ON BITOPOLOGICAL CLOPEN SETS

By

Irakli Dochviri Caucasus International University

Introduction

In a bitopological space (briefly, BS) (X, τ_1, τ_2) we use the following notations: the interior and the closure of a subset A of X with respect to the topology τ_i are denoted by $\tau_i int A$ and $\tau_i cl A$, respectively, where $i \in \{1, 2\}$.

If O is open in the τ_i , then we write $O \in \tau_i$, while, for the τ_i -closed set F, we use the notation $F \in co\tau_i$.

We denote by $\tau_i^A = \{A \cap U | U \in \tau_i\}$ the topology induced on the set A from the τ_i .

The family of all τ_i -open neighborhoods of a subset M of X is denoted by $\sum_{i=1}^{X} (M)$.

Clopen sets in bitopological spaces appeared in the following references

- I. Reilly, Zero-dimensional bitopological spaces. Indag. Math., 35 (1973), 127–131.
- G. Bezhanishvili, N.Bezhanishvili, D. Gabelaia, A. Kurz, Bitopological duality for distributive lattices and Heyting algebras. Math. Struct. Comput. Sci., 20(3) (2010), 359–393.

Definition 1. A subset A of a BS (X, τ_1, τ_2) is called an (i, j)-clopen set if $A \in \tau_i \cap co\tau_j$, where $i, j \in \{1, 2\}, i \neq j$.

Denote by (i, j) - Clp(X) the class of all (i, j)-clopen sets of a BS (X, τ_1, τ_2) .

If i = j, we get the well known notion of general topology –the clopen set. Therefore, the class of i - Clp(X) will denote the collection of all τ_i -clopen subsets of (X, τ_1, τ_2) .

In bitopological spaces, considerations of so called (1, 2)-clopen and (2, 1)-clopen sets seem to be not applied widely. Motivated by this gap in the bitopological case we try to develop some asymmetric constructions

Few Naive Observations

- (1) $A \in (i, j) Clp(X)$ if and only if $X \setminus A \in (j, i) Clp(X)$.
- (2) The following equation holds: $(1,2)-Clp(X)\cap(2,1)-Clp(X)=1-Clp(X)\cap(2-Clp(X))$.

Let $A_{\alpha} \in (i, j) - Clp(X)$ for each $\alpha \in \Lambda$, $A = \bigcap_{\alpha \in \Lambda} A_{\alpha}$ and $B = \bigcup_{\alpha \in \Lambda} A_{\alpha}$. Then the following hold:

(3) $A \in co\tau_i$ and $B \in \tau_i$,

(4) A, B ∈ (i, j) − Clp(X) if Λ is finite,

If in the standard definition of topological spaces (via open sets), we delete the word "finite" in the axiom:

"finite intersection of open sets is open",

then we come to the notion of Alexandroff's space.

Therefore we have:

(5) $A \in (i, j) - Clp(X)$ (resp. $B \in (i, j) - Clp(X)$) if (X, τ_i) (resp. (X, τ_j)) is an Alexandorff space.

Proposition 1. If A is a subset of a BS (X, τ_1, τ_2) and $B \in (i, j) - Clp(X)$, then $A \cap B$ is (i, j)-clopen in the subspace (A, τ_1^A, τ_2^A) .

bf Question: What kind of Mappings Save Bitopological Clopens?

To answer this we need to remaind some definitions for BS.

A map $f:(X,\tau_1,\tau_2)\to (Y,\gamma_1,\gamma_2)$ is said to be

- (1) *i*-open (resp. *i*-continuous) if $f:(X,\tau_i)\to (Y,\gamma_i)$ is an open (resp. continuous) map.
 - (2) j-closed if f : (X, τ_i) → (Y, γ_i) is a closed map.
- (3) p-continuous if both $f:(X,\tau_1)\to (Y,\gamma_1)$ and $f:(X,\tau_2)\to (Y,\gamma_2)$ are continuous [J.C. Kelly, 1963].
- (4) p-homeomorphism if f is bijective and both f and f^{-1} are p-continuous, where f^{-1} denotes the inverse to f.

Proposition 2. If a map $f:(X, \tau_1, \tau_2) \to (Y, \gamma_1, \gamma_2)$ is *i*-open and *j*-closed and $A \in (i, j) - Clp(X)$, then $f(A) \in (i, j) - Clp(Y)$.

A BS (X, τ_1, τ_2) is said to be (i, j)-stable [R.D. Kopperman, 1995] if any $A \in co\tau_i$ implies j-compacteness of A.

If (X, τ_1, τ_2) is (j, i)-stable and i-Hausdorff then $(i, j) - Clp(X) \subset i - Clp(X)$.

A map $f:(X,\tau_1,\tau_2)\to (Y,\gamma_1,\gamma_2)$ is said to be $(i,j)-\Delta$ continuous if $f:(X,\tau_i)\to (Y,\gamma_i)$ is continuous.

Proposition 3. Let (X, τ_1, τ_2) be a (j, i)-stable BS and a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \gamma_1, \gamma_2)$ be both i-open and $(i, j) - \Delta$ -continuous. If a BS (Y, γ_1, γ_2) is j- T_2 , then $f(A) \in (i, j) - Clp(Y)$ for each $A \in (i, j) - Clp(X)$.

Bitopological Connectedness and Continuous-like Maps

A BS (X, τ_1, τ_2) is said to be pairwise connected (briefly *p*-connected) if X could not be represented as the union of the disjoint sets $A \in \tau_1 \setminus \{\emptyset\}$ and $B \in \tau_2 \setminus \{\emptyset\}$ [W. Pervin, 1967].

 (X, τ_1, τ_2) is p-connected $\Leftrightarrow X$ cannot be represented as the union of two nonempty disjoint $A \in (i, j) - Clp(X)$ and $B \in (j, i) - Clp(X) \Leftrightarrow$ There exists no nonempty proper (i, j)-clopen set.

Definition 2. A map $f:(X,\tau_1,\tau_2)\to (Y,\gamma_1,\gamma_2)$ is said to be (i,j)-clopen-irresolute if $f^{-1}(V)\in (i,j)-Clp(X)$ for each $V\in (i,j)-Clp(Y)$, where $i\neq j$, $i,j\in\{1,2\}$.

If a map is both (1,2)-clopen-irresolute and (2,1)-clopen-irresolute then it is called to be p-clopen-irresolute. Every p-continuous map is p-clopen-irresolute but the converse is not always true as shown by the following example.

Example 1. Let us consider a set $X = \{m, n, p, q, k\}$, together with topologies $\tau_1 = \{\emptyset, X\} \cup \{\{m\}, \{n, p\}, \{m, n, p\}\}\}$ and $\tau_2 = \{\emptyset, X\} \cup \{\{q, k\}\}\}$. Then we observe that $(1, 2) - Clp(X) = \{\emptyset, X, \{m, n, p\}\}\}$ and $(2, 1) - Clp(X) = \tau_2$. Moreover, let $Y = \{a, b, c, d\}$ be endowed with the following topologies $\gamma_1 = \{\emptyset, Y\} \cup \{\{a, b\}, \{c\}, \{a, b, c\}\}\}$ and $\gamma_2 = \{\emptyset, Y\} \cup \{\{c, d\}\}\}$, then $(1, 2) - Clp(Y) = \{\emptyset, Y, \{a, b\}\}\}$ and $(2, 1) - Clp(Y) = \gamma_2$. If we define a map $f: (X, \tau_1, \tau_2) \to (Y, \gamma_1, \gamma_2)$ via the equations: f(m) = f(n) = a, f(p) = b, f(q) = c, f(k) = d, then it is p-clopenirresolute. But $f: (X, \tau_1) \to (Y, \gamma_1)$ is not continuous and f is not f-continuous.

It is known that the p-connectedness is preserved under p-continuous surjections [Pe]. The following proposition is an improvement of this result.

Proposition 4. The p-connectedness is preserved by (i, j)-clopen-irresolute surjections.

Recall that a BS (X, τ_1, τ_2) is said to be (i, j)-zero dimensional if a basis $\mathbf{B}(\tau_i)$ for the topology τ_i is formed with $co\tau_j$, i.e. $\mathbf{B}(\tau_i) = co\tau_j$ [Re]. It is obvious that a BS (X, τ_1, τ_2) is (i, j)-zero dimensional if and only if $\mathbf{B}(\tau_i) = (i, j) - Clp(X)$.

Theorem 1. If (X, τ_1, τ_2) is an (i, j)-zero dimensional and i- T_1 BS, then $card(A) \le 1$ for every p-connected subspace (A, τ_1^A, τ_2^A) .

Definition 3. The subset $\bigcap \{U(x) | x \in U(x) \in (i, j) - Clp(X)\}$ of a BS (X, τ_1, τ_2) is called the (i, j)-quasi-component of a point $x \in X$ and is denoted by $(i, j) - Q_x$.

Proposition 5. Let x be a point in a BS (X, τ_1, τ_2) . Then the following hold:

(1)
$$(i, j) - Q_x \in co\tau_j \setminus \{\emptyset\}.$$

(2) If $y \in (i, j) - Q_x$, then $(i, j) - Q_y \subset (i, j) - Q_x$.

Proposition 6. If $f:(X, \tau_1, \tau_2) \to (Y, \gamma_1, \gamma_2)$ is (i, j)-clopen-irresolute, then $f((i, j) - Q_x) \subset (i, j) - Q_{f(x)}$ for each $x \in X$.

Corollary Let $f:(X,\tau_1,\tau_2)\to (Y,\gamma_1,\gamma_2)$ be a map.

- If f is p-continuous, then f((i, j) − Q_x) ⊂ (i, j) − Q_{f(x)}.
- (2) If f is a p-homeomorphism, then $f((i, j) Q_x) = (i, j) Q_{f(x)}$.

The greatest p-connected subset containing a point $x \in X$ is called the p-component of x in a BS (X, τ_1, τ_2) and is denoted by $p - C_x$.

Theorem 2. In a BS (X, τ_1, τ_2) , the following implication holds: $p - C_x \subset (1, 2) - Q_x \cap (2, 1) - Q_x$.

Definition 4. A BS (X, τ_1, τ_2) is said to be p-ultra-Hausdorff if for any pair of distinct points $x_1, x_2 \in X$ there exist $U_{x_1} \in (i, j) - Clp(X)$ and $V_{x_2} \in (j, i) - Clp(X)$ such that $x_1 \in U_{x_1}$, $x_2 \in V_{x_2}$ and $U_{x_1} \cap V_{x_2} = \emptyset$.

It should be especially noticed that if i = j then the notion of p-ultra-Hausdorff coincides with the notion of ultra-Hausdorff for topological spaces, given in [R. Staum, 1974].

Example 2. Let X be a set with $card(X) \geq \aleph_0$, τ_d -discrete and $\tau_{cof.}$ -cofinite (i.e. all finite subsets of X are closed, and vice versa) topologies on X, respectively. Then it is obvious that $(X, \tau_d, \tau_{cof.})$ is p-ultra-Hausdorff BS.

Proposition 7. A BS (X, τ_1, τ_2) is *p*-ultra-Hausdorff if and only if for any distinct points x_1, x_2 , there exist $U \in (i, j) - Clp(X)$ such that $x_1 \in U, x_2 \notin U$ and $V \in (i, j) - Clp(X)$ such that $x_2 \in V, x_1 \notin V$.

Definition 5. A map $f:(X,\tau_1,\tau_2)\to (Y,\gamma_1,\gamma_2)$ is said to be (i,j)-weakly clopen-continuous (resp. (i,j)-clopen-continuous) if for each $x\in X$ and each $V\in \sum_i^Y(f(x))$, there exists a set $U\in (i,j)-Clp(X)$ containing x such that $f(U)\subset \gamma_j cl(V)$ (resp. $f(U)\subset V$), where $i\neq j,\,i,j\in\{1,2\}$.

Example 3. Let us consider the set $X = \{m, n, p, q, k\}$, together with topologies $\tau_1 = \{\emptyset, X\} \cup \{\{m\}, \{n, p\}, \{m, n, p\}\} \text{ and } \tau_2 = \{\emptyset, X\} \cup \{\{q, k\}\}\}$. Then we observe that $(1, 2) - Clp(X) = \{\emptyset, X, \{m, n, p\}\}$ and $(2, 1) - Clp(X) = \{\emptyset, X, \{q, k\}\}$. Moreover, let $Y = \{a, b, c\}$ be endowed with the following topologies $\gamma_1 = \{\emptyset, Y\} \cup \{\{a\}\}$ and $\gamma_2 = \{\emptyset, Y\} \cup \{\{c\}\}$. If we define a map $f: (X, \tau_1, \tau_2) \to (Y, \gamma_1, \gamma_2)$ via the equations: f(m) = f(n) = a, f(p) = b, f(q) = f(k) = c, then f is (1, 2)-weakly clopen-continuous. But it is not (1, 2)-clopen-continuous.

Proposition 8. If $f:(X,\tau_1,\tau_2)\to (Y,\gamma_1,\gamma_2)$ is (i,j)-weakly clopen-continuous (resp. (i,j)-clopen-continuous) and A is a subset of X, then $f|_A:(A,\tau_1^A,\tau_2^A)\to$

 (Y, γ_1, γ_2) is (i, j)-weakly clopen-continuous (resp. (i, j)-clopen-continuous).

Proposition 9. If $f:(X,\tau_1,\tau_2)\to (Y,\gamma_1,\gamma_2)$ is

- (1) (i, j)-weakly clopen-continuous and (X, τ_j) is Alexandorff, then f is (i, j)clopen-irresolute.
- (2) If a map $f:(X, \tau_1, \tau_2) \to (Y, \gamma_1, \gamma_2)$ is (i, j)-clopen irresolute and (Y, γ_1, γ_2) is (i, j)-zero dimensional, then f is (i, j)-clopen-continuous.

Corollary Let (X, τ_j) be an Alexandroff topological space and (Y, γ_1, γ_2) is an (i, j)-zero dimensional BS. Then a map $f: (X, \tau_1, \tau_2) \to (Y, \gamma_1, \gamma_2)$ is (i, j)-clopencontinuous if and only if it is (i, j)-clopen irresolute.

Results on (i, j)-Clopen-Compactness

In 1974 R. Staum introduced the property of the topological spaces named by mild compactness for investigation of the algebra of bounded continuous functions into a non-archimedian filds. Independently, A. Sostak (1976) rediscovered such topological property named as clopen-compactness. I want to develop asymmetric analog of this property and give to the end of the talk some nice results.

Definition 5. A subset K of a BS (X, τ_1, τ_2) is said to be (i, j)-clopen-compact relative to X if every cover of K by (i, j)-clopen sets of X has a finite subcover.

It should be noticed that every i-compact subset of (X, τ_1, τ_2) is (i, j)-clopencompact relative to X.

Proposition 10.. If a BS (X, τ_1, τ_2) is (i, j)-zero dimensional and a subset K of X is (i, j)-clopen-compact relative to X, then K is a τ_i -compact subset of X.

Theorem 3. For a BS (X, τ_1, τ_2) , the following are equivalent:

- X is p-ultra-Hausdorff;
- (2) For each set K of X which is (i, j)-clopen compact relative to X, $K = \bigcap \{V | K \subset V \in (i, j) Clp(X)\};$
 - (3) For each $x \in X$, $x = \bigcap \{V | x \in V \in (i, j) Clp(X)\}.$

Corollary If a BS (X, τ_1, τ_2) is p-ultra-Hausdorff and K is (i, j)-clopen-compact relative to X, then $K \in co\tau_i$.

Problem: Unfortunately, at this time I have not examples demonstrating (i, j)clopen compact sets.

