Proceedings of A. Razmadze Mathematical Institute Vol. **167** (2015), 19–27

C²-DIFFERENTIABILITY OF QUATERNION FUNCTIONS AND THEIR REPRESENTATION BY INTEGRALS AND SERIES

O. DZAGNIDZE

Abstract. In the paper, the necessary and sufficient conditions are established for a quaternion function to be \mathbb{C}^2 -differentiable or \mathbb{C}^2 -holomorphic. The representations of \mathbb{C}^2 -holomorphic quaternion functions by double integrals and double power series are obtained.

რეზიუმე. ნაშრომში დადგენილია კვატერნიონული ფუნქციის C²-დიფერენცირებადობის და C²-პოლომორფულობის აუცილებელი და საკმარისი პირობები. მოცემულია C²-პოლომორფული კვატერნიონული ფუნქციის წარმოდგენა ორმაგი ინტეგრალით და ორმაგი ხარისხოვანი მწკრივით.

1. INTRODUCTION

We consider a quaternion function u = f(z) of the quaternion variable z, where $z = \sum_{k=0}^{3} x_k i_k$, $u(z) = \sum_{k=0}^{3} u_k(z) i_k$ and $i_0 = 1$, $i_1^2 = i_2^2 = i_3^2 = -1$, $i_1 i_2 = i_3 = -i_2 i_1$, $i_2 i_3 = i_1 = -i_3 i_2$, $i_3 i_1 = i_2 = -i_1 i_3$. After introducing the complex variables $z_1 = x_0 + x_1 i_1$ and $z_2 = x_2 + x_3 i_1$, the quaternion ztakes the form

$$z = z_1 + z_2 i_2 \tag{1.1}$$

or, briefly, $z = (z_1, z_2)$. Hence the four-dimensional real Euclidean space \mathbb{R}^4 is identified with the two-dimensional complex space \mathbb{C}^2 having points $z = (z_1, z_2)$.

The conjugate quaternion $\overline{z} = x_0 - x_1i_1 - x_2i_2 - x_3i_3$ will have the form $\overline{z} = \overline{z}_1 - z_2i_2$, where $\overline{z}_1 = x_0 - x_1i_1$. We also have the equality

$$z_2 i_2 = i_2 \overline{z}_2. \tag{1.2}$$

Therefore $\overline{z_1 + z_2 i_2} = \overline{z}_1 - i_2 \overline{z}_2$. The equality z = 0 is equivalent to two equalities $z_1 = 0$ and $z_2 = 0$.

²⁰¹⁰ Mathematics Subject Classification. 30G35, 32A20.

Key words and phrases. Quaternion, differentiability, \mathbb{C}^2 -differentiability, \mathbb{C}^2 -holomorphy.

O. DZAGNIDZE

The product of the quaternion $z = z_1 + z_2 i_2$ by the quaternion $w = w_1 + w_2 i_2$, which we denote by zw, is defined by the formula [1, p. 37] $zw = (z_1w_1 - \overline{w}_2 z_2) + (w_2 z_1 + z_2 \overline{w}_1)i_2$. In particular, for complex variables z_1 and z_2 we have

$$z_1 z_2 = z_2 z_1, \quad z_1 \in \mathbb{C}^1, \quad z_2 \in \mathbb{C}^1.$$
 (1.3)

The set of all points $z = (z_1, z_2) \in \mathbb{C}^2$ with the property $||z - z^0|| < \delta$, where $||z|| = ||z_1|| + ||z_2||$, $||z_1|| = |x_0| + |x_1|$, $||z_2|| = |x_2| + |x_3|$, is called the δ -neighborhood of a point $z^0 = (z_1^0, z_2^0) \in \mathbb{C}^2$ denoted by $U(z^0, \delta)$. We denote by the symbol $U(z^0)$ the neighborhood of a point z^0 in general.

Analogously to equality (1.1), the function u = f(z) takes the form

$$f = f_1 + f_2 i_2, (1.4)$$

where

$$f_1(z_1, z_2) = u_0(z_1, z_2) + i_1 u_1(z_1, z_2)$$

and

$$f_2(z_1, z_2) = u_2(z_1, z_2) + i_1 u_3(z_1, z_2).$$

2. DIFFERENTIABILITY OF QUATERNION FUNCTIONS

In this paper we establish some properties of quaternion functions $f = f_1 + f_2 i_2$ with respect to the complex variables z_1 and z_2 . For this, we use the necessary and sufficient condition of existence at a point $z^0 = x_0^0 + x_1^0 i_1 + x_2^0 i_2 + x_3^0 i_3$ of the differential $df(z^0)$ (with respect to the collection (x_0, x_1, x_2, x_3) of real variables). This condition means the finiteness of the angular gradient (i.e. the finiteness of all its components) of the function f at a point z^0 and is written as

anggrad
$$df(z^0) = (f'_{\hat{x}_0}(z^0), f'_{\hat{x}_1}(z^0), f'_{\hat{x}_2}(z^0), f'_{\hat{x}_3}(z^0)).$$
 (2.1)

This anggrad $f(z^0)$ is a particular case of the general case where the function F(t), $t = (t_1, \ldots, t_n)$, given in a neighborhood of a point $t^0 = (t_1^0, \ldots, t_n^0) \in \mathbb{R}^n$ has the finite angular partial derivative [2, p. 24; 3, p. 61] with respect to each t_k

$$F_{\hat{t}_{k}}'(t^{0}) = \lim_{\substack{t_{k} \to t_{k}^{0} \\ |t_{j} - t_{j}^{0}| \le c_{j}|t_{k} - t_{k}^{0}|}}{\lim_{\substack{t_{k} \to t_{k}^{0} \\ i \ne k}} \frac{F(t) - F(t(t_{k}^{0}))}{t_{k} - t_{k}^{0}}}$$
(2.2)

where $t(t_k^0) = (t_1, \ldots, t_{k-1}, t_k^0, t_{k+1}, \ldots, t_n)$, provided that it is assumed that this limit exists and is independent of an arbitrarily chosen collection $c = (c_1, \ldots, c_{k-1}, c_{k+1}, \ldots, c_n)$ of positive constants.

Since the difference $t_k - t_k^0$ in equality (2.2) is a real number, the necessary and sufficient condition of \mathbb{R}^n -differentiability (shortened to differentiability in the sequel) has one and the same form for real, complex and quaternion functions. Thus, for a quaternion function $f = u_0 + u_1i_1 + u_2i_2 + u_3i_3$ to be differentiable at the point $z = x_0 + x_1i_1 + x_2i_2 + x_3i_3$ the necessary and sufficient condition is the existence, at z, of finite angular partial derivatives $f'_{\hat{x}_0}(z)$, $f'_{\hat{x}_1}(z)$, $f'_{\hat{x}_2}(z)$, $f'_{\hat{x}_3}(z)$, where $f'_{\hat{x}_k} = (u_0)'_{\hat{x}_k} + i_1(u_1)'_{\hat{x}_k} + i_2(u_2)'_{\hat{x}_k} + i_3(u_3)'_{\hat{x}_k}$, k = 0, 1, 2, 3.

Along with this, when the function f is differentiable at a point z, the following equality [2, p. 25; 3, p. 64] is fulfilled for its differential df(z)

$$df(z) = f'_{\hat{x}_0}(z)dx_0 + f'_{\hat{x}_1}(z)dx_1 + f'_{\hat{x}_2}(z)dx_2 + f'_{\hat{x}_3}(z)dx_3, df(z) = du_0(z) + i_1 du_1(z) + i_2 du_2(z) + i_3 du_3(z).$$
(2.3)

It can be easily verified that the existence of an angular partial derivative $\frac{\partial f}{\partial \hat{x}_k}$ of a quaternion function f with respect to a variable x_k is equivalent to the concurrent existence of the angular partial derivatives $\frac{\partial f_1}{\partial \hat{x}_k}$ and $\frac{\partial f_2}{\partial \hat{x}_k}$ of the complex functions f_1 and f_2 with respect to the same x_k and the equality

$$\frac{\partial f}{\partial \hat{x}_k} = \frac{\partial f_1}{\partial \hat{x}_k} + \frac{\partial f_2}{\partial \hat{x}_k} i_2, \quad k = 0, 1, 2, 3, \tag{2.4}$$

holds, where

$$\frac{\partial f_1}{\partial \widehat{x}_k} = \frac{\partial u_0}{\partial \widehat{x}_k} + i_1 \frac{\partial u_1}{\partial \widehat{x}_k},\tag{2.5}$$

$$\frac{\partial f_2}{\partial \hat{x}_k} = \frac{\partial u_2}{\partial \hat{x}_k} + i_1 \frac{\partial u_3}{\partial \hat{x}_k}.$$
(2.6)

Moreover, the differentiability of a quaternion function f at a point z is equivalent to the differentiability of the complex functions f_1 and f_2 at zand we have the equality

$$df(z) = df_1(z) + df_2(z)i_2, (2.7)$$

where

$$df_1(z) = du_0(z) + i_1 du_1(z), \quad df_2(z) = du_2(z) + i_1 du_3(z).$$
(2.8)

3. \mathbb{C}^2 -Differentiability of Quaternion Functions

Definition 3.1. A quaternion function $f(z) = f_1(z) + f_2(z)i_2$, $z = (z_1, z_2) = z_1 + z_2i_2$, is called \mathbb{C}^2 -differentiable at a point $z^0 = (z_1^0, z_2^0) = z_1^0 + z_2^0i_2$ if there exist quaternion numbers $d_1 + d'_1i_2$ and $d_2 + d'_2i_2$, such that the equality

$$\lim_{z \to z^0} \frac{f(z) - f(z_0) - \sum_{k=1}^2 (z_k - z_k^0) (d_k + d'_k i_2)}{\|z - z^0\|} = 0$$
(3.1)

is fulfilled.

In that case, we call the sum

$$\sum_{k=1}^{2} (z_k - z_k^0)(d_k + d'_k i_2)$$
(3.2)

the \mathbb{C}^2 -differential of the quaternion function f at the point z^0 .

The following statement is true.

Theorem 3.2. For a quaternion function $f(z) = f_1(z) + f_2(z)i_2$ to be \mathbb{C}^2 -differentiable at a point z^0 it is necessary and sufficient that one of the following three conditions be fulfilled:

(i) The complex functions $f_1(z)$ and $f_2(z)$ are \mathbb{C}^2 -differentiable at the point z^0 ;

(ii) The equalities

$$\frac{\partial f}{\partial \hat{x}_0}(z^0) + i_1 \frac{\partial f}{\partial \hat{x}_1}(z^0) = 0 \tag{3.3}$$

and

$$\frac{\partial f}{\partial \hat{x}_2}(z^0) + i_1 \frac{\partial f}{\partial \hat{x}_3}(z^0) = 0 \tag{3.4}$$

are fulfilled at the point z^0 ;

(iii) The equality

$$df(z^{0}) = dz_{1}\frac{\partial f}{\partial \hat{z}_{1}}(z^{0}) + dz_{2}\frac{\partial f}{\partial \hat{z}_{2}}(z^{0})$$
(3.5)

holds, where

$$\frac{\partial f}{\partial \hat{z}_1} = \frac{\partial f_1}{\partial \hat{z}_1} + \frac{\partial f_1}{\partial \hat{z}_1} i_1, \quad \frac{\partial f}{\partial \hat{z}_2} = \frac{\partial f_1}{\partial \hat{z}_2} + \frac{\partial f_2}{\partial \hat{z}_2} i_1 \tag{3.6}$$

and for a complex function $g(z_1, z_2)$ of two complex variables z_1 and z_2 the formal angular partial derivatives $\frac{\partial g}{\partial \tilde{z}_1}$ and $\frac{\partial g}{\partial \tilde{z}_2}$ with respect to z_1 and z_2 are defined by the equality [4]

$$\frac{\partial g}{\partial \widehat{z}_1} = \frac{1}{2} \Big(\frac{\partial g}{\partial \widehat{x}_0} - i_1 \frac{\partial g}{\partial \widehat{x}_1} \Big), \quad \frac{\partial g}{\partial \widehat{z}_2} = \frac{1}{2} \Big(\frac{\partial g}{\partial \widehat{x}_2} - i_1 \frac{\partial g}{\partial \widehat{x}_3} \Big). \tag{3.7}$$

Proof. (i) Equality (3.1) is equivalent to the fulfillment of the following two equalities

$$\lim_{z \to z_0} \frac{f_1(z) - f_1(z^0) - \sum_{k=1}^2 d_k (z_k - z_k^0)}{\|z - z^0\|} = 0$$
(3.8)

and

$$\lim_{z \to z_0} \frac{f_2(z) - f_2(z^0) - \sum_{k=1}^2 d'_k(z_k - z_k^0)}{\|z - z^0\|} = 0,$$
(3.9)

which are respectively equivalent to the \mathbb{C}^2 -differentiability of the complex functions $f_1(z)$ and $f_2(z)$ at the point z^0 [4, equality (3.2)].

(ii) According to the statement (i), the \mathbb{C}^2 -differentiability of a quaternion function $f = f_1 + f_2 i_2$ at a point z^0 is equivalent to the \mathbb{C}^2 -differentiability of the complex functions f_1 and f_2 . On the other hand, the \mathbb{C}^2 -differentiability of the complex function f_1 at the point z^0 is equivalent to the fulfillment of the equalities [4, equality (3.1)]

$$\frac{\partial f_1}{\partial \widehat{x}_0}(z^0) + i_1 \frac{\partial f_1}{\partial \widehat{x}_1}(z^0) = 0, \quad \frac{\partial f_1}{\partial \widehat{x}_2}(z^0) + i_1 \frac{\partial f_1}{\partial \widehat{x}_3}(z^0) = 0.$$
(3.10)

Analogously, for the complex function f_2 we have

$$\frac{\partial f_2}{\partial \hat{x}_0}(z^0) + i_1 \frac{\partial f_2}{\partial \hat{x}_1}(z^0) = 0, \quad \frac{\partial f_2}{\partial \hat{x}_2}(z^0) + i_1 \frac{\partial f_2}{\partial \hat{x}_3}(z^0) = 0.$$
(3.11)

If we perform the right multiplication of equalities (3.11) by i_2 and sum the resulting equalities with equalities (3.10), then we will obtain equalities (3.3) and (3.4).

(iii) Again, by virtue of statement (i), the \mathbb{C}^2 -differentiability of the quaternion function f is equivalent to the \mathbb{C}^2 -differentiability of the complex functions f_1 and f_2 . But the complex function f_1 is \mathbb{C}^2 -differentiable at the point z^0 if and only if the equality [4, equality (3.7)]

$$df_1(z^0) = \sum_{k=1}^{2} \frac{\partial f_1}{\partial \hat{z}_k}(z^0) dz_k$$
 (3.12)

is fulfilled.

Analogously, for the complex function f_2 to be \mathbb{C}^2 -differentiable at a point z^0 it is necessary and sufficient that the equality

$$df_2(z^0) = \sum_{k=1}^2 \frac{\partial f_2}{\partial \hat{z}_k}(z^0) dz_k$$
(3.13)

be fulfilled.

Using (1.3) we can rewrite equalities (3.12) and (3.13) in the form

$$df_1 = dz_1 \frac{\partial f_1}{\partial \hat{z}_1} + dz_2 \frac{\partial f_1}{\partial \hat{z}_2}, \quad df_2 = dz_1 \frac{\partial f_2}{\partial \hat{z}_1} + dz_2 \frac{\partial f_2}{\partial \hat{z}_2}.$$
 (3.14)

Hence we obtain the equality

$$df_1 + df_i i_2 = dz_1 \frac{\partial (f_1 + f_2 i_2)}{\partial \hat{z}_1} + dz_2 \frac{\partial (f_1 + f_2 i_2)}{\partial \hat{z}_2},$$

from which by virtue of (2.7) we obtain equality (3.5).

Remark 3.3. The equivalence of the \mathbb{C}^2 -differentiability of a quaternion function $f = f_1 + f_2 i_2$ with the concurrent \mathbb{C}^2 -differentiability of its complex components f_1 and f_2 (see statement (i) from Theorem 3.2) has no analogue for the \mathbb{C}^1 -differentiability in the domain. That this is so follows from the fact that a \mathbb{C}^1 -differentiable real function in a domain is necessarily constant in this domain.

O. DZAGNIDZE

Theorem 3.4. The \mathbb{C}^2 -differential of a quaternion function f is equal to the differential of this function.

Proof. For the coefficients d_k and d'_k figuring in equalities (3.8) and (3.9) we know the equalities [5, p. 31]

$$d_k = \frac{\partial f_1}{\partial z_k}(z^0), \quad d'_k = \frac{\partial f_2}{\partial z_k}(z^0)$$

But for a \mathbb{C}^2 -differentiable complex function the partial derivative with respect to the variable z_k is equal to its angular partial derivative with respect to the same z_k [4, equality (2.1)]. Therefore the \mathbb{C}^2 -differential of the function $f = f_1 + f_2 i_2$ defined by equality (3.2) at the point z^0 is written as

$$\sum_{k=1}^{2} dz_k \frac{\partial f}{\partial \widehat{z}_k}(z^0).$$

But the latter expression is equal by virtue of equality (3.5) to $df(z^0)$. \Box

4. \mathbb{C}^2 -Holomorphy of Quaternion Functions

Definition 4.1. A quaternion function $f(z) = f_1(z) + f_2(z)i_2$ will be called \mathbb{C}^2 -holomorphic at a point z^0 or in a domain $D \subset \mathbb{C}^2$ if f is \mathbb{C}^2 -differentiable in the neighborhood of z^0 or at every point of the domain D.

The following statement holds true.

Proposition 4.1. For a quaternion function f(z) to \mathbb{C}^2 -holomorphic at a point z^0 or in any domain $D \subset \mathbb{C}^2$ it is necessary and sufficient that one of conditions (i)–(iii) from Theorem 3.2 be fulfilled in the neighborhood of x^0 or at every point of the domain D.

In particular, we have

Proposition 4.2. The \mathbb{C}^2 -holomorphy at a point or in a domain of a quartenion function $f(z) = f_1(z) + f_2(z)i_2$ is equivalent to the concurrent \mathbb{C}^2 -holomorphy at the same point or in the same domain of the complex functions $f_1(z)$ and $f_2(z)$.

5. Integral Representations of \mathbb{C}^2 -Holomorphic Quaternion Functions

Theorem 5.1. Let a quaternion function $f(z) = f_1(z) + f_2(z)i_2$ be \mathbb{C}^2 holomorphic in a domain $D \subset \mathbb{C}^2$ which is the Cartesian product of simply connected domains $D_1 \subset \mathbb{C}^1$ and $D_2 \subset \mathbb{C}^1$. Then at any point $z = (z_1, z_2)$ the representation

$$f(z_1, z_2) = -\frac{1}{4\pi^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{dt_1 dt_2}{(t_1 - z_1)(t_2 - z_2)} f(t_1, t_2),$$
(5.1)

is fulfilled, where Γ_1 and Γ_2 are any closed paths in D_1 and D_2 , respectively, which envelop the points z_1 and z_2 .

Proof. By Proposition 4.2. we have the equalities [5, p. 28]

$$f_1(z_1, z_2) = -\frac{1}{4\pi^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{f_1(t_1, t_2)}{(t_1 - z_1)(t_2 - z_2)} dt_1 dt_2,$$
(5.2)

$$f_2(z_1, z_2) = -\frac{1}{4\pi^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{f_2(t_1, t_2)}{(t_1 - z_1)(t_2 - z_2)} dt_1 dt_2.$$
(5.3)

By virtue of equality (1.3) we can write $f_1(t_1, t_2)dt_1dt_2 = dt_1dt_2f_1(t_1, t_2)$ and $f_2(t_1, t_2)dt_1dt_2 = dt_1dt_2f_2(t_1, t_2)$. Hence, from equalities (5.2) and (5.3) we obtain the equality

$$f_1(z_1, z_2) + f_2(z_1, z_2)i_2 =$$

$$= -\frac{1}{4\pi^2} \int_{\Gamma_2 \Gamma_1} \frac{dt_1 dt_2}{(t_1 - z_1)(t_2 - z_2)} [f_1(t_1, t_2) + f_2(t_1, t_2)i_2],$$

which is equivalent to equality (5.1)

Theorem 5.2. If a quaternion function $f(z_1, z_2) = f_1(z_1, z_2) + f_2(z_1, z_2)i_2$ is \mathbb{C}^2 -holomorphic in the Cartesian product $D_1 \times D_2$ of simply connected domains $D_1 \subset \mathbb{C}^1$ and $D_2 \subset \mathbb{C}^1$, then its partial derivatives f'_{z_1} and f'_{z_2} are also \mathbb{C}^2 -holomorphic quaternion functions in $D_1 \times D_2 \subset \mathbb{C}^2$.

Proof. According to Proposition 4.2, the \mathbb{C}^2 -holomorphy of a quaternion function f imples the \mathbb{C}^2 -holomorphy of the complex functions f_1 and f_2 given by equalities (5.2) and (5.3). Therefore their partial derivatives $\frac{df_1}{\partial z_1}$, $\frac{df_2}{\partial z_2}$, $\frac{df_2}{\partial z_1}$ and $\frac{df_2}{\partial z_2}$ are \mathbb{C}^2 -holomorphic complex functions in $D_1 \times D_2$. Thus equalities (3.10) and (3.11) which are fulfilled for the functions f_1 and f_2 will also be fulfilled for their partial derivatives $\frac{df_1}{\partial z_1}$, $\frac{df_1}{\partial z_2}$, $\frac{df_2}{\partial z_1}$, $\frac{df_2}{\partial z_2}$. Hence it follows that, as was shown when proving Theorem 3.2, these partial derivatives tives satisfy equalities (3.3) and (3.4), i.e. are \mathbb{C}^2 -holomorphic quaternion functions by virtue of statement (ii) from Theorem 3.2.

6. Representation of \mathbb{C}^2 -Holomorhic Functions by Power Series

Theorem 6.1. Let a quaternion function $f(z) = f_1(z) + f_2(z)i_2$ be \mathbb{C}^2 -holomorphic in a domain $D \subset \mathbb{C}^2$ which is the Cartesian product of simply connected domains $D_1 \subset \mathbb{C}^1$ and $D_2 \subset \mathbb{C}^1$. Then at any point z =

 $(z_1, z_2) \in D$ from the neighborhood of $z^0 = (z_1^0, z_2^0) \in D$ the representation of f by the power series

$$f(z_1, z_2) = \sum_{m,n=0}^{\infty} (z_1 - z_1^0)^m (z_2 - z_2^0)^n c_{mn}, \qquad (6.1)$$

is fulfilled, where the quaternion coefficients c_{mn} of the function f are defined by the equalities

$$c_{mn} = -\frac{1}{4\pi^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{dt_1 dt_2}{(t_1 - z_1^0)^{m+1} (t_2 - z_2^0)^{n+1}} f(t_1, t_2), \qquad (6.2)$$

$$m!n!c_{mn} = \left(\frac{\partial^{m+n}f(z_1, z_2)}{\partial z_1^m \partial z_2^n}\right)_{\substack{z_1 = z_1^0 \\ z_2 = z_2^0}}.$$
(6.3)

Proof. By virtue of Proposition 4.2, the complex functions f_1 and f_2 are \mathbb{C}^2 -holomorphic or, which is the same, \mathbb{C}^2 -analytic in the domain D. Hence we have the equalities

$$f_1(z_1, z_2) = \sum_{m,n=0}^{\infty} {}^1 c_{mn} (z_1 - z_1^0)^m (z_2 - z_2^0)^n, \qquad (6.4)$$

$$f_2(z_1, z_2) = \sum_{m,n=0}^{\infty} {}^2 c_{mn} (z_1 - z_1^0)^m (z_2 - z_2^0)^n, \qquad (6.5)$$

where the complex coefficients of the functions f_1 and f_2 are given by the formulas

$${}^{1}c_{mn} = -\frac{1}{4\pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{f_{1}(t_{1}, t_{2})}{(t_{1} - z_{1}^{0})^{m+1}(t_{2} - z_{2}^{0})^{n+1}} dt_{1} dt_{2}, \qquad (6.6)$$

$${}^{2}c_{mn} = -\frac{1}{4\pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{f_{2}(t_{1}, t_{2})}{(t_{1} - z_{1}^{0})^{m+1}(t_{2} - z_{2}^{0})^{n+1}} dt_{1} dt_{2}.$$
 (6.7)

Using (1.3) and the equality $f_1 + f_2 i_2 = f$, from (6.4), (6.5) and (6.6), (6.7) we obtain respectively equalities (6.1) and (6.2). As to equality (6.3), it is obtained from the well known formulas [5, p. 31]

$$m!n!^{1}c_{mn} = \left(\frac{\partial^{m+n}f_{1}(t_{1}, t_{2})}{\partial t_{1}^{m}\partial t_{2}^{n}}\right)_{\substack{t_{1}=z_{1}^{0}\\t_{2}=z_{2}^{0}}},$$
$$m!n!^{2}c_{mn} = \left(\frac{\partial^{m+n}f_{2}(t_{1}, t_{2})}{\partial t_{1}^{m}\partial t_{2}^{n}}\right)_{\substack{t_{1}=z_{1}^{0}\\t_{2}=z_{2}^{0}}},$$

taking into account the equalities

$$\frac{df}{dz_1} = \frac{\partial f_1}{\partial z_1} + \frac{\partial f_2}{\partial z_1}i_2, \quad \frac{df}{dz_2} = \frac{\partial f_1}{\partial z_2} + \frac{\partial f_2}{\partial z_2}i_2.$$

References

- I. L. Kantor and A. S. Solodovnikov, Hypercomplex numbers. (Russian) Nauka, Moscow, 1973.
- 2. O. Dzagnidze, A necessary and sufficient condition for differentiability functions of several variables. Proc. A. Razmadze Math. Inst. 123 (2000), 23–29.
- 3. O. Dzagnidze, Some new results on the continuity and differentiability of functions of several real variables. Proc. A. Razmadze Math. Inst. 134 (2004), 1–138.
- O. Dzagnidze, A criterion of joint C-differentiability and a new proof of Hartogs' main theorem. J. Appl. Anal. 13 (2007), No. 1, 13–17.
- B. V. Shabat, Introduction to complex analysis. Part II. Functions of several variables. (Russian) Second edition, revised and augmented. *Izdat. Nauka, Moscow*, 1976.

(Received 5.01.2015)

Author's address:

A. Razmadze Mathematical Institute

I. Javakhishvili Tbilisi State University

6, Tamarashvili st., Tbilisi 0177, Georgia

E-mail: odzagni@rmi.ge