ y)⊕ (s+ t) ≤ (x⊕ s+ y ⊕ t) ∧ (x⊕ t+ y ⊕ s).

Definition 2.11 ([11]). Allow A : X −→ X and M : X −→ CB(X) to be the mappings.

(i) M is called a weak-comparison mapping, if given comparable x, y ∈ X and tx ∈ M(x), there
exists ty ∈M(y) such that tx and ty are comparable.

(ii) M is called an α-weak-non-ordinary difference mapping associated with A, if it is a weak
comparison and there exists α > 0, and tx ∈M(A(x)) and ty ∈M(A(y)) such that

(tx ⊕ ty)⊕ α(A(x)⊕A(y)) = θ.

(iii) M is called a λ-order different weak-comparison mapping associated with A if for the given
comparable x, y ∈ X, there exist λ > 0, and tx ∈M(A(x)), ty ∈M(A(y)) such that

λ(tx − ty) ∝ x− y.

(iv) M (a weak-comparison map) is called an ordered (αA, λ)-weak-ANODM mapping, if it is
α-weak-non-ordinary difference mapping and λ-order different weak-comparison mapping as-
sociated with A, and (A+ λM)(X) = X, for α, λ > 0.

Definition 2.12 ([11]). Let M : X −→ CB(X) be γ-order non-extended mapping and α-non-ordinary
difference mapping with respect to a mapping A : X −→ X. The resolvent operator RMA,λ : X −→ X
associated with both A and M is defined by

RMA,λ(x) = (A+ λM)−1(x), for all x ∈ X, (2.1)

where γ, α, λ > 0 are the constants.

Definition 2.13 ([6]). A bi-mapping B : X ×X −→ X is called (α1, α2)-restricted-accretive if it is
comparison and there exist constants 0 ≤ α1, α2 ≤ 1 such that

B(x1, y1)⊕B(x2, y2) ≤ α1(B(x1)⊕B(x2)) + α2(B(y1)⊕B(y2)), for all x1, x2, y1, y2 ∈ X.

Lemma 2.14 ( [11]). Let M : X −→ CB(X) be γ-order non-extended and α-weak non-ordinary
difference mapping associated with a mapping A : X −→ X, and αγ 6= 1, then Mθ = {θ⊕ x | x ∈M}
is α-weak non-ordinary difference mapping associated with A and the resolvent operator RMθ

A,λ =

(A+ λMθ)
−1 of (A+ λMθ) is a single valued for α, λ > 0, i.e., RMθ

A,λ : X −→ X of Mθ holds.

Lemma 2.15 ( [11]). Let A : X −→ X be a mapping and M : X −→ CB(X) be (αA, λ)-weak-
ANODD set-valued and strongly comparison mapping associated with RMA,λ. Then the resolvent

operator RMA,λ : X −→ X is a comparison mapping.

Lemma 2.16 ([11]). Let A : X −→ X be a mapping and M : X −→ CB(X) be ordered (αA, λ)-
weak-ANODD and γ-ordered non-extended mapping associated with RMA,λ, for αA > 1

λ . Then the
following relation

RMA,λ(x)⊕RMA,λ(y) ≤ 1

γ(αAλ− 1)
(x⊕ y), for all x, y ∈ X. (2.2)

holds.
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3. Formulation of the Problem

Let X be a real Banach space and C be a normal cone having the normal constant λC . Suppose
fi, gi : X −→ X (i = 1, 2) and Qi : X × X −→ X (i = 1, 2) are single-valued mappings. Assume
that T1, T2, F1, F2 : X −→ CB(X) and M,N : X ×X −→ CB(X) are set-valued mappings. Now we
look at the problem: for some (w1, w2) ∈ X ×X and ρ1, ρ2 > 0, find x, y ∈ X, u ∈ T1(x), v ∈ T2(y),
p ∈ F1(x), q ∈ F2(y) such that

w1 ∈ Q1(f1(x), v) + ρ1M(g1(x), q),

w2 ∈ Q2(u, f2(y)) + ρ2N(p, g2(y)). (3.1)

Problem (3.1) is called a system of implicit ordered variational inclusions.
Special Cases:

(1) If T1, T2, F1, F2 are single-valued mappings, then (3.1) reduces to the problem of finding some
(w1, w2) ∈ X ×X, ρ1, ρ2 > 0, and x, y ∈ X such that

w1 ∈ Q1(f1(x), T2(y)) + ρ1M(g1(x), F2(y)),

w2 ∈ Q2(T1(x), f2(y)) + ρ2N(F1(x), g2(y)), (3.2)

called a system of generalized ordered variational inclusions.

(2) If T1, T2, F1, F2 are identity mappings, then (3.2) reduces to the problem of finding some
(w1, w2) ∈ X ×X, ρ1, ρ2 > 0, and x, y ∈ X such that

w1 ∈ Q1(f1(x), y) + ρ1M(g1(x), y),

w2 ∈ Q2(x, f2(y)) + ρ2N(x, g2(y)), (3.3)

called a system of general ordered variational inclusions.

(3) If g1 = f2 = I (the identity mapping on X), M and N are single-valued mappings and
M(g1(x), y) = M(x, y), then (3.3) reduces to the problem of finding some w1, w2 ∈ X, and
x, y ∈ X such that

w1 ∈ Q1(f1(x), y) + ρ1M(y, x),

w2 ∈ Q2(x, y) + ρ2N(x, g2(y)), (3.4)

a variant form studied in [9].
(4) If w2 = 0, Q2 = f2 = N = g2 = 0, then problem (3.4) is to find x, y ∈ X such that

w1 ∈ Q1(f1(x), y) + ρ1M(y, x), (3.5)

a variant form of generalized variational inclusions.
(5) If ρ1 = 1, w1 = 0, then problem (3.5) reduces to finding x, y ∈ X such that

0 ∈ Q1(f1(x), y) +M(y, x), (3.6)

considered and studied in [14].
(6) If ρ1 = ρ, w1 = w, Q1(f1(x), y) = f(x) and M(y, x) = M(x), then problem (3.5) becomes

that of finding x ∈ X such that

w ∈ f(x) + ρM(x). (3.7)

Problem (3.7) was studied in [11].
(7) If f = 0 is a zero mapping, then problem (3.7) reduces to finding x ∈ X such that

w ∈ ρM(x). (3.8)

Problem (3.9) was initiated and studied in [10].

Now, we mention the fixed point formulation of (3.1).
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Lemma 3.1. Let x, y ∈ X, u ∈ T (x) ∈ CB(X), v ∈ T (y) ∈ CB(X), p ∈ F1(x) ∈ CB(X),
q ∈ F2(y) ∈ CB(X) be a solution of (3.1) if and only if x, y ∈ X, u ∈ T1(x) ∈ CB(X), v ∈ T2(y) ∈
CB(X), p ∈ F1(x) ∈ CB(X), q ∈ F2(y) ∈ CB(X) fulfill the following relations:

x = R
M(g1(·),q)
A,λ

[
A(x) +

λ

ρ1
(w1 −Q1(f1(x), v))

]
,

y = R
N(p,g2(·))
A,λ

[
A(y) +

λ

ρ2
(w2 −Q2(u, f2(y)))

]
. (3.9)

Proof. The proof follows from the definition of the resolvent operator (2.1). �

4. Main Results

In this section, we present existence results for the system of implicit ordered variational inclusions
under some suitable conditions. Let us also discuss the convergence of sequences suggested by an
iterative algorithm.

Theorem 4.1. Let C be a normal cone having a normal constant λC in a real ordered Banach
space X. Let A, fi, gi : X −→ X be single-valued mappings such that A is a λA-compression, fi is
λfi -compression and gi is comparison mappings for i = 1, 2. Let Qi : X × X −→ X (i = 1, 2) be
single-valued mappings such that Q1 is an (α1, α2)-restricted-accretive mapping with respect to f1,
and Q2 is (β1, β2)-restricted accretive mapping with respect to f2. Suppose that Ti, Fi : X −→ CB(X)
(i = 1, 2) be the D-Lipschitz continuous mappings with respect to the constants %i, σi > 0. Suppose
M,N : X×X −→ CB(X) are the mappings such that M is (αA, λ)-weak-ANODD and N is (αA′ , λ)-
weak-ANODD set-valued mappings.
In addition, if xi ∝ yi, ui ∝ vi, pi ∝ qi, R

M
A,λ(xi) ∝ RMA,λ(yi), R

N
A,λ2

(xi) ∝ RNA,λ(yi) (i = 1, 2) and for

all λi, δi > 0 (i = 1, 2), the following condition

R
M(g1(·),q1)
A,λ (x1)⊕RM(g1(·),q2)

A,λ (x1) ≤ δ2(q1 ⊕ q2),

R
N(p1,g2(·))
A,λ (y1)⊕RN(p2,g2(·))

A,λ (y1) ≤ δ1(p1 ⊕ p2), (4.1)

and

λC
ρ1ρ2

[ρ2µ1λα1λf1 + ρ1µ2λβ1%1] < 1− λC(µ1λA + δ1σ1),

λC
ρ1ρ2

[ρ1µ2λβ2λf2 + ρ2µ1λα2%2] < 1− λC(µ2λA + δ2σ2) (4.2)

are satisfied. Then (3.1) grants a solution (x, y, u, v, p, q).

Proof. From Lemma 2.16, we know that the resolvent operators RMA,λ(·) and RNA,λ(·) are Lipschitz

continuous with the constants µ1 = 1
γ1(αAλ−1) and µ2 = 1

γ2(αA′λ−1)
, respectively.

Now, define a mapping P : X ×X −→ X ×X by

P (x, y) = (G(xi, yi), S(xi, yi)), ∀(x, y) ∈ X ×X, (i = 1, 2) (4.3)

where G,S : X ×X −→ X are the mappings defined as

G(xi, yi) = R
M(g1(·),qi)
A,λ

[
A(xi) +

λ

ρ1
(w1 −Q1(f1(xi), vi))

]
, (4.4)

and

S(xi, yi) = R
N(pi,g2(·))
A,λ

[
A(yi) +

λ

ρ2
(w2 −Q2(ui, f2(yi)))

]
. (4.5)

For any xi, yi ∈ X and xi ∝ yj , ui ∝ vj , pi ∝ qj (i, j = 1, 2). By using (4.4), Definition 2.6, Definition
2.13 and Lemmas 2.16 and 2.10, we have

0 ≤ G(x1, y1)⊕G(x2, y2)

= R
M(g1(·),q1)
A,λ

[
A(x1) +

λ

ρ1
(w1 −Q1(f1(x1), v1))

]
⊕RM(g1(·),q2)

A,λ

[
A(x2) +

λ

ρ1
(w1 −Q1(f1(x2), v2))

]
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≤ RM(g1(·),q1)
A,λ

[
A(x1) +

λ

ρ1
(w1 −Q1(f1(x1), v1))

]
⊕RM(g1(·),q1)

A,λ

[
A(x2) +

λ

ρ1
(w1 −Q1(f1(x2), v2))

]
⊕RM(g1(·),q1)

A,λ

[
A(x2) +

λ

ρ1
(w1 −Q1(f1(x2), v2))

]
⊕RM(g1(·),q2)

A,λ

[
A(x2) +

λ

ρ1
(w1 −Q1(f1(x2), v2))

]
≤ µ1

[
A(x1)⊕A(x2) +

λ

ρ1
(Q1(f1(x1), v1)⊕Q1(f1(x2), v2))

]
⊕ δ2(q1 ⊕ q2)

≤ µ1

[
A(x1)⊕A(x2) +

λ

ρ1
(α1(f1(x1)⊕ f1(x2)) + α2(v1 ⊕ v2))

]
⊕ δ2(q1 ⊕ q2)

≤ µ1

[
λA(x1 ⊕ x2) +

λ

ρ1
(α1λf1(x1 ⊕ x2) + α2(v1 ⊕ v2))

]
⊕ δ2(q1 ⊕ q2)

≤ µ1

[(
λA +

λα1λf1
ρ1

)
(x1 ⊕ x2) +

λα2

ρ1
(v1 ⊕ v2)

]
⊕ δ2(q1 ⊕ q2). (4.6)

From Definition 2.2 and Lemma 2.9, we have

‖G(x1, y1)⊕G(x2, y2)‖ = ‖G(x1, y1)−G(x2, y2)‖

≤ λC
∥∥∥µ1

[(
λA +

λα1λf1
ρ1

)
(x1 ⊕ x2) +

λα2

ρ1
(v1 ⊕ v2)

]
⊕ δ2(q1 ⊕ q2)

∥∥∥
≤ λC

{
µ1

∥∥∥(λA +
λα1λf1
ρ1

)
(x1 ⊕ x2)

∥∥∥+ µ1

∥∥∥λα2

ρ1
(v1 ⊕ v2)‖+ δ2‖q1 ⊕ q2

∥∥∥}
≤ λC

{
µ1

(
λA +

λα1λf1
ρ1

)
‖x1 − x2‖+ µ1

λα2

ρ1
‖v1 − v2‖+ δ2‖q1 − q2‖

}
≤ λC

{
µ1

(
λA +

λα1λf1
ρ1

)
‖x1 − x2‖+

µ1λα2

ρ1
D(T2(y1), T2(y2)) + δ2D(F2(y1), F2(y2))

}
≤ λC

{µ1(λAρ1 + λα1λf1)

ρ1
‖x1 − x2‖+

µ1λα2%2
ρ1

‖y1 − y2‖+ δ2σ2‖y1 − y2‖
}

≤ λC
{µ1(λAρ1 + λα1λf1)

ρ1
‖x1 − x2‖+

µ1λα2%2 + δ2σ2ρ1
ρ1

‖y1 − y2‖
}
.

That is,

‖G(x1, y1)−G(x2, y2)‖ ≤ λC
µ1(λAρ1 + λα1λf1)

ρ1
‖x1 − x2‖

+ λC
(µ1λα2%2 + ρ1δ2σ2)

ρ1
‖y1 − y2‖. (4.7)

Again,

0 ≤ S(x1, y1)⊕ S(x2, y2)

= R
N(p1,g2(·))
A,λ

[
A(y1) +

λ

ρ2
(w2 −Q2(u1, f2(y1)))

]
⊕RN(p2,g2(·))

A,λ

[
A(y2) +

λ

ρ2
(w2 −Q2(u2, f2(y2)))

]
≤ RN(p1,g2(·))

A,λ

[
A(y1) +

λ

ρ2
(w2 −Q2(u1, f2(y1)))

]
⊕RN(p1,g2(·))

A,λ

[
A(y2) +

λ

ρ2
(w2 −Q2(u2, f2(y2)))

]
⊕RN(p1,g2(·))

A,λ

[
A(y2) +

λ

ρ2
(w2 −Q2(u2, f2(y2)))

]
⊕RN(p2,g2(·))

A,λ

[
A(y2) +

λ

ρ2
(w2 −Q2(u2, f2(y2)))

]
≤ µ2

[
A(y1)⊕A(y2) +

λ

ρ2
(Q2(u1, f2(y1))⊕Q2(u2, f2(y2)))

]
⊕ δ1(p1 ⊕ p2)

≤ µ2

[
A(y1)⊕A(y2) +

λ

ρ2
(β1(u1 ⊕ u2) + β2λf2(y1 ⊕ y2))

]
⊕ δ1(p1 ⊕ p2)

≤ µ2

[
λA(y1 ⊕ y2) +

λ

ρ2
(β1(u1 ⊕ u2) + β2λf2(y1 ⊕ y2))

]
⊕ δ1(p1 ⊕ p2). (4.8)
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From Definition 2.2 and Lemma 2.9, we have

‖S(x1, y1)⊕ S(x2, y2)‖ = ‖S(x1, y1)− S(x2, y2)‖

≤ λC
∥∥∥µ2λA(y1 ⊕ y2) +

µ2λβ1
ρ2

(u1 ⊕ u2) +
µ2λβ2λf2

ρ2
(y1 ⊕ y2) + δ1(p1 ⊕ p2)

∥∥∥
≤ λC

[
µ2λA‖y1 − y2‖+

µ2λβ2λf2
ρ2

‖y1 − y2‖+
µ2λβ1
ρ2
|u1 − u2‖+ δ1‖p1 − p2‖

]
≤ λC

[(
µ2λA +

µ2λβ2λf2
ρ2

)
‖y1 − y2‖+

µ2λβ1
ρ2

D(T1(x1), T1(x2)) + δ1D(F1(x1), F1(x2))
]

≤ λC
[(
µ2λA +

µ2λβ2λf2
ρ2

)
‖y1 − y2‖+

µ2λβ1%1
ρ2

‖x1 − x2‖+ δ1σ1‖x1 − x2‖
]

≤ λC
(
µ2λA +

µ2λβ2λf2
ρ2

)
‖y1 − y2‖+ λC

(µ2λβ1%1
ρ2

+ δ1σ1

)
‖x1 − x2‖.

That is,

‖S(x1, y1)− S(x2, y2)‖ ≤ λCµ2(λAρ2 + λβ2λf2)

ρ2
‖y1 − y2‖+

λC(µ2λβ1%1 + ρ2δ1σ1)

ρ2
‖x1 − x2‖. (4.9)

From (4.7) and (4.9), we have

‖G(x1, y1)−G(x2, y2)‖+ ‖S(x1, y1)− S(x2, y2)‖ ≤ λC
µ1(λAρ1 + λα1λf1)

ρ1
‖x1 − x2‖

+ λC
(µ1λα2%2 + ρ1δ2σ2)

ρ1
‖y1 − y2‖+ λC

µ2(λAρ2 + λβ2λf2)

ρ2
‖y1 − y2‖

+ λC
(µ2λβ1%1 + δ1σ1ρ2)

ρ2
‖x1 − x2‖

≤ λC
[µ1(λAρ1 + λα1λf1)

ρ1
+

(µ2λβ1%1 + δ1σ1ρ2)

ρ2

]
‖x1 − x2‖

+ λC

[µ2(λAρ2 + λβ2λf2)

ρ2
+

(µ1λα2%2 + ρ1δ2σ2)

ρ1

]
‖y1 − y2‖

≤ λC
ρ1ρ2

[µ1ρ2(λAρ1 + λα1λf1) + ρ1(µ2λβ1%1 + δ1σ1ρ2)]‖x1 − x2‖

+
λC
ρ1ρ2

[µ2ρ1(λAρ2 + λβ2λf2) + ρ2(µ1λα2%2 + ρ1δ2σ2)]‖y1 − y2‖

≤ Ω1‖x1 − x2‖+ Ω2‖y1 − y2‖
≤ max{Ω1,Ω2}(‖x1 − x2‖+ ‖y1 − y2‖), (4.10)

where

Ω1 =
λC
ρ1ρ2

[
µ1ρ2(λAρ1 + λα1λf1) + ρ1(µ2λβ1%1 + δ1σ1ρ2)

]
and

Ω2 =
λC
ρ1ρ2

[
µ2ρ1(λAρ2 + λβ2λf2) + ρ2(µ1λα2%2 + ρ1δ2σ2)

]
.

Now, we define ‖(x, y)‖∗ on X ×X by

‖(x, y)‖∗ = ‖x‖+ ‖y‖, ∀(x, y) ∈ X ×X. (4.11)

One can easily show that (X × X, ‖ · ‖) is a Banach space. Hence from (4.3), (4.10) and (4.11), we
have

‖P (x1, y1)− P (x2, y2)‖∗ ≤ max{Ω1,Ω2}(‖x1 − x2‖+ ‖y1 − y2‖). (4.12)

By (4.2), we know that max{Ω1,Ω2} < 1. It follows from (4.12) that P is a contraction mapping.
Hence there exists unique (x, y) ∈ X ×X such that

P (x, y) = (x, y).
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This leads to

x = R
M(g1(·),q)
A,λ

[
A(x) +

λ

ρ1
(w1 −Q1(f1(x), v))

]
,

and

y = R
N(p,g2(·))
A,λ

[
A(y) +

λ

ρ2
(w2 −Q2(u, f2(y)))

]
.

It is determined by Lemma 3.1 that (x, y, u, v, p, q) is a solution of (3.1). �

Now, we suggest an iterative scheme for problem (3.1).

Algorithm 4.2. Let C be a normal cone with a normal constant λC in a real ordered Banach space
X. Assume that fi, gi : X −→ X and Qi : X ×X −→ X are single-valued mappings for i = 1, 2. Let
M,N : X ×X −→ CB(X) and Ti, Fi : X −→ CB(X)(i = 1, 2) be the set-valued mappings.
For any given x0, y0 ∈ X, u0 ∈ T1(x0), v0 ∈ T2(y0), p0 ∈ F1(x0), q0 ∈ F2(y0), let

x1 = (1− π)x0 + πR
M(g1(·),q0)
A,λ

[
A(x0) +

λ

ρ1
(w1 −Q1(f1(x0), v0))

]
,

y1 = (1− π)y0 + πR
N(p0,g2(·))
A,λ

[
A(y0) +

λ

ρ2
(w2 −Q2(u0, f2(y0)))

]
,

there exist u1 ∈ T1(x1) ∈ CB(X), v1 ∈ T2(y1) ∈ CB(X), p1 ∈ F1(x1) ∈ CB(X), q1 ∈ F2(y1) ∈
CB(X), and assume that x0 ∝ x1, y0 ∝ y1, u0 ∝ u1, v0 ∝ v1, p0 ∝ p1, q0 ∝ q1 such that

‖u1 ⊕ u0‖ = ‖u1 − u0‖ ≤ (1 + 1)D(T1(x1), T1(x0));

‖v1 ⊕ v0‖ = ‖v1 − v0‖ ≤ (1 + 1)D(T2(y1), T2(y0));

‖p1 ⊕ p0‖ = ‖p1 − p0‖ ≤ (1 + 1)D(F1(x1), F1(x0));

‖q1 ⊕ q0‖ = ‖q1 − q0‖ ≤ (1 + 1)D(F2(y1), F2(y0)).

Continuing in this way, we can define iterative sequences {xn}, {yn}, {un}, {vn}, {pn}, {qn} with
the supposition that xn+1 ∝ xn, yn+1 ∝ yn, un+1 ∝ un, vn+1 ∝ vn, pn+1 ∝ pn, qn+1 ∝ qn, for all
n ∈ R. We have the following iterative schemes:

xn+1 = (1− π)xn + πR
M(g1(·),qn)
A,λ

[
A(xn) +

λ

ρ1
(w1 −Q1(f1(xn), vn))

]
, (4.13)

yn+1 = (1− π)yn + πR
N(pn,g2(·))
A,λ

[
A(yn) +

λ

ρ2
(w2 −Q2(un, f2(yn)))

]
, (4.14)

with

un+1 ∈ T1(xn+1), ‖un+1 ⊕ un‖ = ‖un+1 − un‖ ≤
(

1 +
1

n+ 1

)
D(T1(xn+1), T1(xn));

vn+1 ∈ T2(yn+1), ‖vn+1 ⊕ vn‖ = ‖vn+1 − vn‖ ≤
(

1 +
1

n+ 1

)
D(T2(yn+1), T2(yn));

pn+1 ∈ F1(xn+1), ‖pn+1 ⊕ pn‖ = ‖pn+1 − pn‖ ≤
(

1 +
1

n+ 1

)
D(F1(xn+1), F1(xn));

qn+1 ∈ F2(xn+1), ‖qn+1 ⊕ qn‖ = ‖qn+1 − qn‖ ≤
(

1 +
1

n+ 1

)
D(F2(yn+1), F2(yn)); (4.15)

for n = 0, 1, 2, 3, 4, . . . , where 0 ≤ π < 1 and λ, ρ > 0 are the constants.

Theorem 4.3. Allow X,C,M,N, fi, gi, Qi, Ti, Fi (i = 1, 2) to be as in Theorem 4.1. Then the
sequences {(xn, yn, un, vn, pn, qn)} formulated by Algorithm 4.2, converge strongly to {(x, y, u, v, p, q)}
of (3.1).

Proof. From Algorithm 4.2, (4.1) and Lemma 2.10, we get

0 ≤ xn+1 ⊕ xn

= (1− π)xn + πR
M(g1(·),qn)
A,λ

[
A(xn) +

λ

ρ1
(w1 −Q1(f1(xn), vn))

]
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⊕ (1− π)xn−1 + πR
M(g1(·),qn−1)
A,λ

[
A(xn−1) +

λ

ρ1
(w1 −Q1(f1(xn−1), vn−1))

]
= (1− π)(xn ⊕ xn−1) + π

[
R
M(g1(·),qn)
A,λ

[
A(xn) +

λ

ρ1
(w1 −Q1(f1(xn), vn))

]
⊕RM(g1(·),qn−1)

A,λ

[
A(xn−1) +

λ

ρ1
(w1 −Q1(f1(xn−1), vn−1))

]]
. (4.16)

By using the same argument as in Theorem 4.1, for (4.7), we have

‖xn+1 ⊕ xn‖ = ‖xn+1 − xn‖

≤ (1− π)‖xn − xn−1‖+ π
[
λC

µ1(λAρ1 + λα1λf1)

ρ1
‖xn − xn−1‖

+ λC
(1 + 1

n+1 )(µ1λα2%2 + ρ1δ2σ2)

ρ1
‖yn − yn−1‖

]
≤
[
(1− π) + π

λCµ1(λAρ1 + λα1λf1)

ρ1

]
‖xn − xn−1‖

+ π
[ (1 + 1

n+1 )λC(µ1λα2%2 + ρ1δ2σ2)

ρ1

]
‖yn − yn−1‖. (4.17)

Similarly,

0 ≤ yn+1 ⊕ yn

=
(

(1− π)yn + πR
N(pn,g2(·))
A,λ

[
A(yn) +

λ

ρ2
(w2 −Q2(un, f2(yn)))

])
⊕
(

(1− π)yn−1 + πR
N(pn−1,g2(·))
A,λ

[
A(yn−1) +

λ

ρ2
(w2 −Q2(un−1, f2(yn−1)))

])
= (1− π)(yn ⊕ yn−1) + π

(
R
N(pn,g2(·))
A,λ

[
A(yn) +

λ

ρ2
(w2 −Q2(un, f2(yn)))

]
⊕RN(pn−1,g2(·))

A,λ

[
A(yn−1) +

λ

ρ2
(w2 −Q2(un−1, f2(yn−1)))

])
. (4.18)

Importing the same logic as in Theorem 4.1 for (4.9), we have

‖yn+1 ⊕ yn−1‖ = ‖yn+1 − yn−1‖ ≤
[
(1− π) + π

λCµ2(λAρ2 + λβ2λf2)

ρ2

]
‖yn − yn−1‖

+ π
λC
(
1 + 1

n+1

)
(µ2λβ1%1 + δ1σ1ρ2)

ρ2
‖xn − xn−1‖. (4.19)

From (4.17) and (4.19), we have

‖xn+1 − xn−1‖+ ‖yn+1 − yn−1‖ ≤
[
(1− π) +

πλCµ1(λAρ1 + λα1λf1)

ρ1

]
‖xn − xn−1‖

+
[π(1 + 1

n+1

)
λC(µ1λα2%2 + ρ1δ2σ2)

ρ1

]
‖yn − yn−1‖

+
[
(1− π) + π

λCµ2(λAρ2 + λβ2λf2)

ρ2

]
‖yn − yn−1‖

+ π
λC
(
1 + 1

n+1

)
(µ2λβ1%1 + δ1σ1ρ2)

ρ2
‖xn − xn−1‖

≤ (1− π)(‖xn − xn−1‖+ ‖yn − yn−1‖)

+ π
[λCµ1(λAρ1 + λα1λf1)

ρ1
+
λC
(
1 + 1

n+1

)
(µ2λβ1%1 + δ1σ1ρ2)

ρ2

]
‖xn − xn−1‖

+ π
[λC(1 + 1

n+1

)
(µ1λα2%2 + ρ1δ2σ2)

ρ1
+
λCµ2(λAρ2 + λβ2λf2)

ρ2

]
‖yn − yn−1‖
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= (1− π)(‖xn − xn−1‖+ ‖yn − yn−1‖) + π(Ωn1‖xn − xn−1‖+ Ωn2‖yn − yn−1‖)
= (1− π)(‖xn − xn−1‖+ ‖yn − yn−1‖) + πΩn(‖xn − xn−1‖+ ‖yn − yn−1‖), (4.20)

where Ωn = max{Ωn1 ,Ωn2} and

Ωn1 =
λC
ρ1ρ2

[
µ1ρ2(λAρ1 + λα1λf1) +

(
1 +

1

n+ 1

)
ρ1(µ2λβ1%1 + δ1σ1ρ2)

]
,

Ωn2 =
λC
ρ1ρ2

[(
1 +

1

n+ 1

)
ρ2(µ1λα2%2 + ρ1δ2σ2) + ρ1µ2(λAρ2 + λβ2λf2)

]
.

Let Ωn1 −→ Ω1 and Ωn2 −→ Ω2 whenever n −→ ∞, therefore Ωn −→ Ω as n −→ ∞. Then condition
(4.2) implies Ω < 1 and so Ωn < 1 for sufficiently large n. By (4.20), for sufficient n, we have

‖xn+1 − xn−1‖+ ‖yn+1 − yn−1‖ ≤ (1− π)(‖xn − xn−1‖+ ‖yn − yn−1‖)
+ πΩ(‖xn − xn−1‖+ ‖yn − yn−1‖)
≤ (1− π + πΩ)(‖xn − xn−1‖+ ‖yn − yn−1‖)
≤ ς(‖xn − xn−1‖+ ‖yn − yn−1‖). (4.21)

where ς = 1− π + πΩ and Ω = max{Ω1,Ω2}, and

Ω1 =
λC
ρ1ρ2

[ρ2µ1(λAρ1 + λα1λf1) + ρ1(µ2λβ1%1 + δ1σ1ρ2)],

Ω2 =
λC
ρ1ρ2

[ρ2(µ1λα2%2 + ρ1δ2σ2) + ρ1µ2(λAρ2 + λβ2λf2)].

By (4.2), we have Ω < 1. So there exists Ω0 < 1 such that for sufficiently large n, Ωn < Ω0 and

‖xn+1 − xn−1‖+ ‖yn+1 − yn−1‖ ≤ ς0(‖xn − xn−1‖+ ‖yn − yn−1‖), (4.22)

where ς0 = 1− π + πΩ0 < 1.
It follow that {xn} is a Cauchy sequence in X. Since X is a complete space, there exists x ∈ X such
that xn −→ x as n −→∞. From (4.22), {yn} is also a Cauchy sequence in X and yn −→ y as n −→∞.
Condition (4.15) and the D-Lipschitz continuity of T1, T2, F1, F2 imply that {un}, {vn}, {pn} and {qn}
are all the Cauchy sequences. Let un −→ u, vn −→ v, pn −→ p and qn −→ q, respectively. By (4.15),
we have

d(u, T1(u)) ≤ ‖u− un‖+ d(un, T (u))

≤ ‖u− un‖+ D(T1(un), T1(u))

≤ ‖u− un‖+ %1‖un − u‖ −→ 0, as n −→∞, (4.23)

and so u ∈ T1(x). Similarly, we can show that v ∈ T2(y), p ∈ F1(x) and q ∈ F2(y). By (4.15), we have

xn+1 = (1− π)xn + πR
M(g1(·),qn)
A,λ

[
A(xn) +

λ

ρ1
(w1 −Q1(f1(xn), vn))

]
,

yn+1 = (1− π)yn + πR
N(pn,g2(·))
A,λ

[
A(yn) +

λ

ρ2
(w2 −Q2(un, f2(yn)))

]
.

By Lemma 2.16 and the assumptions in Theorem 4.1, letting n −→∞ in the above equations, we can
obtain

x = (1− π)x+ πR
M(g1(·),q)
A,λ

[
A(x) +

λ

ρ1
(w1 −Q1(f1(x), v))

]
,

y = (1− π)y + πR
N(p,g2(·))
A,λ

[
A(y) +

λ

ρ2
(w2 −Q2(u, f2(y)))

]
.

By Lemma 3.1, {(x, y, u, v, p, q)} is a solution of system (3.1). This completes the proof. �
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