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Frames

Objects & arrows

I Frame: complete lattice where finite meets distribute over all joins.

I Fix signature: L = 〈
∨

,
∧

, 0, 1〉, with
∨

: PL → L and
∧

: PωL → L.

I Key example: open sets of topological space

I Frame homomorphisms preserve
∨

and
∧

(so also 0 and 1).

I Key example: duals of continuous maps.

I Let Fr denote the resulting category.

Geometric Logic

I Inductively define collection Ter(X ) of frame terms over a set X .
Note: this collection is a class.

I A pair s ≈ t of terms is a frame equation. Also use inequalities.

I Inductively define the meaning [[s]]LV of s in L under V : X → L.

I Truth: L |=V s ≈ t if [[s]]LV ≈ [[t]]LV
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Frame presentations

I A frame presentation is a pair 〈G | R〉 with G a set of generators and
R is a set of relations, i.e., frame equations over G .

I 〈G | R〉 presents a frame L if there is a function f : G → L such that

• L is generated by f [G ] — f is called the insertion of generators,

• f is compatible with R, i.e.

L |=f s ≈ t, for all (s, t) ∈ R,

• for all frames M, and g : G → M is compatible with R:

G
f //

g
  @

@@
@@

@@
L

!g′

���
�
�

M
there is a unique homomorphism g ′ : L → M with g ′f = g .

Fact: Every frame presentation presents a (modulo isos, unique) frame!
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The Vietoris construction

I Let X = 〈X , τ〉 be a topological space.

I K (X) denotes the collection of compact sets, and for a ∈ τ , define

〈3〉a := {F ∈ K (X) | F ∩ a 6= ∅}

[3]a := {F ∈ K (X) | F ⊆ a}

I Generate the Vietoris topology υτ on K (X) from {〈3〉a, [3] | a ∈ τ}.
I V(X) := 〈K (X), υτ 〉 is the Vietoris space of X.

Fact The Vietoris construction preserves various properties, including:
• compactness
• compact Hausdorfness
• Stone-ness
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The Vietoris functor

Given f : X → Y,

let Vf : V(X) → V(Y) be given by

Vf (F ) := f [F ]
(

= {fx | x ∈ F}
)

Fact
V is a functor on the categories KHaus and Stone.
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Vietoris pointfree (Johnstone)

Given a frame L, define L2 := {2a | a ∈ L} and L3 := {3a | a ∈ L}.

VL := Fr〈L2 ] L3 | 2(
∧

A) =
∧

a∈A 2a (A ∈ PωL)
3(

∨
A) =

∨
a∈A 3a (A ∈ PωL)

2a ∧3b ≤ 3(a ∧ b)
2(a ∨ b) ≤ 2a ∨3b

2(
⊔

A) =
⊔

a∈A 2a (A ∈ PL directed)
3(

⊔
A) =

⊔
a∈A 3a (A ∈ PL directed)

〉



The cover modality ∇

Syntax If α is a finite set of formulas then ∇α is a formula.

Semantics Fix a Kripke model S = 〈S ,R,V 〉.

S, s 
 ∇α iff for all t ∈ R[s] there is an a ∈ α with S, t 
 a

and for all a ∈ α there is a t ∈ R[s] with S, t 
 a.

Informally: α and R[s] cover one another.

∇ as abbreviation
∇α ≡ 2

∨
α ∧

∧
3α

History

I model theory: Hintikka, Scott, . . .

I modal logic: Fine’s normal forms

I ∇ as primitive: Barwise & Moss/Janin & Walukiewicz
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Reconstructing modal logic

Recall
∇α ≡ 2

∨
α ∧

∧
3α

Conversely:
3a ≡ ∇{a,>}
2a ≡ ∇∅ ∨∇{a}

Define the language ML of modal logic (in negation normal form) by

a ::= p | ¬p | ⊥ | > | a ∨ a | a ∧ a | 3a | 2a

Define the language ML∇ by

a ::= p | ¬p | ⊥ | > | a ∨ a | a ∧ a | ∇α

Proposition
The languages ML and ML∇ are effectively equi-expressive, and so are
their positive versions.
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∇ via relation lifting

Relation Lifting For Z ⊆ S × S ′, define P(Z ) ⊆ PS × PS ′ by

P(Z ) := {(Q,Q ′) ∈ PS × PS ′ | ∀q ∈ Q ∃q′ ∈ Q ′ qZq′ &

∀q′ ∈ Q ′ ∃q ∈ Q qZq′ }

Fundamental Observation (Moss, 1999)
Apply relation lifting to the binary relation 
S ⊆ S ×ML:

S, s 
S ∇α iff (R[s], α) ∈ P(
S)

This paves the way for coalgebraic generalizations of modal logic!
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Relation lifting

Fix a functor T : Set → Set

I For simplicity assume T is standard (maps inclusions to inclusions).

I Tω is the finitary version of T, ie Tω(X ) :=
⋃
{TS | S ⊆ω X}.

I Relation lifting: map R ⊆ X × Y to TR ⊆ TX × TY .

I T(R;S) = (TR); (TS) iff T preserves weak pullbacks.

I Lifted membership relation: T∈L ⊆ TL× TPL.

I Given Φ ∈ TPL, define λ(Φ) := {α ∈ TL | αT∈LΦ}.
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Vietoris via ∇

Fix a standard set functor T that preserves weak pullbacks.

Define the T -powerlocale of a frame L as

VTL := Fr〈TωL | (∇1), (∇2), (∇3)〉,

where the relations are as follows:

(∇1) ∇α ≤ ∇β (α T≤ β)

(∇3) ∇(T
∨

)Φ ≤
∨
{∇β | β T∈ Φ} (Φ ∈ TωPL)

(∇2′)
∧

γ∈Γ
∇γ ≤

∨
{∇β | βT≤γ, all γ ∈ Γ} (Γ ∈ PωTωL)
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Basic observations

I VTL is join-generated by the elements {∇α | α ∈ TL}.

I 1L =
∨
{a | a ∈ A} implies 1VTL =

∨
{∇α | α ∈ TA}.

I . . .

Proposition
VT generalizes Johnstone’s J: J = VP.
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Digression: (∇2′) vs (∇2)

(∇2′)
∧

γ∈Γ
∇γ ≤

∨
{∇β | βT≤γ, all γ ∈ Γ} (Γ ∈ PωTωL)

(∇2)
∧

γ∈Γ
∇γ ≤

∨
{∇(T

∧
)Ψ | Ψ ∈ SRD(Γ)} (Γ ∈ PωTωL)

Justification: consider the quasi-order T≤ on TL, and

Proposition
Let L be a frame and let Γ ∈ PωTL. Then for any α ∈ TL, TFAE:

(a) α T≤ γ for all γ ∈ Γ;

(b) α T≤ (T
∧

)Φ for some Φ ∈ SRD(Γ).

In particular, if Φ ∈ SRD(Γ) then (T
∧

)Φ T≤ γ for all γ ∈ Γ.
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Functorial properties

Proposition Let f : L → M be a frame homomorphism.
The map ∇ ◦ Tf : TL → VTM given by α 7→ ∇(Tf )α is compatible with
(∇1), (∇2) and (∇3).

Define VTf : VTL → VTM as unique homomorphism extending ∇ ◦ Tf .

Theorem
VT is a functor on the category Fr of frames.

Theorem
There is a natural transformation εT : VT → Id.
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Regularity

Fix a frame L.

I L carries a Heyting implication a → b :=
∨
{c | a ∧ c ≤ b},

and a Heyting negation ¬a = a → ⊥.

I Define a 0 b (a is well inside b) if ¬a ∨ b = 1

I Define ⇓a := {c ∈ L | c 0 a}.

I L is regular if a =
∨
⇓a, for all a in L.

Theorem
Let L be a frame. If L is regular, then so is VTL.
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Preservation of regularity

Key Lemma
Let L be a frame, and α, β ∈ TL. If α T(0) β

then ∇α 0 ∇β.

Proof of Theorem (from Key Lemma)
Take α ∈ TL. By regularity, idL =

∨
◦ ⇓, so idTL = T

∨
◦ T⇓.

Hence

∇α = ∇(T
∨

)(T⇓)α (obvious)

=
∨
{∇β | β T∈ (T⇓)(α)} (axiom ∇3)

=
∨
{∇β | β T0 α} (∈ ; ⇓ ⊆ 0)

≤
∨
{b ∈ VTL | b 0 ∇α} (Key Lemma)

But VTL is join-generated by {∇α | α ∈ TL}, and hence clearly regular.
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Proof of Key Lemma (if α T(0) β then ∇α 0 ∇β)

WLOG α ∈ TA for A ⊆ω L, and β = (Tf )α, some f : A → L so that
a 0 fa for each a ∈ A. Define h : PA → L by

h(B) :=
∧

({¬a | a ∈ B} ∪ {fa | a 6∈ B}) .
Then

1L =
∧
{¬a ∨ fa | a ∈ A} (definition of 0)

=
∨
{h(B) | B ∈ PA} (frame distributivity)

From 1L =
∨

X may derive 1VTL =
∨
{∇ξ | ξ ∈ TX}, and so:

1VTL =
∨
{∇Th(Φ) | Φ ∈ TPA}

=
∨
{∇Th(Φ) | (α, Φ) 6∈ T6∈} ∨

∨
{∇Th(Φ) | (α, Φ) ∈ T6∈}

≤ ¬∇α ∨ ∇(Tf )α

In other words: ∇α 0 ∇(Tf )α.
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Preservation of compactness

A frame L is compact if every S ⊆ L with 1L =
∨

S has a finite subset
S0 ⊆ω S with 1L =

∨
S0.

Theorem
Assume that T restricts to finite sets, and let L be a regular frame.
If L is compact, then so is VTL.
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I Johnstone’s pointfree Vietoris construction J can be generalized

I to a functor VT : Fr → Fr, indexed by T : Set → Set,
(where T preserves weak pullbacks).

I in the sense that J = VP

I The construction VT preserves the following properties:

I regularity

I regularity + compactness (provided T retricts to finite sets)

I zero-dimensionality

I . . .
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Ongoing/Future work

I Does VT preserve compactness (provided T retricts to finite sets)?

I Is there a natural transformation VP → VT?

I

KRFr KHaus
j

S

Y
A

R
VT

	
CT

Define CT : KHaus → KHaus as CT := S ◦ VT ◦ A.

Can CT be obtained concretely? By Chu lifting?

I What about functors that do not preserve weak pullbacks?

Santocanale & V. introduce ∇ for monotone neighborhood functor.

I Can ∇-approach be extended to formal topology?

I Describe final coalgebras over KHaus using geometric ∇-logic.
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