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ON FUNCTIONALS OF A DENSITY

E. NADARAYA AND G. SOKHADZE

Abstract. A probability density functional (nonlinear and unboun-
ded, generally speaking) is considered. The consistency and asymp-
totic normality conditions are established for the plug-in-estimator.
A convergence order estimator is obtained.
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1. INTRODUCTION

Problems of probability density estimation are the subject of investiga-
tion of many scientists. Interesting results were obtained for various classes
of functionals. Both the bounded functional estimators ( [1-5]) and the un-
bounded have been studied (in particular, Fisher information and Shannon
entropy integral functional [6-8]).

In [9], L. Goldstein and K. Messer analyzed the general probability den-
sity functional and the regression function functionals. General estimation
results were obtained. An attempt of a general approach was also made
in [10] for the Gasser—Miiller regression function.

The present paper deals with the case, where the functional is of a general
form. In particular, it may be nonlinear, or unbounded. In this case a class
of functionals is identified for which a plug-in-estimator is valid and the
consistency and asymptotic normality of the estimator is shown.

Let X be a random variable with an unknown distribution density f(x).
Let X1, X5,...,X, be a sample of independent copies of X. Further, let
M be a functional defined on a subspace £ C La(R) having a second order
derivative. Assume that f € £ and hence we believe that MM f exists. Our
aim is to study the problem of consistence of the estimator 91f with the
help of a plug-in-estimator, Dﬁﬁ“ where ﬁ is an estimator of f.
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In order to estimate f and its derivatives we use the Rosenblatt—Parzen
probability density kernel estimators (see [11-13]) having the form

F () = — En:K<j>(x;7Xi),j:o71,...7m, (1)

T
nhit

i=1
where h,, a sequence of vanishing positive numbers, K (z) is a function with
density properties.

The stated problem considers the case including both bounded functional
estimators (integral or other type), information and entropy functional.

2. NOTATION AND CONDITIONS

Here we introduce the notation and some conditions that will be needed
in the sequel. Let X be a random variable with a probability distribution
density f(x). Suppose that the following conditions hold:

(f1) f(x) has continuous derivatives of the m-th order inclusively and
for a Cy > 0, we have

sup | £ ()] < Cr<oo, i=0,1,...,m;
rzeR
(f2) a strictly increasing continuous function H(z), exists such that

1
P Fy) < @

Consider a real-valued function K(z) > 0 and assume that the following
conditions are satisfied:

(k1) the support of the function K (x) is compact;
(k2) | K(z)de=1;
(k3) }((X()x) has continuous derivatives up to the m-th order inclusively.
In particular, these conditions imply that for Cx > 0, we have
KO (2)| < Cx <00, i=0,1,...,m.

For the sequences h,, we assume the condition

(h) hn, n=1,2,..., is a sequence of positive monotonically vanishing
numbers, such that
clogn
hy,, > g for ¢> 0.

It is known (see [14]) that under the conditions (f1), (£2), (k1)—(k3)
and (h), we have

sup|ﬁ1(:r) *Eﬁ(!ﬂ” _ O<\/| log h.,| vloglogn> 3)

r€R nhn
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with probability 1.

For the functional 9 we assume the following. Let W, = W,,(R) be
a Sobolev space of functions from Ly (R) with continuous derivatives up to
the m-th order, inclusively, with the norm

gl = §j/mwum¢n
§=0

—00
In the space W,,, we have a scalar product

m

<%mm=§j/¢WMMWMw
7=0_"%

We consider the functional 91 having the following properties:

(0t1) the functional M is defined on the subspace £ C W,,;
(9912) there exists a Mf;

(9913) there exists functionals My, k = 0,1,..., and a sequence s — 00,
such that

(i) the domain of definition of the functional My is L, =

W ([—sk; sk]) for every k = 1,2,..., Ly and is canonically

viewed as a subspace of L;

(i) fn € Ly, for every k =1,2,...;

(iii) for any g € £, Mg — My as k — oo;

(iv) the functional 9y is smooth in the sense that there exists a
derivative up to the second order, inclusively: 9} is a linear
functional on £y and 9 is a bilinear functional on £; which
satisfy the following inequalities

19 gll < C - 55 \ll® - |9ll2ms 9 € Lhy @ >0, <0, i=1,2,

where ||g|| denotes a uniform norm of the element g, and ||g|gm
is a norm in L.

Denote f,(z) = EﬁL(z) We have the equality

fu(2) = Efalz) =

n

nin;/K(mh;t>f(t)dt /K(u)f(a:fuhn)du.

— 00

This implies that f,(x) — f(x) converges almost everywhere z € R. It
also implies the convergence of

[f — M f,| — 0 as. as n — oo. (4)
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It should be noted here that

[0 — D fo| < F — DMy, fo| + (D, Fr — DN, - (5)
Further, for a sufficiently large s,,, we have
|9ﬁf - mnfn‘ < |9ﬁf - mnﬂ =+ |9nnf - mnfn‘- (6)

It follows from the condition (M13), (iii) that | f —M,, f| — 0 as s, — oo.
The same condition together with (4) imply that |9, f — M, f.| — 0 as
$p — o00. Thus in representation (5) the main point is to estimate the
second summand in the right-hand side.

3. REMAINDER ESTIMATION

Consider the difference Sﬁnfn — M., frn and with the help of the condition
(M3) (iv) write it as follows:

mn]?n - mnfn - Sn(hn) + an (7)

where Sy, (hy,) is the result how the derivative of the functional (here a linear
functional) M, acts on f, — fr. In (7),

Ry = O (fn = fa)llyn)- (8)

Estimate R,. It follows from (3) that under the condition
loglogn
nhimTt

— 0, n— o0,

we have

—Cy < falz) < Cy.
Therefore we may assume that ]?n € L, and apply the condition (9t3),
(iv). Hence

[Ral < Cspl F 11 e = foll - (9)
Expression (9) according to conditions (f1), (£2) results in
[Rul < C3H (50)° | fo = Full -
Denote
sl (sn)” = d(sn), | fa = fallsy = r(n).

We have

|R,| < Cd(sp)r(n). (10)

Here d(x) is a strictly increasing function. In order to estimate r(n), we
apply a technique used for a similar problem in [5].

Let
mznmzl{;KC;fﬁ—nw}




ON FUNCTIONALS OF A DENSITY 91

Then

n n

v =2 L R(5) - i ) = ) - o)

i=1 i=1

S|

Therefore,
n 2
o= | S
i=1

Estimate the function

gi = gi(x) = ! K(x;nXi>

nh,,
through the norm || - ||, for every ¢ = 1,...,n. We have
U T N
2 i
ot =Yz [ (kO (5)) o=
J=0"" o, N "
1 i 1 7 N — X; 2 x—X;
:ﬁzh2j+l / (K(J)< h )) d h <
j=0 e n n
m oo
1 KO ()2 d
n2h2m+1 Z ( (u)) U
n J=0_"
Hence
1 def
gillm < iy 1K | = An. (12)
nin

By virtue of (k3) and (k4), ||K||,, is finite. From (12), we have
Yillm < lgillm + Ellgillm < 245. (13)

In order to estimate r(n), we apply McDiarmid’s inequality, which will
be stated here for convenience.

McDiarmid’s inequality. Let L(yi,...,yx) be a real function such that
for each ¢ = 1,...,m and some c¢;, the supremum in y1,...,yx,y, of the
difference

’L(ylv o Yi—1, Y Yit1y ey yk) - L(ylv e Yi—1,Y Yig 1, - - 7yk) S C;.
Then if Y7,...,Y) are independent random variables taking values in the
domain of the function L(y,...,yx), then for every t > 0,

2¢2

k.
2
Z,

P{|L(Y1,...,Yk)—EL(Yl,...,Yk)] Zt} <2
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We apply McDiarmid’s inequality to the expression

L(Yy,...,Y,)

and ¢; = 44, for i = 1,...,n. For any t > 0, taking into consideration
(13), we have

n
ol
=1

Substituting

t nh2m+1

‘zt}sze IKTEL (14)
m

2|| K ||mv/logn
V/nhEm !
n (14) and applying the Borel-Cantelli lemma, we have
+ 0 _ Vlogn
/ h2m+1

t=

(15)

with probabihty 1.

n
Estimate now || 3 Y;||2,. Towards this end, we use Jensen’s inequality

i=1

m>2§EHiYi 2 =Zi 7(n‘j><x>>2dxs

Eh
=1

IN
31\3"_'
]z
g 3
8 ™
—
Z
_L_'»—l
=
8
=
ks
N—
=
&
——
=%
=
A\

| INA
2l
H- I
VRENE
MS p—N—
|
g —3
&
7~ N
=
—~
>
~—
N——
(V)
jsW
K
—
Il

i=1 j=0
:WZZ/ /(K(”)Q( 5 )f(y) dy dx <
s i "
C
< ozt K (16)

From (11), (15) and (16) it follows that almost everywhere we have

r(n) = O(%).
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Then the following theorem is true.

Theorem 1. If the conditions (f1), (£2), (k1)-(k3), (h) and (M1)-
(M3) are satisfied, then in representation (14) for the remainder we have

d(sn)logn
R, = o(inh%mﬂ ) (17)
4. CONSISTENCY
Let € > 0 be a fixed number. Choose a sequence h,, such that
logn
YSTEEY — 0 as n — oo. (18)
We select s, as a solution of the equation
1
ogn ¢ (19)

nhy™ o d(sn)’
where
d(z) = 2°HP (x).
The function y = d(x) for > 0 is continuous, strictly increasing and tak-

ing all values in the interval (0;00). Therefore equation (19) has a solution
with respect to s,. Besides, s,, — oo, as n — oo. Consequently,

|R,| < € for a sufficiently large n.
Now we estimate the main summand Sy, (h,) in the equality

Let
.IZ—XZ' N 1
= I

Then Sy, (hy,) can be represented as a sum of independent random variables

Kin(z) = K( ) and Z;(hy) : M Kin-

n

Sn(hn) = % Z {Zi(hn) - EZl(hn)}

Let [—k, k] be the smallest interval containing the support of K (x) (such
an interval exists, what follows from (k1). Note that for a sufficiently large
n, we have s, > k, and therefore Z;(h,) = 0 for s,, > k. Taking this into
consideration together with the condition (M3), (iv), we write

1 C XN 12
()| < O H W) - ..
1Z(ha)| < O HO (1) K( " ) i (20)
Hence
mo X
a WA —-m
Zitha)| < N HPR) S ey [ KO (T do < B

j=0""
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for a sufficiently large n and some B.
Apply Hoeffding’s inequality.

Hoeffding’s inequality. Let Xi,...,X, be independent random vari-
ables. Assume that the X; are almost surely bounded

2n2t?
>t <2expd ——— o\
> (bi —a;)?

=1

Then

1 & 1 &
P{’n;Xi—n;EX,»

This inequality results in

27 2m
P{|Sn(ha)] > 1} < 26Xp{ - m;gg }
Take
,_ 2BVlogn
Vb
We have

2B+/logn
— = A K — .
p{|5n(hn) > N } < 2exp{ —2logn}

By virtue of the Borel-Cantelli lemma, we have

logn
Sn(hy) =0 —
)=o)
with probability 1.

Note that the condition
logn
nh2m+1

leads to the convergence of

—0 as n—>

logn
nh2m

— 0 as n — oo.

Therefore S, (h,) — 0, as n — oo.
Consequently, the following theorem is true.

Theorem 2. Let the conditions (f1), (£2), (k1)—(k3), (h) and (M1)-
(M3) be satisfied. As the equivalence of positive numbers h,, monotonically
vanishes, therefore

logn
W — 0 as n — oo.

If for every n, s, there is a solution of equation (19), we have

I(fassn) = I(f) — 0
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with probability 1.

5. CENTRAL LiMIT THEOREM

Remember the following representation:

If
1

Zi(hy) N

mgfzna

~

95

then Sy, (hy,) = M, (fn)(fr,— fn) can be represented as a sum of independent

random variables
1 n
Sy (hn) = - > {Zi(hn) — EZi(hn)}.
i=1

Find the moments of Z;(h,,).
We have

BZi(hn) = [ 9,(5a(4)) 5 K (52) Fu) dy =

- / N,y + 1)) K () () dy.

As n — oo, hy, | 0. Therefore
EZ;(h,) — EM'(f(X))K.
Now let 0 < j,v < n. Consider the value
1w (y) = EZj(ha) Zy(hn) =

om0 g K (1) ) o (5

which for n — oo yields
EZ2(hy) — E[M(f(X))K]".
Absolutely similarly, we can show that for n — oo, we have

BZ}(hn) — B[ (f(X)K]"

(22)
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After calculations we can see that under the defined conditions for n — oo,
h, — 0, we ontain

nVar(S, (hy)) = Var(Z;(hy,)) — Var (0 (f(X))K) def o?(f) < oo
and
EZ}h,) — B[ (f(X))K]* < co.

By Lyapunov’s central limit theorem, we obtain the following result.

Theorem 3. Let the conditions (f1), (£2), (k1)—(k3), (h), (M1)-
(M3) be satisfied and the sequence of positive numbers h,, monotonically
vanish, so that

logn
W —0 as n —> o

for every m, sy, there is a solution of equation (19). Then
VI, fo = My fr} =5 N(0,02(f)),
6. EXAMPLE

Consider the functional
o0

m%i/%@ﬂ@Mﬂ@wwﬁm@»m-

— 00

In this case, instead of the functional My, k£ = 0,1,..., we have integral

functionals
Sk

mw:/¢@M@J@%w¢W@WW

e
Under the appropriate condition imposed on the function ¢, we can ob-
tain all results of [15], in particular, the estimators for Fisher’s information
functional and Shannon entropies.
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