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OSCILLATIONS AND STABILITY OF SHELLS OF
REVOLUTION, CLOSE BY THEIR FORM TO

CYLINDRICAL ONES, WITH ELASTIC FILLER, UNDER
THE ACTION OF NORMAL PRESSURE AND

TEMPERATURE

S. KUKUDZHANOV

Abstract. The paper studies natural oscillations of closed shells
of revolution which by their form are close to cylindrical ones,
with elastic filler, under the action of heat and external pres-
sure. The shell is assumed to be thin and elastic. Temperature
is uniformly distributed in a shell body. The filler is simulated
by an elastic base. The shells of positive and negative Gauss-
ian curvature are considered. Formulas for determination least
frequencies and forms of wave formation depending on temper-
ature, pressure, rigidity of an elastic filler, sign of Gaussian cur-
vature and amplitude of shell deviation from cylindrical form,
are given. The problem of shell stability is also investigated.

ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÓÀÊÖÈÀÒÉ ÒáÄÅÄÁÉ ÃÀ ÌÃÂÒÀÃÏÁÀ
ÁÒÖÍÅÉÈÉ, ÝÉËÉÍÃÒÖËÈÀÍ ÌÀáËÏÁÄËÉ, ÃÒÄÊÀÃ ÛÄÌÀÅÓÄ-
ÁËÉÀÍÉ ÁÒÖÍÅÉÈÉ ÂÀÒÓÄÁÉÓÀ, ÒÏÌËÄÁÉÝ ÉÌÚÏ×ÄÁÉÀÍ ÍÏÒÌÀ-
ËÖÒÉ ÂÀÒÄÂÀÍÉ ßÍÄÅÉÓÀ ÃÀ ÔÄÌÐÄÒÀÔÖÒÉÓ ÌÏØÌÄÃÄÁÉÓ ØÅÄÛ,
ÂÀÍáÉËÖËÉÀ ÒÏÂÏÒÝ ÃÀÃÄÁÉÈÉ, ÀÓÄÅÄ ÖÀÒÚÏ×ÉÈÉ ÂÀÖÓÉÓ
ÓÉÌÒÖÃÉÓ ÌØÏÍÄ ÂÀÒÓÄÁÉ, ÌÏÚÅÀÍÉËÉÀ ×ÏÒÌÖËÄÁÉ ÖÌÝÉÒÄÓÉ
ÓÉáÛÉÒÉÓ ÃÀ ÊÒÉÔÉÊÖËÉ ÃÀÔÅÉÒÈÅÉÓ ÂÀÍÓÀÓÀÆÙÅÒÀÅÀÃ.

In the present work we consider natural oscillations and stability of closed
shells of revolution which by their form are close to cylindrical ones, with
elastic filler, under the action of heat and external pressure. We consider a
light filler for which the effect of tangential stresses on the contact surface
and inertia forces are neglected. The shell is assumed to be thin and elastic.
Temperature is uniformly distributed in the shell body. An elastic filler is
simulated by Winkler’s base, its extension caused by heating is not taken
into account. We investigate both the shells of middle length whose form of

2010 Mathematics Subject Classification. 35J60.
Key words and phrases. Oscillations, stability, the least frequency, shell, gaussian

curvature, critical load, elastic filler.



64 S. KUKUDZHANOV

midsurface generatrix is described by the parabolic function. We consider
shells of positive and negative Gaussian curvature. The boundary conditions
on the end-faces correspond to a free support admitting a certain radial shift
in the initial state.

Formulas and universal curves of dependence of the least frequency and
form of wave formation on external pressure, temperature, rigidity of elas-
tic filler, as well as on amplitude of shell deviation from the cylinder, are
obtained. It is shown that temperature in the presence of preliminary stress
and elastic filler may affect lowest frequencies and forms of wave formation
differently, depending on the sign of Gaussian curvature of the shell. The
problem on the stability is also investigated, and formulas for determination
of critical load are presented.

1. We consider the shell whose middle surface is formed by the rotation
of a sufficiently smooth curve around the x-axis of rectangular system of
coordinates x, y, z with origin in the middle segment of the axis of revolution.
The cross-section radius of shell’s middle surface is defined by the equality

R = r + δ0 F (ξ), ξ = z/r, (1.1)

where F (ξ) is a positive function given on the interval (−ℓ/r, ℓ/r) so that
F (±ℓ/r) = 0, maxF (ξ) = 1, |F ′(ξ)| ≤ 1, L = 2ℓ is the shell length; r is
radius of the end-face section; δ0 is small parameter characterizing maximal
deviation from cylindrical form. For δ0 > 0, the midsurface generatrix is
convex, while for δ0 < 0, it is concave. We consider shells of middle length
[1] and assume that

(δ0/r)
2, (δ0/ℓ)

2 ≪ 1. (1.2)
The midsurface equation represented parametrically has the form

x = R(ξ) cosφ, y = R(ξ) sinφ, z = ξ r,

where φ is the angular coordinate. Thus we find that coefficients of the first
quadratic form for the middle surface are

A2 = r2 + δ20(F
′)2, B2 = R2(ξ).

Relying on the above assumptions, the second term in A2 may be ne-
glected. Consequently,

A ≈ r, B = R(ξ). (1.3)
The principle curvature radii have the form

k1 = 1/R1 = −R′′/r2, k2 = 1/R2 = 1/R(ξ). (1.4)

In the capacity of basic oscillation equations we take those corresponding
to the theory of shallow shells [2]. For shells of middle length, the forms
of oscillations corresponding to lowest frequencies are slightly varying in
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longitudinal direction as compared with circumferential one, therefore the
relation

∂2f

∂ξ2
≪ ∂2f

∂φ2
(f = w,ψ), (1.5)

is valid, where w and ψ are the functions of radial displacement and stress,
respectively. As a result, the system of equations for the shells under consid-
eration reduces to the following resolving equation (according to the above-
adopted assumption, temperature terms are equal to zero [3]):

ε
∂8w

∂φ8
+
∂4w

∂ξ4
+

∂2

∂ξ2

[(
− R′′

r

)
∂2w

∂φ2

]
+

+

(
− R′′

r

)
∂4w

∂ξ2 ∂φ2
+

(
− R′′

r

)2
∂4w

∂φ4
+

+
∂4

∂φ4

[
∂

∂ξ

(
t01
∂w

∂ξ

)
+
∂

∂φ

(
t02
∂w

∂φ

)
+
∂

∂ξ

(
s0
∂w

∂φ

)
+
∂

∂φ

(
s0
∂w

∂ξ

)]
+

+ γ
∂4w

∂φ4
+
ρr2

E

∂2

∂t2

(
∂4w

∂φ4

)
= 0, (1.6)

ε = h2/12 r2(1− ν2), t0i = T 0
i /Eh, s

0 = S0/Eh (i = 1, 2), γ = βr2/Eh,

where T 0
1 and T 0

2 are meridional and circumferential compressive forces in
the initial state; S0 is shearing stress in the initial state; F and ν are,
respectively, elastic module and Poisson coefficient; h is the shell thickness;
ρ is material density of the shell; β is the “bed” coefficient of an elastic filler
(characterizing elastic rigidity of a filler); t is time.

2. We investigate a concrete shell whose midsurface generatrix is defined
by the parabolic function

F (ξ) = 1− ξ2(r/ℓ)2. (2.1)
Initial state of the shell is assumed to be momentless. On the basis of the
corresponding solution, taking into account the filler reaction and inequality
(1.2), we obtain the following approximate expressions:

T 0
1 ≈ qδ0

[
1− ξ2(r/ℓ)2

]
, T 0

2 ≈ r(q − β0w0), S0 = 0, (2.2)
where q is external pressure, w0, β0 is the deflection and the ”bed” coefficient
of the filler in the initial state. A full shift in the initial state is equal to

w0 = w0q − w0T , (2.3)
where w0q and w0T are deflections caused by pressure q and temperature T ,
respectively. They are expressed through the stresses σ0

φq
and σ0

φ
T

by the
formulas

w0q = σ0
φq
(1− ν2)R/E, w0T =

[
αT −

σφ
T
(1− v2)

E

]
R, (2.4)
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where σ0
φq

is a circumferential normal stress in the shell due to pressure and
σ0
φ

T
is that caused by temperature and by filler constraint; T is temperature

and α is coefficient of linear extension of the shell material.
Substituting (2.4) into (2.3) and (2.2), we get

T 0
2 ≈ r

g
(q + αrβ0T ), g = 1 + (1− ν2)

β0r

Eh
,

T 0
2 = σ0

φh, σ0
φ = σ0

φq
+ σ0

φ
T
.

(2.5)

In addition, taking into account the fact that R is close to r, analogously
to the above-said, we assume in (2.5) that R ≈ r. Bearing in mind that[

1− ξ2(r/ℓ)2
]∂2w
∂ξ2

≪ ∂2w

∂φ2
,

in view of inequalities (1.2) and (2.5), it is not difficult to show that
∂

∂ξ

(
T 0
1

∂w

∂ξ

)
≪ T 0

2

∂2w

∂φ2
. (2.5′)

Bearing in mind (2.5), (2.5′), we find that equation (1.6) takes the form

ε
∂8w

∂φ8
+
∂4w

∂ξ4
+ 4δ

∂4w

∂ξ2 ∂φ2
+

(
4 δ2 +

βr2

Eh

)
∂4w

∂φ4
+

+

(
qr2

Eh
+
αr2Tβ0
Eh

)
g−1 ∂

6w

∂φ6
+
βr2

E

∂

∂t2

(
∂4w

∂φ4

)
= 0, (2.6)

δ = δ0r/ℓ
2.

We consider harmonic oscillations. The above boundary conditions and
equation (2.6) are satisfied by the solution

w = Amn cosλmξ sinnφ cosωt, λm =
mπr

2ℓ
(2.7)

(m = 2i+ 1; i = 0, 1, 2, . . . ).

Substituting (2.7) into equation (2.6), we obtain the equality to find eigen
oscillations

ω2 =
E

ρr2
[
εn4 + λ4mn

−4+

+ 4δλ2mn
−2 + 4(δ2 + γ/4)− (q + γ0αT )g

−1n2
]
, (2.8)

q = qr/Eh, γ0 = β0r
2/Eh, γ = βr2/Eh (2.9)

allowing one to determine eigenfrequencies.
It is easily seen that for δ > 0, to the least frequency there corresponds

the value m = 1. It can also be shown that this condition holds for δ < 0, in
view of inequality (1.2) and the fact that ω2 > 0. Therefore we consider first
the forms of oscillations under which along the full shell length there arises
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only one half-wave (m = 1), whereas in circumferential direction there arise
n waves.

To represent (2.8) for m = 1 in dimensionless form, we introduce dimen-
sionless values N,Q and notation

N = n2/n20, Q = q/q0∗, δ∗ = δε
−1/2
∗ , δ

2

k = δ2∗ + δ∗/4, γ∗ = γε−1
∗ ,

ε∗ = (1− ν2)−1/2 h

r

( r
L

)2

, n2
0 = λ1ε

−1/4, λ1 = πr/L,

q0∗ = 0, 855(1− ν2)−1/4
(h
r

)3/2 r

L
,

(2.10)

ω2
0 = 2λ21ε

1/2E/ρr2, K = T/q0∗ , (2.10′)

where ω0 and q0∗ are, respectively, the least frequency and critical pressure
of a cylindrical midlength shell [1,5]. As a result, (2.8) can be written in
dimensionless form

ω2(N)/ω2
0=0, 5

(
N2+N−2+2, 37 δ∗N

−1+1, 404 δ
2

∗ −1, 755QN
)
, (2.11)

Q = Q+ γ0αK. (2.11′)

Consider now the case for Q = 0. Then

ω2(N)/ω2
0 = 0, 5

(
N2 +N−2 + 2, 37 δ∗N

−1 + 1, 404 δ
2

∗
)
. (2.12)

It is easy to show that the least frequency in this case is defined from the
condition ω2(N)′ = 0. Thus we get

N4 + dN + e = 0, d = −1, 185 δ∗, e = −1. (2.13)

The roots of equation (2.13) coincide with those of the two quadratic equa-
tions

N2 +
a1,2
2

N +

(
y1 −

d

a1,2

)
= 0, a1,2 = ±

√
8 y1.

Consequently, the roots of equation (2.13) have the form

N1,2 = −
√
y1
2

±

√
d√
8 y1

− y1
2
, N3,4 =

√
y1
2

±

√
− d√

8 y1
− y1

2
, (2.14)

where y1 is any root of the cubic equation y3 + 3py + 2q = 0, p = 1/3,
q = −1, 1852 δ2∗/16. Since the discriminant of that equation is D = q2+p3 >
0, therefore the equation has only one real root

y1 = u+ u2, u1,2 =
3

√
−q ±

√
q2 + p3 .
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Thus we obtain

y1 =
1√
3

[(√
1 + 0, 208 δ4∗ + 0, 456 δ2∗

)1/3

−

−
(√

1 + 0, 208 δ4∗ − 0, 456 δ2∗

)1/3]
. (2.15)

If we take
0, 208 δ4∗ ≪ 1 (2.16)

expand the expression appearing in (2.15) into series and neglecting values
of second order smallness, we obtain y1 ≈ 0, 1755 δ2∗. Substituting values
y1 and d into (2.14) and taking into account that of our interest are only
positive values of N (since n2 > 0), we find that for d > 0 (δ < 0), the
root N1 is positive, whereas for d < 0 (δ > 0), positive will be the root N3.
Consequently, we have

N1 =
√
1− 0, 0876 δ2∗ + 0, 2692 |δ∗|,

N3 =
√
1− 0, 0876 δ2∗ − 0, 2692 |δ∗|,

(2.17)

or taking into account (2.10), we get

n21 =
(√

1− 0, 0876 δ2∗ + 0, 2962|δ∗|
)
λ1ε

−1/4,

n22 =
(√

1− 0, 0876 δ2∗ − 0, 2962|δ∗|
)
λ1ε

−1/4,
(2.17′)

where n1 is related to δ > 0, and n2 to δ < 0. In particular, for δ∗ = 0,
we have the well-known formula for cylindrical shell of middle length n20 =
λ1ε

−1/4. For |δ∗| & 0, 5, we have to come from the complete expression
(2.15).

Defining in such a way the value of N0 (for fixed δ∗) and substituting
if into (2.12), we obtain the least frequency values for an unloaded shell
ω(N0).

Figure 1 shows the dependence of N0 (curves 1 and 1′) and ω(N0)/ω0(1)
(curves 2 and 2′) on the parameter δ∗, when q = T = 0 for γ∗ = 0,
γ = 13, 816. Curves 1 and 2 correspond to the case γ∗ = 0, and curves
1′ and 2′ correspond to the case, where γ∗ = 3, 816. It is not difficult to see
that curve 1 coincides with curve 1′.

For ω = 0, from formula (2.11) we obtain the expresion allowing one to
determine critical load

1, 755Q = N +N−3 + 2, 37 δ∗N
−2 + 1, 404 δ

2

∗ N
−1. (2.18)

The least value of Q depending on N is realized for Q ′

N = 0. Hence we
obtain

N4 + cN2 + dN + e = 0, c = −1, 404 δ
2

∗ , d = −4, 74 δ∗, e = −3. (2.19)
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The roots of that equation coincide with those of two quadratic equations

N2 +
A1,2

2
N +

(
y1 −

d

A1,2

)
= 0, A1,2 = ±

√
8α ,

N1,2 = −
√
α

2
±

√
d√
8α

− α1

2
, N3,4 =

√
α

2
±

√
− d√

8α
− α1

2
, (2.20)

α = y1 − c/2, α1 = y1 + c/2, (2.21)
where y1 is any real root of the cubic equation

y3 − c

2
y2 − ey +

(ce
2

− d2

8

)
= 0, (2.22)

or
z3 + 3pz + 2q = 0 (z = y − c/6), (2.23)

p = 1−
(
1, 404 δ

2

∗
)2
/36 , q = −1

2
1, 404

(
δ2∗ −

γ∗
4

)
+

(1, 404 δ
2

∗ )
2

216
. (2.24)

If we assume that (
1, 404 δ

2

∗
)2
/36 ≪ 1, (2.25)

then expressions (2.24) take the form p = 1, q = −0, 702 δ
2

∗ . Since the
discriminant of equation (2.23) is D > 0, we have one real root

z =
(
− q +

√
q2 + p3

)1/3
+

(
− q −

√
q2 + p3

)1/3
. (2.26)

Using condition (2.25) and expanding expressions appearing in (2.26), ne-
glecting the values of second order smallness, we obtain z ≈ 1, 404(δ2∗ −
γ∗
4 )/3. Then on the basis of (2.19), (2.21) and (2.23), we get

α = z − c/3 = 2 · 1, 404 δ2∗/3 ,

α1 = z + 2c/3 = −1, 404
(
δ2∗ +

3

4
γ∗

)
/3 .

(2.27)

Taking into account that y1 is the root of equation (2.22), we have
d2

8(y1 − c
2 )

= y21 − e.

Thus we get
|d|√
8α

=
√
y21 − e > y1. (2.28)

We represent y1 in the form

y1 =
1

2

(
y1 +

c

2

)
+

1

2

(
y1 −

c

2

)
=
α1

2
+
α

2
.

Then according to inequality (2.28), we obtain
|d|√
8α

− α1

2
>
α

2
. (2.29)
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Since N = n2/n20, of our interest are only positive roots of equation (2.19).
Bearing in mind inequality (2.29), we find that for δ > 0 (d > 0), only
the root N1 is positive, whereas for δ > 0 (d < 0), positive is the root N3.
Substituting the values d, α, α1, according to equalities (2.19) and (2.27),
into (2.20), we arrive at (2.30)

N∗ =

√
√
3 + 0, 234

(
δ2∗ +

3

4
γ∗

)
− 0, 684 |δ∗| (δ∗ < 0),

N∗ =

√
√
3 + 0, 234

(
δ2∗ +

3

4
γ∗

)
+ 0, 684 |δ∗| (δ∗ > 0).

(2.30)

As a result, we obtain

n21,2 =

(√√
3 + 0, 2703 ε−1/2

[(δ0
ℓ

)2

+
γ

4

( ℓ
r

)2]
±

± 0, 735
|δ0|
ℓ
ε−1/4

)
λ1ε

1/4 (2.31)

the index “ 1 ” corresponds to δ0 > 0, and the index “ 2 ” to δ0 < 0. In
particular, for δ0 = γ = 0, we obtain the well-known formula for critical
number of waves of cylindrical shells of middle length [1]. Substituting the
values of (2.30) into (2.18), we obtain critical value of Q∗.

Charts in Figure 2 presented in dimensionless form show dependence of
N∗ and Q∗ on δ∗ for γ∗ = 0 and γ∗ = 3, 816. To N∗ there correspond curves
1 and 1′, while for Q∗ the curves 2 and 2′.

Note that expression (2.18) for determination of a critical load can be
simplified on the basis of equation (2.19). Equation (2.19) yields

2, 37 δ∗N
−2 + 1, 404 δ

2

∗ N
−1 = −(2, 37 δ∗N

−2 + 3N−3 −N). (2.32)

Substituting equation (2.32) into (2.18), we obtain

Q∗ = 1, 15(N∗ −N−3
∗ − 1, 185 δ∗N

−2
∗ ). (2.33)

Consider now expression (2.11), when Q ̸= 0. From the condition of fre-
quency smallness which is defined by virtue of (2.11), we obtain the following
dependence between Q and N

Q = 1, 15(N −N−3 − 1, 185 δ∗N
−2). (2.34)

It is not difficult to notice that this equality results in the relation (2.33).
On the basis of (2.34), for Q = 0, we obtain equation (2.13), whose root
N = N0 corresponds, as is mentioned above, to the least frequency of an
unloaded shell ω(N0), while for Q = Q∗, we get equation (2.33) whose root
N = N∗ corresponds to the critical load and to ω = 0. Thus, as Q varies in
the interval

0 ≤ Q ≤ Q∗ (2.35)
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the least frequency ω(N,Q) varies in the interval ω(N0, Q = 0) ≥ ω(N,Q)
≥ 0.

Relying on the reasoning analogous to [5], we can show that when Q
varies in the interval (2.35), the value of N , realizing the least frequency
ω(N,Q), is in the interval

N0 ≤ N ≤ N∗. (2.36)
In Figures 1 and 2 we can see values of N0 and N∗ depending on δ∗

for γ∗ = 0 and γ∗ = 3, 816. They are presented by curves 1 and 1′. In
particular, for δ∗ = 0 and γ∗ = 0, inequalities (2.35) and (2.36) take the
form [5]: 0 ≤ Q ≤ 1, 1 ≤ N ≤ 1, 315.

Next, on the basis of (2.34), it is easy to construct the curves N(Q) which
realize minimal frequency for different values δ∗, γ∗. Towards this end, we
fix δ∗, γ∗, and taking values of N from the interval (2.36), we define the
value corresponding to Q by formula (2.34).

In Figure 3, we see the curves of N(Q) for δ∗ = 0; 0, 8; −0, 8 and γ∗ =
0; 3, 816 (plotted, respectively, by solid and dotted curves). On the basis of
these curves and by expression (2.11), we can find N and a corresponding
minimal frequency ω for the given δ∗, γ∗, Q.

Charts in Figure 4 show variations of dimensionless least frequency de-
pending on dimensionless prestressed Q for the above given values δ∗, γ∗;
in addition, the relation ω/ω0(1, 0) (ω0(1, 0) is laid off along the Y -axis
(ω0(1, 0) is the least frequency, free from the action of a cylindrical shell
and defined by equality (2.10′)), and Q is laid off along the X-axis (to Q
there corresponds expression (2.11’), where q0∗ characterizes critical pres-
sure of cylindrical shell and is defined by equality (2.10)); for γ∗ = 0, the
curves are denoted by 00, 10, 20, and for γ∗ = 3, 816 by 01, 11, 21.

The above formulas and charts show to what extent vary the least fre-
quency and the corresponding form of wave formation depending both on
the form of a shell and on external effects.
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