\mathbb{C}^{2}-DIFFERENTIABILITY OF QUATERNION FUNCTIONS AND THEIR REPRESENTATION BY INTEGRALS AND SERIES

O. DZAGNIDZE

Abstract

In the paper, the necessary and sufficient conditions are established for a quaternion function to be \mathbb{C}^{2}-differentiable or \mathbb{C}^{2}-holomorphic. The representations of \mathbb{C}^{2}-holomorphic quaternion functions by double integrals and double power series are obtained.

1. Introduction

We consider a quaternion function $u=f(z)$ of the quaternion variable z, where $z=\sum_{k=0}^{3} x_{k} i_{k}, u(z)=\sum_{k=0}^{3} u_{k}(z) i_{k}$ and $i_{0}=1, i_{1}^{2}=i_{2}^{2}=i_{3}^{2}=-1$, $i_{1} i_{2}=i_{3}=-i_{2} i_{1}, i_{2} i_{3}=i_{1}=-i_{3} i_{2}, i_{3} i_{1}=i_{2}=-i_{1} i_{3}$. After introducing the complex variables $z_{1}=x_{0}+x_{1} i_{1}$ and $z_{2}=x_{2}+x_{3} i_{1}$, the quaternion z takes the form

$$
\begin{equation*}
z=z_{1}+z_{2} i_{2} \tag{1.1}
\end{equation*}
$$

or, briefly, $z=\left(z_{1}, z_{2}\right)$. Hence the four-dimensional real Euclidean space \mathbb{R}^{4} is identified with the two-dimensional complex space \mathbb{C}^{2} having points $z=\left(z_{1}, z_{2}\right)$.

The conjugate quaternion $\bar{z}=x_{0}-x_{1} i_{1}-x_{2} i_{2}-x_{3} i_{3}$ will have the form $\bar{z}=\bar{z}_{1}-z_{2} i_{2}$, where $\bar{z}_{1}=x_{0}-x_{1} i_{1}$. We also have the equality

$$
\begin{equation*}
z_{2} i_{2}=i_{2} \bar{z}_{2} \tag{1.2}
\end{equation*}
$$

Therefore $\overline{z_{1}+z_{2} i_{2}}=\bar{z}_{1}-i_{2} \bar{z}_{2}$. The equality $z=0$ is equivalent to two equalities $z_{1}=0$ and $z_{2}=0$.

[^0]The product of the quaternion $z=z_{1}+z_{2} i_{2}$ by the quaternion $w=$ $w_{1}+w_{2} i_{2}$, which we denote by $z w$, is defined by the formula [1, p. 37] $z w=\left(z_{1} w_{1}-\bar{w}_{2} z_{2}\right)+\left(w_{2} z_{1}+z_{2} \bar{w}_{1}\right) i_{2}$. In particular, for complex variables z_{1} and z_{2} we have

$$
\begin{equation*}
z_{1} z_{2}=z_{2} z_{1}, \quad z_{1} \in \mathbb{C}^{1}, \quad z_{2} \in \mathbb{C}^{1} \tag{1.3}
\end{equation*}
$$

The set of all points $z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ with the property $\left\|z-z^{0}\right\|<\delta$, where $\|z\|=\left\|z_{1}\right\|+\left\|z_{2}\right\|,\left\|z_{1}\right\|=\left|x_{0}\right|+\left|x_{1}\right|,\left\|z_{2}\right\|=\left|x_{2}\right|+\left|x_{3}\right|$, is called the δ-neighborhood of a point $z^{0}=\left(z_{1}^{0}, z_{2}^{0}\right) \in \mathbb{C}^{2}$ denoted by $U\left(z^{0}, \delta\right)$. We denote by the symbol $U\left(z^{0}\right)$ the neighborhood of a point z^{0} in general.

Analogously to equality (1.1), the function $u=f(z)$ takes the form

$$
\begin{equation*}
f=f_{1}+f_{2} i_{2} \tag{1.4}
\end{equation*}
$$

where

$$
f_{1}\left(z_{1}, z_{2}\right)=u_{0}\left(z_{1}, z_{2}\right)+i_{1} u_{1}\left(z_{1}, z_{2}\right)
$$

and

$$
f_{2}\left(z_{1}, z_{2}\right)=u_{2}\left(z_{1}, z_{2}\right)+i_{1} u_{3}\left(z_{1}, z_{2}\right)
$$

2. Differentiability of Quaternion Functions

In this paper we establish some properties of quaternion functions $f=$ $f_{1}+f_{2} i_{2}$ with respect to the complex variables z_{1} and z_{2}. For this, we use the necessary and sufficient condition of existence at a point $z^{0}=x_{0}^{0}+$ $x_{1}^{0} i_{1}+x_{2}^{0} i_{2}+x_{3}^{0} i_{3}$ of the differential $d f\left(z^{0}\right)$ (with respect to the collection ($x_{0}, x_{1}, x_{2}, x_{3}$) of real variables). This condition means the finiteness of the angular gradient (i.e. the finiteness of all its components) of the function f at a point z^{0} and is written as

$$
\begin{equation*}
\operatorname{anggrad} d f\left(z^{0}\right)=\left(f_{\widehat{x}_{0}}^{\prime}\left(z^{0}\right), f_{\widehat{x}_{1}}^{\prime}\left(z^{0}\right), f_{\widehat{x}_{2}}^{\prime}\left(z^{0}\right), f_{\widehat{x}_{3}}^{\prime}\left(z^{0}\right)\right) . \tag{2.1}
\end{equation*}
$$

This anggrad $f\left(z^{0}\right)$ is a particular case of the general case where the function $F(t), t=\left(t_{1}, \ldots, t_{n}\right)$, given in a neighborhood of a point $t^{0}=$ $\left(t_{1}^{0}, \ldots, t_{n}^{0}\right) \in R^{n}$ has the finite angular partial derivative [2, p. 24; 3, p. 61] with respect to each t_{k}

$$
\begin{equation*}
F_{\hat{t}_{k}}^{\prime}\left(t^{0}\right)=\lim _{\substack{t_{k} \rightarrow t_{k}^{0} \\\left|t_{j}-t_{j}^{0}\right| \leq c_{j}\left|t_{k}-t_{k}^{0}\right| \\ j \neq k}} \frac{F(t)-F\left(t\left(t_{k}^{0}\right)\right)}{t_{k}-t_{k}^{0}} \tag{2.2}
\end{equation*}
$$

where $t\left(t_{k}^{0}\right)=\left(t_{1}, \ldots, t_{k-1}, t_{k}^{0}, t_{k+1}, \ldots, t_{n}\right)$, provided that it is assumed that this limit exists and is independent of an arbitrarily chosen collection $c=\left(c_{1}, \ldots, c_{k-1}, c_{k+1}, \ldots, c_{n}\right)$ of positive constants.

Since the difference $t_{k}-t_{k}^{0}$ in equality (2.2) is a real number, the necessary and sufficient condition of \mathbb{R}^{n}-differentiability (shortened to differentiability in the sequel) has one and the same form for real, complex and quaternion functions.

Thus, for a quaternion function $f=u_{0}+u_{1} i_{1}+u_{2} i_{2}+u_{3} i_{3}$ to be differentiable at the point $z=x_{0}+x_{1} i_{1}+x_{2} i_{2}+x_{3} i_{3}$ the necessary and sufficient condition is the existence, at z, of finite angular partial derivatives $f_{\widehat{x}_{0}}^{\prime}(z)$, $f_{\widehat{x}_{1}}^{\prime}(z), f_{\widehat{x}_{2}}^{\prime}(z), f_{\widehat{\widehat{x}}_{3}}^{\prime}(z)$, where $f_{\widehat{x}_{k}}^{\prime}=\left(u_{0}\right)_{\widehat{x}_{k}}^{\prime}+i_{1}\left(u_{1}\right)_{\widehat{x}_{k}}^{\prime}+i_{2}\left(u_{2}\right)_{\widehat{x}_{k}}^{\prime}+i_{3}\left(u_{3}\right)_{\widehat{x}_{k}}^{\prime}$, $k=0,1,2,3$.

Along with this, when the function f is differentiable at a point z, the following equality [2, p. 25; 3, p. 64] is fulfilled for its differential $d f(z)$

$$
\begin{gather*}
d f(z)=f_{\widehat{x}_{0}}^{\prime}(z) d x_{0}+f_{\widehat{x}_{1}}^{\prime}(z) d x_{1}+f_{\widehat{x}_{2}}^{\prime}(z) d x_{2}+f_{\widehat{x}_{3}}^{\prime}(z) d x_{3}, \\
d f(z)=d u_{0}(z)+i_{1} d u_{1}(z)+i_{2} d u_{2}(z)+i_{3} d u_{3}(z) . \tag{2.3}
\end{gather*}
$$

It can be easily verified that the existence of an angular partial derivative $\frac{\partial f}{\partial \widehat{x}_{k}}$ of a quaternion function f with respect to a variable x_{k} is equivalent to the concurrent existence of the angular partial derivatives $\frac{\partial f_{1}}{\partial \tilde{x}_{k}}$ and $\frac{\partial f_{2}}{\partial \bar{x}_{k}}$ of the complex functions f_{1} and f_{2} with respect to the same x_{k} and the equality

$$
\begin{equation*}
\frac{\partial f}{\partial \widehat{x}_{k}}=\frac{\partial f_{1}}{\partial \widehat{x}_{k}}+\frac{\partial f_{2}}{\partial \widehat{x}_{k}} i_{2}, \quad k=0,1,2,3, \tag{2.4}
\end{equation*}
$$

holds, where

$$
\begin{align*}
& \frac{\partial f_{1}}{\partial \widehat{x}_{k}}=\frac{\partial u_{0}}{\partial \widehat{x}_{k}}+i_{1} \frac{\partial u_{1}}{\partial \widehat{x}_{k}} \tag{2.5}\\
& \frac{\partial f_{2}}{\partial \widehat{x}_{k}}=\frac{\partial u_{2}}{\partial \widehat{x}_{k}}+i_{1} \frac{\partial u_{3}}{\partial \widehat{x}_{k}} \tag{2.6}
\end{align*}
$$

Moreover, the differentiability of a quaternion function f at a point z is equivalent to the differentiability of the complex functions f_{1} and f_{2} at z and we have the equality

$$
\begin{equation*}
d f(z)=d f_{1}(z)+d f_{2}(z) i_{2} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
d f_{1}(z)=d u_{0}(z)+i_{1} d u_{1}(z), \quad d f_{2}(z)=d u_{2}(z)+i_{1} d u_{3}(z) . \tag{2.8}
\end{equation*}
$$

3. \mathbb{C}^{2}-Differentiability of Quaternion Functions

Definition 3.1. A quaternion function $f(z)=f_{1}(z)+f_{2}(z) i_{2}, z=$ $\left(z_{1}, z_{2}\right)=z_{1}+z_{2} i_{2}$, is called \mathbb{C}^{2}-differentiable at a point $z^{0}=\left(z_{1}^{0}, z_{2}^{0}\right)=$ $z_{1}^{0}+z_{2}^{0} i_{2}$ if there exist quaternion numbers $d_{1}+d_{1}^{\prime} i_{2}$ and $d_{2}+d_{2}^{\prime} i_{2}$, such that the equality

$$
\begin{equation*}
\lim _{z \rightarrow z^{0}} \frac{f(z)-f\left(z_{0}\right)-\sum_{k=1}^{2}\left(z_{k}-z_{k}^{0}\right)\left(d_{k}+d_{k}^{\prime} i_{2}\right)}{\left\|z-z^{0}\right\|}=0 \tag{3.1}
\end{equation*}
$$

is fulfilled.

In that case, we call the sum

$$
\begin{equation*}
\sum_{k=1}^{2}\left(z_{k}-z_{k}^{0}\right)\left(d_{k}+d_{k}^{\prime} i_{2}\right) \tag{3.2}
\end{equation*}
$$

the \mathbb{C}^{2}-differential of the quaternion function f at the point z^{0}.
The following statement is true.
Theorem 3.2. For a quaternion function $f(z)=f_{1}(z)+f_{2}(z) i_{2}$ to be \mathbb{C}^{2}-differentiable at a point z^{0} it is necessary and sufficient that one of the following three conditions be fulfilled:
(i) The complex functions $f_{1}(z)$ and $f_{2}(z)$ are \mathbb{C}^{2}-differentiable at the point z^{0};
(ii) The equalities

$$
\begin{equation*}
\frac{\partial f}{\partial \widehat{x}_{0}}\left(z^{0}\right)+i_{1} \frac{\partial f}{\partial \widehat{x}_{1}}\left(z^{0}\right)=0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial \widehat{x}_{2}}\left(z^{0}\right)+i_{1} \frac{\partial f}{\partial \widehat{x}_{3}}\left(z^{0}\right)=0 \tag{3.4}
\end{equation*}
$$

are fulfilled at the point z^{0};
(iii) The equality

$$
\begin{equation*}
d f\left(z^{0}\right)=d z_{1} \frac{\partial f}{\partial \widehat{z}_{1}}\left(z^{0}\right)+d z_{2} \frac{\partial f}{\partial \widehat{z}_{2}}\left(z^{0}\right) \tag{3.5}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
\frac{\partial f}{\partial \widehat{z}_{1}}=\frac{\partial f_{1}}{\partial \widehat{z}_{1}}+\frac{\partial f_{1}}{\partial \widehat{z}_{1}} i_{1}, \quad \frac{\partial f}{\partial \widehat{z}_{2}}=\frac{\partial f_{1}}{\partial \widehat{z}_{2}}+\frac{\partial f_{2}}{\partial \widehat{z}_{2}} i_{1} \tag{3.6}
\end{equation*}
$$

and for a complex function $g\left(z_{1}, z_{2}\right)$ of two complex variables z_{1} and z_{2} the formal angular partial derivatives $\frac{\partial g}{\partial \bar{z}_{1}}$ and $\frac{\partial g}{\partial \bar{z}_{2}}$ with respect to z_{1} and z_{2} are defined by the equality [4]

$$
\begin{equation*}
\frac{\partial g}{\partial \widehat{z}_{1}}=\frac{1}{2}\left(\frac{\partial g}{\partial \widehat{x}_{0}}-i_{1} \frac{\partial g}{\partial \widehat{x}_{1}}\right), \quad \frac{\partial g}{\partial \widehat{z}_{2}}=\frac{1}{2}\left(\frac{\partial g}{\partial \widehat{x}_{2}}-i_{1} \frac{\partial g}{\partial \widehat{x}_{3}}\right) \tag{3.7}
\end{equation*}
$$

Proof. (i) Equality (3.1) is equivalent to the fulfillment of the following two equalities

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{f_{1}(z)-f_{1}\left(z^{0}\right)-\sum_{k=1}^{2} d_{k}\left(z_{k}-z_{k}^{0}\right)}{\left\|z-z^{0}\right\|}=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{f_{2}(z)-f_{2}\left(z^{0}\right)-\sum_{k=1}^{2} d_{k}^{\prime}\left(z_{k}-z_{k}^{0}\right)}{\left\|z-z^{0}\right\|}=0 \tag{3.9}
\end{equation*}
$$

which are respectively equivalent to the \mathbb{C}^{2}-differentiability of the complex functions $f_{1}(z)$ and $f_{2}(z)$ at the point z^{0} [4, equality (3.2)].
(ii) According to the statement (i), the \mathbb{C}^{2}-differentiability of a quaternion function $f=f_{1}+f_{2} i_{2}$ at a point z^{0} is equivalent to the \mathbb{C}^{2}-differentiability of the complex functions f_{1} and f_{2}. On the other hand, the \mathbb{C}^{2}-differentiability of the complex function f_{1} at the point z^{0} is equivalent to the fulfillment of the equalities [4, equality (3.1)]

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial \widehat{x}_{0}}\left(z^{0}\right)+i_{1} \frac{\partial f_{1}}{\partial \widehat{x}_{1}}\left(z^{0}\right)=0, \quad \frac{\partial f_{1}}{\partial \widehat{x}_{2}}\left(z^{0}\right)+i_{1} \frac{\partial f_{1}}{\partial \widehat{x}_{3}}\left(z^{0}\right)=0 \tag{3.10}
\end{equation*}
$$

Analogously, for the complex function f_{2} we have

$$
\begin{equation*}
\frac{\partial f_{2}}{\partial \widehat{x}_{0}}\left(z^{0}\right)+i_{1} \frac{\partial f_{2}}{\partial \widehat{x}_{1}}\left(z^{0}\right)=0, \quad \frac{\partial f_{2}}{\partial \widehat{x}_{2}}\left(z^{0}\right)+i_{1} \frac{\partial f_{2}}{\partial \widehat{x}_{3}}\left(z^{0}\right)=0 . \tag{3.11}
\end{equation*}
$$

If we perform the right multiplication of equalities (3.11) by i_{2} and sum the resulting equalities with equalities (3.10), then we will obtain equalities (3.3) and (3.4).
(iii) Again, by virtue of statement (i), the \mathbb{C}^{2}-differentiability of the quaternion function f is equivalent to the \mathbb{C}^{2}-differentiability of the complex functions f_{1} and f_{2}. But the complex function f_{1} is \mathbb{C}^{2}-differentiable at the point z^{0} if and only if the equality [4, equality (3.7)]

$$
\begin{equation*}
d f_{1}\left(z^{0}\right)=\sum_{k=1}^{2} \frac{\partial f_{1}}{\partial \widehat{z}_{k}}\left(z^{0}\right) d z_{k} \tag{3.12}
\end{equation*}
$$

is fulfilled.
Analogously, for the complex function f_{2} to be \mathbb{C}^{2}-differentiable at a point z^{0} it is necessary and sufficient that the equality

$$
\begin{equation*}
d f_{2}\left(z^{0}\right)=\sum_{k=1}^{2} \frac{\partial f_{2}}{\partial \widehat{z}_{k}}\left(z^{0}\right) d z_{k} \tag{3.13}
\end{equation*}
$$

be fulfilled.
Using (1.3) we can rewrite equalities (3.12) and (3.13) in the form

$$
\begin{equation*}
d f_{1}=d z_{1} \frac{\partial f_{1}}{\partial \widehat{z}_{1}}+d z_{2} \frac{\partial f_{1}}{\partial \widehat{z}_{2}}, \quad d f_{2}=d z_{1} \frac{\partial f_{2}}{\partial \widehat{z}_{1}}+d z_{2} \frac{\partial f_{2}}{\partial \widehat{z}_{2}} \tag{3.14}
\end{equation*}
$$

Hence we obtain the equality

$$
d f_{1}+d f_{i} i_{2}=d z_{1} \frac{\partial\left(f_{1}+f_{2} i_{2}\right)}{\partial \widehat{z}_{1}}+d z_{2} \frac{\partial\left(f_{1}+f_{2} i_{2}\right)}{\partial \widehat{z}_{2}}
$$

from which by virtue of (2.7) we obtain equality (3.5).
Remark 3.3. The equivalence of the \mathbb{C}^{2}-differentiability of a quaternion function $f=f_{1}+f_{2} i_{2}$ with the concurrent \mathbb{C}^{2}-differentiability of its complex components f_{1} and f_{2} (see statement (i) from Theorem 3.2) has no analogue for the \mathbb{C}^{1}-differentiability in the domain. That this is so follows from the fact that a \mathbb{C}^{1}-differentiable real function in a domain is necessarily constant in this domain.

Theorem 3.4. The \mathbb{C}^{2}-differential of a quaternion function f is equal to the differential of this function.

Proof. For the coefficients d_{k} and d_{k}^{\prime} figuring in equalities (3.8) and (3.9) we know the equalities [5, p. 31]

$$
d_{k}=\frac{\partial f_{1}}{\partial z_{k}}\left(z^{0}\right), \quad d_{k}^{\prime}=\frac{\partial f_{2}}{\partial z_{k}}\left(z^{0}\right)
$$

But for a \mathbb{C}^{2}-differentiable complex function the partial derivative with respect to the variable z_{k} is equal to its angular partial derivative with respect to the same $z_{k}\left[4\right.$, equality (2.1)]. Therefore the \mathbb{C}^{2}-differential of the function $f=f_{1}+f_{2} i_{2}$ defined by equality (3.2) at the point z^{0} is written as

$$
\sum_{k=1}^{2} d z_{k} \frac{\partial f}{\partial \widehat{z}_{k}}\left(z^{0}\right)
$$

But the latter expression is equal by virtue of equality (3.5) to $d f\left(z^{0}\right)$.

4. \mathbb{C}^{2}-Holomorphy of Quaternion Functions

Definition 4.1. A quaternion function $f(z)=f_{1}(z)+f_{2}(z) i_{2}$ will be called \mathbb{C}^{2}-holomorphic at a point z^{0} or in a domain $D \subset \mathbb{C}^{2}$ if f is \mathbb{C}^{2} differentiable in the neighborhood of z^{0} or at every point of the domain D.

The following statement holds true.
Proposition 4.1. For a quaternion function $f(z)$ to \mathbb{C}^{2}-holomorphic at a point z^{0} or in any domain $D \subset \mathbb{C}^{2}$ it is necessary and sufficient that one of conditions (i)-(iii) from Theorem 3.2 be fulfilled in the neighbothood of x^{0} or at every point of the domain D.

In particular, we have
Proposition 4.2. The \mathbb{C}^{2}-holomorphy at a point or in a domain of a quartenion function $f(z)=f_{1}(z)+f_{2}(z) i_{2}$ is equivalent to the concurrent \mathbb{C}^{2}-holomorphy at the same point or in the same domain of the complex functions $f_{1}(z)$ and $f_{2}(z)$.

5. Integral Representations of \mathbb{C}^{2}-Holomorphic Quaternion Functions

Theorem 5.1. Let a quaternion function $f(z)=f_{1}(z)+f_{2}(z) i_{2}$ be \mathbb{C}^{2} holomorphic in a domain $D \subset \mathbb{C}^{2}$ which is the Cartesian product of simply connected domains $D_{1} \subset \mathbb{C}^{1}$ and $D_{2} \subset \mathbb{C}^{1}$. Then at any point $z=\left(z_{1}, z_{2}\right)$ the representation

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{d t_{1} d t_{2}}{\left(t_{1}-z_{1}\right)\left(t_{2}-z_{2}\right)} f\left(t_{1}, t_{2}\right) \tag{5.1}
\end{equation*}
$$

is fulfilled, where Γ_{1} and Γ_{2} are any closed paths in D_{1} and D_{2}, respectively, which envelop the points z_{1} and z_{2}.

Proof. By Proposition 4.2. we have the equalities [5, p. 28]

$$
\begin{align*}
& f_{1}\left(z_{1}, z_{2}\right)=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{f_{1}\left(t_{1}, t_{2}\right)}{\left(t_{1}-z_{1}\right)\left(t_{2}-z_{2}\right)} d t_{1} d t_{2} \tag{5.2}\\
& f_{2}\left(z_{1}, z_{2}\right)=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{f_{2}\left(t_{1}, t_{2}\right)}{\left(t_{1}-z_{1}\right)\left(t_{2}-z_{2}\right)} d t_{1} d t_{2} \tag{5.3}
\end{align*}
$$

By virtue of equality (1.3) we can write $f_{1}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=d t_{1} d t_{2} f_{1}\left(t_{1}, t_{2}\right)$ and $f_{2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=d t_{1} d t_{2} f_{2}\left(t_{1}, t_{2}\right)$. Hence, from equalities (5.2) and (5.3) we obtain the equality

$$
\begin{gathered}
f_{1}\left(z_{1}, z_{2}\right)+f_{2}\left(z_{1}, z_{2}\right) i_{2}= \\
=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{2} \Gamma_{1}} \frac{d t_{1} d t_{2}}{\left(t_{1}-z_{1}\right)\left(t_{2}-z_{2}\right)}\left[f_{1}\left(t_{1}, t_{2}\right)+f_{2}\left(t_{1}, t_{2}\right) i_{2}\right]
\end{gathered}
$$

which is equivalent to equality (5.1)
Theorem 5.2. If a quaternion function $f\left(z_{1}, z_{2}\right)=f_{1}\left(z_{1}, z_{2}\right)+f_{2}\left(z_{1}, z_{2}\right) i_{2}$ is \mathbb{C}^{2}-holomorphic in the Cartesian product $D_{1} \times D_{2}$ of simply connected domains $D_{1} \subset \mathbb{C}^{1}$ and $D_{2} \subset \mathbb{C}^{1}$, then its partial derivatives $f_{z_{1}}^{\prime}$ and $f_{z_{2}}^{\prime}$ are also \mathbb{C}^{2}-holomorphic quaternion functions in $D_{1} \times D_{2} \subset \mathbb{C}^{2}$.

Proof. According to Proposition 4.2, the \mathbb{C}^{2}-holomorphy of a quaternion function f imples the \mathbb{C}^{2}-holomorphy of the complex functions f_{1} and f_{2} given by equalities (5.2) and (5.3). Therefore their partial derivatives $\frac{d f_{1}}{\partial z_{1}}$, $\frac{d f_{1}}{\partial z_{2}}, \frac{d f_{2}}{\partial z_{1}}$ and $\frac{d f_{2}}{\partial z_{2}}$ are \mathbb{C}^{2}-holomorphic complex functions in $D_{1} \times D_{2}$. Thus equalities (3.10) and (3.11) which are fulfilled for the functions f_{1} and f_{2} will also be fulfilled for their partial derivatives $\frac{d f_{1}}{\partial z_{1}}, \frac{d f_{1}}{\partial z_{2}}, \frac{d f_{2}}{\partial z_{1}}, \frac{d f_{2}}{\partial z_{2}}$. Hence it follows that, as was shown when proving Theorem 3.2, these partial derivatives satisfy equalities (3.3) and (3.4), i.e. are \mathbb{C}^{2}-holomorphic quaternion functions by virtue of statement (ii) from Theorem 3.2.

6. Representation of \mathbb{C}^{2}-Holomorhic Functions by Power SERIES

Theorem 6.1. Let a quaternion function $f(z)=f_{1}(z)+f_{2}(z) i_{2}$ be \mathbb{C}^{2}-holomorphic in a domain $D \subset \mathbb{C}^{2}$ which is the Cartesian product of simply connected domains $D_{1} \subset \mathbb{C}^{1}$ and $D_{2} \subset \mathbb{C}^{1}$. Then at any point $z=$
$\left(z_{1}, z_{2}\right) \in D$ from the neighborhood of $z^{0}=\left(z_{1}^{0}, z_{2}^{0}\right) \in D$ the representation of f by the power series

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\sum_{m, n=0}^{\infty}\left(z_{1}-z_{1}^{0}\right)^{m}\left(z_{2}-z_{2}^{0}\right)^{n} c_{m n} \tag{6.1}
\end{equation*}
$$

is fulfilled, where the quaternion coefficients $c_{m n}$ of the function f are defined by the equalities

$$
\begin{gather*}
c_{m n}=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{d t_{1} d t_{2}}{\left(t_{1}-z_{1}^{0}\right)^{m+1}\left(t_{2}-z_{2}^{0}\right)^{n+1}} f\left(t_{1}, t_{2}\right), \tag{6.2}\\
m!n!c_{m n}=\left(\frac{\partial^{m+n} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{m} \partial z_{2}^{n}}\right)_{\substack{z_{1}=z_{1}^{0} \\
z_{2}=z_{2}^{0}}} \tag{6.3}
\end{gather*}
$$

Proof. By virtue of Proposition 4.2, the complex functions f_{1} and f_{2} are \mathbb{C}^{2}-holomorphic or, which is the same, \mathbb{C}^{2}-analytic in the domain D. Hence we have the equalities

$$
\begin{align*}
& f_{1}\left(z_{1}, z_{2}\right)=\sum_{m, n=0}^{\infty}{ }^{1} c_{m n}\left(z_{1}-z_{1}^{0}\right)^{m}\left(z_{2}-z_{2}^{0}\right)^{n} \tag{6.4}\\
& f_{2}\left(z_{1}, z_{2}\right)=\sum_{m, n=0}^{\infty}{ }^{2} c_{m n}\left(z_{1}-z_{1}^{0}\right)^{m}\left(z_{2}-z_{2}^{0}\right)^{n} \tag{6.5}
\end{align*}
$$

where the complex coefficients of the functions f_{1} and f_{2} are given by the formulas

$$
\begin{align*}
& { }^{1} c_{m n}=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{f_{1}\left(t_{1}, t_{2}\right)}{\left(t_{1}-z_{1}^{0}\right)^{m+1}\left(t_{2}-z_{2}^{0}\right)^{n+1}} d t_{1} d t_{2} \tag{6.6}\\
& { }^{2} c_{m n}=-\frac{1}{4 \pi^{2}} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \frac{f_{2}\left(t_{1}, t_{2}\right)}{\left(t_{1}-z_{1}^{0}\right)^{m+1}\left(t_{2}-z_{2}^{0}\right)^{n+1}} d t_{1} d t_{2} \tag{6.7}
\end{align*}
$$

Using (1.3) and the equality $f_{1}+f_{2} i_{2}=f$, from (6.4), (6.5) and (6.6), (6.7) we obtain respectively equalities (6.1) and (6.2). As to equality (6.3), it is obtained from the well known formulas [5, p. 31]

$$
\begin{aligned}
& m!n!^{1} c_{m n}=\left(\frac{\partial^{m+n} f_{1}\left(t_{1}, t_{2}\right)}{\partial t_{1}^{m} \partial t_{2}^{n}}\right)_{\substack{t_{1}=z_{1}^{0} \\
t_{2}=z_{2}^{0}}} \\
& m!n!^{2} c_{m n}=\left(\frac{\partial^{m+n} f_{2}\left(t_{1}, t_{2}\right)}{\partial t_{1}^{m} \partial t_{2}^{n}}\right)_{\substack{t_{1}=z_{1}^{0} \\
t_{2}=z_{2}^{0}}}
\end{aligned}
$$

taking into account the equalities

$$
\frac{d f}{d z_{1}}=\frac{\partial f_{1}}{\partial z_{1}}+\frac{\partial f_{2}}{\partial z_{1}} i_{2}, \quad \frac{d f}{d z_{2}}=\frac{\partial f_{1}}{\partial z_{2}}+\frac{\partial f_{2}}{\partial z_{2}} i_{2}
$$

References

1. I. L. Kantor and A. S. Solodovnikov, Hypercomplex numbers. (Russian) Nauka, Moscow, 1973.
2. O. Dzagnidze, A necessary and sufficient condition for differentiability functions of several variables. Proc. A. Razmadze Math. Inst. 123 (2000), 23-29.
3. O. Dzagnidze, Some new results on the continuity and differentiability of functions of several real variables. Proc. A. Razmadze Math. Inst. 134 (2004), 1-138.
4. O. Dzagnidze, A criterion of joint \mathbb{C}-differentiability and a new proof of Hartogs' main theorem. J. Appl. Anal. 13 (2007), No. 1, 13-17.
5. B. V. Shabat, Introduction to complex analysis. Part II. Functions of several variables. (Russian) Second edition, revised and augmented. Izdat. Nauka, Moscow, 1976.
(Received 5.01.2015)
Author's address:
A. Razmadze Mathematical Institute
I. Javakhishvili Tbilisi State University

6, Tamarashvili st., Tbilisi 0177, Georgia
E-mail: odzagni@rmi.ge

[^0]: 2010 Mathematics Subject Classification. 30G35, 32A20.
 Key words and phrases. Quaternion, differentiability, \mathbb{C}^{2}-differentiability, \mathbb{C}^{2}-holomorphy.

