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ON FUNCTIONALS OF A DENSITY

E. NADARAYA AND G. SOKHADZE

Abstract. A probability density functional (nonlinear and unboun-
ded, generally speaking) is considered. The consistency and asymp-
totic normality conditions are established for the plug-in-estimator.
A convergence order estimator is obtained.

ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÀËÁÀÈÖÒÉ ÂÀÍÀßÉËÄÁÉÓ ÓÉÌÊÅÒÉÅÉÓ
ÆÏÂÀÃÉ ×ÖÍØÝÉÏÍÀËÉÓ ÛÄ×ÀÓÄÁÉÓ ÓÀÊÉÈáÉ. ÌÉÙÄÁÖËÉÀ
ÞÀËÃÄÁÖËÄÁÉÓÀ ÃÀ ÀÓÉÌÐÔÏÔÖÒÀÃ ÍÏÒÌÀËÖÒÏÁÉÓ ÐÉÒÏÁÄ-
ÁÉ, Ä. ß. “ÜÀÓÌÉÓ” ÔÉÐÉÓ ÛÄ×ÀÓÄÁÉÓÈÅÉÓ. ÃÀÃÂÄÍÉËÉÀ ÊÒÄÁÀ-
ÃÏÁÉÓ ÒÉÂÉ.

1. Introduction

Problems of probability density estimation are the subject of investiga-
tion of many scientists. Interesting results were obtained for various classes
of functionals. Both the bounded functional estimators ( [1–5]) and the un-
bounded have been studied (in particular, Fisher information and Shannon
entropy integral functional [6–8]).

In [9], L. Goldstein and K. Messer analyzed the general probability den-
sity functional and the regression function functionals. General estimation
results were obtained. An attempt of a general approach was also made
in [10] for the Gasser–Müller regression function.

The present paper deals with the case, where the functional is of a general
form. In particular, it may be nonlinear, or unbounded. In this case a class
of functionals is identified for which a plug-in-estimator is valid and the
consistency and asymptotic normality of the estimator is shown.

Let X be a random variable with an unknown distribution density f(x).
Let X1, X2, . . . , Xn be a sample of independent copies of X. Further, let
M be a functional defined on a subspace L ⊂ L2(R) having a second order
derivative. Assume that f ∈ L and hence we believe that Mf exists. Our
aim is to study the problem of consistence of the estimator Mf with the
help of a plug-in-estimator, Mf̂n, where f̂n is an estimator of f .
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In order to estimate f and its derivatives we use the Rosenblatt–Parzen
probability density kernel estimators (see [11–13]) having the form

f̂ (j)
n (x) =

1

nhj+1
n

n∑
i=1

K(j)
(x−Xi

hn

)
, j = 0, 1, . . . ,m, (1)

where hn a sequence of vanishing positive numbers, K(x) is a function with
density properties.

The stated problem considers the case including both bounded functional
estimators (integral or other type), information and entropy functional.

2. Notation and Conditions

Here we introduce the notation and some conditions that will be needed
in the sequel. Let X be a random variable with a probability distribution
density f(x). Suppose that the following conditions hold:
(f1) f(x) has continuous derivatives of the m-th order inclusively and

for a Cf > 0, we have

sup
x∈R

|f (i)(x)| ≤ Cf < ∞, i = 0, 1, . . . ,m;

(f2) a strictly increasing continuous function H(x), exists such that

sup
|y|≤x

1

f(y)
≤ H(x). (2)

Consider a real-valued function K(x) ≥ 0 and assume that the following
conditions are satisfied:
(k1) the support of the function K(x) is compact;
(k2)

∞∫
−∞

K(x) dx = 1;

(k3) K(x) has continuous derivatives up to the m-th order inclusively.
In particular, these conditions imply that for CK > 0, we have

|K(i)(x)| ≤ CK < ∞, i = 0, 1, . . . ,m.

For the sequences hn we assume the condition
(h) hn, n = 1, 2, . . . , is a sequence of positive monotonically vanishing

numbers, such that

hn ≥ c logn
n

for c > 0.

It is known (see [14]) that under the conditions (f1), (f2), (k1)–(k3)
and (h), we have

sup
x∈R

∣∣f̂n(x)− Ef̂n(x)
∣∣ = O

(√
| loghn| ∨ log logn√

nhn

)
(3)



ON FUNCTIONALS OF A DENSITY 89

with probability 1.
For the functional M we assume the following. Let Wm = Wm(R) be

a Sobolev space of functions from L2(R) with continuous derivatives up to
the m-th order, inclusively, with the norm

∥g∥m =

√√√√√ m∑
j=0

∞∫
−∞

|g(j)(x)|2 dx.

In the space Wm we have a scalar product

(g1, g2)m =
m∑
j=0

∞∫
−∞

g
(j)
1 (x)g

(j)
2 (x) dx.

We consider the functional M having the following properties:
(M1) the functional M is defined on the subspace L ⊂ Wm;
(M2) there exists a Mf ;
(M3) there exists functionals Mk, k = 0, 1, . . . , and a sequence sk → ∞,

such that
(i) the domain of definition of the functional Mk is Lk =

Wm([−sk; sk]) for every k = 1, 2, . . . , Lk and is canonically
viewed as a subspace of L;

(ii) f̂n ∈ Lk for every k = 1, 2, . . . ;
(iii) for any g ∈ L, Mkg → Mg as k → ∞;
(iv) the functional Mk is smooth in the sense that there exists a

derivative up to the second order, inclusively: M′
kis a linear

functional on Lk and M′′
k is a bilinear functional on Lk which

satisfy the following inequalities

∥M(i)
k g∥m ≤ C · skα · ∥g∥β · ∥g∥2km, g ∈ Lk, α ≥ 0, β ≤ 0, i = 1, 2,

where ∥g∥ denotes a uniform norm of the element g, and ∥g∥km
is a norm in Lk.

Denote fn(x) = Ef̂n(x). We have the equality

fn(x) = Ef̂n(x) =

=
1

nhn

n∑
i=1

∞∫
−∞

K
(x− t

hn

)
f(t) dt =

∞∫
−∞

K(u)f(x− uhn) du.

This implies that fn(x) → f(x) converges almost everywhere x ∈ R. It
also implies the convergence of

|Mf −Mfn| −→ 0 a.s. as n → ∞. (4)
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It should be noted here that
|Mf −Mnf̂n| ≤ |Mf −Mnfn|+ |Mnf̂n −Mnfn|. (5)

Further, for a sufficiently large sn, we have
|Mf −Mnfn| ≤ |Mf −Mnf |+ |Mnf −Mnfn|. (6)

It follows from the condition (M3), (iii) that |Mf−Mnf | → 0 as sn → ∞.
The same condition together with (4) imply that |Mnf − Mnfn| → 0 as
sn → ∞. Thus in representation (5) the main point is to estimate the
second summand in the right-hand side.

3. Remainder Estimation

Consider the difference Mnf̂n−Mnfn and with the help of the condition
(M3) (iv) write it as follows:

Mnf̂n −Mnfn = Sn(hn) +Rn, (7)
where Sn(hn) is the result how the derivative of the functional (here a linear
functional) Mn acts on f̂n − fn. In (7),

Rn = O
(
∥M′′

n(f̂n − fn)∥nm
)
. (8)

Estimate Rn. It follows from (3) that under the condition
log logn
nh2m+1

n

−→ 0, n → ∞,

we have
−Cf ≤ f̂n(x) ≤ Cf .

Therefore we may assume that f̂n ∈ Ln and apply the condition (M3),
(iv). Hence

|Rn| ≤ Csαn∥f∥β∥f̂n − fn∥2nm. (9)
Expression (9) according to conditions (f1), (f2) results in

|Rn| ≤ CsαnH(sn)
β∥f̂n − fn∥2nm.

Denote
sαnH(sn)

β
:= d(sn), ∥f̂n − fn∥2m := r(n).

We have
|Rn| ≤ Cd(sn)r(n). (10)

Here d(x) is a strictly increasing function. In order to estimate r(n), we
apply a technique used for a similar problem in [5].

Let
Yi = Yi(x) =

1

n

{
1

hn
K
(x−Xi

hn

)
− fn(x)

}
.
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Then
n∑

i=1

Yi(x) =
1

n

n∑
i=1

{
1

hn
K
(x−Xi

hn

)
− fn(x)

}
= f̂n(x)− fn(x).

Therefore,

rn(m) =
∥∥∥ n∑

i=1

Yi(x)
∥∥∥2
m
. (11)

Estimate the function

gi = gi(x) =
1

nhn
K
(x−Xi

hn

)
through the norm ∥ · ∥m for every i = 1, . . . , n. We have

∥gi∥2m =
m∑
j=0

1

n2

∞∫
−∞

(
1

hj+1
n

K(j)
(x−Xi

hn

))2

dx =

=
1

n2

m∑
j=0

1

h2j+1
n

∞∫
−∞

(
K(j)

(x−Xi

hn

))2

d
x−Xi

hn
≤

≤ 1

n2h2m+1
n

m∑
j=0

∞∫
−∞

(
K(j)(u)

)2
du.

Hence
∥gi∥m ≤ 1

nh
m+ 1

2
n

∥K∥m
def
= An. (12)

By virtue of (k3) and (k4), ∥K∥m is finite. From (12), we have

∥Yi∥m ≤ ∥gi∥m + E∥gi∥m ≤ 2An. (13)

In order to estimate r(n), we apply McDiarmid’s inequality, which will
be stated here for convenience.

McDiarmid’s inequality. Let L(y1, . . . , yk) be a real function such that
for each i = 1, . . . ,m and some ci, the supremum in y1, . . . , yk, y, of the
difference∣∣∣L(y1, . . . , yi−1, yi, yi+1, . . . , yk)− L(y1, . . . , yi−1, y, yi+1, . . . , yk)

∣∣∣ ≤ ci.

Then if Y1, . . . , Yk are independent random variables taking values in the
domain of the function L(y1, . . . , yk), then for every t > 0,

P
{∣∣L(Y1, . . . , Yk)− EL(Y1, . . . , Yk)

∣∣ ≥ t
}
≤ 2e

− 2t2

k∑
i=1

c2
i .
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We apply McDiarmid’s inequality to the expression

L(Y1, . . . , Yn) =
∥∥∥ n∑

i=1

Yi

∥∥∥
m

and ci = 4An, for i = 1, . . . , n. For any t > 0, taking into consideration
(13), we have

P

{∣∣∣∣∥∥∥ n∑
i=1

Yi

∥∥∥
m
− E

∥∥∥ n∑
i=1

Yi

∥∥∥
m

∣∣∣∣ ≥ t

}
≤ 2e

− t2nh2m+1
n

2∥K∥2m . (14)

Substituting

t =
2∥K∥m

√
logn√

nh2m+1
n

in (14) and applying the Borel–Cantelli lemma, we have∥∥∥ n∑
i=1

Yi

∥∥∥
m

= E
∥∥∥ n∑

i=1

Yi

∥∥∥
m
+O

( √
logn√

nh2m+1
n

)
(15)

with probability 1.
Estimate now ∥

n∑
i=1

Yi∥2m. Towards this end, we use Jensen’s inequality

(
E
∥∥∥ n∑

i=1

Yi

∥∥∥
m

)2

≤ E
∥∥∥ n∑

i=1

Yi

∥∥∥2
m

=
n∑

i=1

m∑
j=0

∞∫
−∞

(Y
(j)
i (x))2 dx ≤

≤ 1

n2

n∑
i=1

m∑
j=0

∞∫
−∞

E

{
1

hj+1
n

K(j)
(x−Xi

hn

)
− f (j)

n (x)

}2

dx ≤

≤ 1

n2

n∑
i=1

m∑
j=0

{ ∞∫
−∞

E

(
1

hj+1
n

K(j)
(x−Xi

hn

))2

dx

}2

≤

≤ 1

n2h2m+2
n

n∑
i=1

m∑
j=0

{ ∞∫
−∞

E

(
K(j)

(x−Xi

hn

))2

dx

}
=

=
1

n2h2m+2
n

n∑
i=1

m∑
j=0

∞∫
−∞

∞∫
−∞

(K(j))2
(x− y

hn

)
f(y) dy dx ≤

≤ Cf

nh2m+1
n

∥K∥2m. (16)

From (11), (15) and (16) it follows that almost everywhere we have

r(n) = O
( logn
nh2m+1

n

)
.
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Then the following theorem is true.

Theorem 1. If the conditions (f1), (f2), (k1)–(k3), (h) and (M1)–
(M3) are satisfied, then in representation (14) for the remainder we have

Rn = O
(d(sn) logn

nh2m+1
n

)
. (17)

4. Consistency

Let ε > 0 be a fixed number. Choose a sequence hn such that
logn

nh2m+1
n

−→ 0 as n → ∞. (18)

We select sn as a solution of the equation
logn

nh2m+1
n

=
ε

d(sn)
, (19)

where
d(x) = xαHβ(x).

The function y = d(x) for x > 0 is continuous, strictly increasing and tak-
ing all values in the interval (0;∞). Therefore equation (19) has a solution
with respect to sn. Besides, sn → ∞, as n → ∞. Consequently,

|Rn| < ε for a sufficiently large n.

Now we estimate the main summand Sn(hn) in the equality

Mnf̂n −Mnfn = Sn(hn) +Rn.

Let
Kin(x) := K

(x−Xi

hn

)
and Zi(hn) :=

1

hn
M′

nKin.

Then Sn(hn) can be represented as a sum of independent random variables

Sn(hn) =
1

n

n∑
i=1

{
Zi(hn)− EZi(hn)

}
.

Let [−k, k] be the smallest interval containing the support of K(x) (such
an interval exists, what follows from (k1). Note that for a sufficiently large
n, we have sn > k, and therefore Zi(hn) = 0 for sn > k. Taking this into
consideration together with the condition (M3), (iv), we write

|Zi(hn)| ≤ CkαHβ(k)
∥∥∥ 1

hn
K
( · −Xi

hn

)∥∥∥2
m
. (20)

Hence

|Zi(hn)| ≤ NkαHβ(k)
m∑
j=0

1

hj+1
n

k∫
−k

K(j)
(x−Xi

hn

)
dx ≤ Bh−m

n
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for a sufficiently large n and some B.
Apply Hoeffding’s inequality.

Hoeffding’s inequality. Let X1, . . . , Xn be independent random vari-
ables. Assume that the Xi are almost surely bounded

P
{
ai ≤ Xi ≤ bi

}
= 1.

Then

P

{∣∣∣ 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

EXi

∣∣∣ ≥ t

}
≤ 2 exp

{
− 2n2t2

n∑
i=1

(bi − ai)2

}
.

This inequality results in

P
{
|Sn(hn)| > t

}
≤ 2 exp

{
− nt2h2m

n

2B2

}
.

Take
t =

2B
√

logn√
nhm

n

.

We have
P

{
|Sn(hn)| >

2B
√

logn√
nhm

n

}
≤ 2 exp

{
− 2 logn

}
.

By virtue of the Borel–Cantelli lemma, we have

Sn(hn) = O

(√
logn
nh2m

n

)
with probability 1.

Note that the condition
logn

nh2m+1
n

−→ 0 as n → ∞

leads to the convergence of
logn
nh2m

n

−→ 0 as n → ∞.

Therefore Sn(hn) → 0, as n → ∞.
Consequently, the following theorem is true.

Theorem 2. Let the conditions (f1), (f2), (k1)–(k3), (h) and (M1)–
(M3) be satisfied. As the equivalence of positive numbers hn monotonically
vanishes, therefore

logn
nh2m+1

n

−→ 0 as n → ∞.

If for every n, sn there is a solution of equation (19), we have

I(f̂n, sn)− I(f) −→ 0
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with probability 1.

5. Central Limit Theorem

Remember the following representation:

Mnf̂n −Mnfn = M′
n(fn)(f̂n − fn) +Rn. (21)

If
Zi(hn)=

1

hn
M′

nKin,

then Sn(hn) = M′
n(fn)(f̂n−fn) can be represented as a sum of independent

random variables

Sn(hn) =
1

n

n∑
i=1

{
Zi(hn)− EZi(hn)

}
. (22)

Find the moments of Zi(hn).
We have

EZi(hn) =

∞∫
−∞

M′
n

(
fn( · )

) 1

hn
K
( · − y

hn

)
f(y) dy =

=

∞∫
−∞

M′
n

(
fn(y + ·hn)

)
K( · )f(y) dy.

As n → ∞, hn ↓ 0. Therefore

EZi(hn) −→ EM′(f(X))K.

Now let 0 ≤ j, v ≤ n. Consider the value

µj,v(y) = EZj(hn)Zv(hn) =

=

∞∫
−∞

M′
n(fn

(
· )
) 1

hn
K
( · − y

hn

)
M′

n

(
fn( · )

) 1

hn
K
( · − y

hn

)
f(y) dy =

=

∞∫
−∞

M′
n

(
fn(y + ·hn)

)
K( · )M′

n

(
fn(y + ·hn)

)
K( · )f(y) dy

which for n → ∞ yields

EZ2
i (hn) −→ E

[
M′(f(X))K

]2
.

Absolutely similarly, we can show that for n → ∞, we have

EZ4
i (hn) −→ E

[
M′(f(X))K

]4
.
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After calculations we can see that under the defined conditions for n → ∞,
hn → 0, we ontain

nVar(Sn(hn)) = Var(Zi(hn)) −→ Var
(
M′(f(X))K

) def
= σ2(f) < ∞

and
EZ4

i (hn) −→ E[M′(f(X))K]4 < ∞.

By Lyapunov’s central limit theorem, we obtain the following result.

Theorem 3. Let the conditions (f1), (f2), (k1)–(k3), (h), (M1)–
(M3) be satisfied and the sequence of positive numbers hn monotonically
vanish, so that

logn
nh2m+1

n

−→ 0 as n → ∞

for every n, sn, there is a solution of equation (19). Then
√
n
{
IMnf̂n −Mnfn

} d−→ N(0, σ2(f)).

6. Example

Consider the functional

Mg =

∞∫
−∞

φ
(
x, g(x), g′(x), . . . , g(n)(x)

)
dx.

In this case, instead of the functional Mk, k = 0, 1, . . . , we have integral
functionals

Mkg =

sk∫
−sk

φ
(
x, g(x), g′(x), . . . , g(n)(x)

)
dx.

Under the appropriate condition imposed on the function φ, we can ob-
tain all results of [15], in particular, the estimators for Fisher’s information
functional and Shannon entropies.
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