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C2-DIFFERENTIABILITY OF QUATERNION FUNCTIONS
AND THEIR REPRESENTATION BY INTEGRALS AND

SERIES

O. DZAGNIDZE

Abstract. In the paper, the necessary and sufficient conditions
are established for a quaternion function to be C2-differentiable
or C2-holomorphic. The representations of C2-holomorphic qua-
ternion functions by double integrals and double power series are
obtained.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÃÀÃÂÄÍÉËÉÀ ÊÅÀÔÄÒÍÉÏÍÖËÉ ×ÖÍØÝÉÉÓ
C2-ÃÉ×ÄÒÄÍÝÉÒÄÁÀÃÏÁÉÓ ÃÀ C2-äÏËÏÌÏÒ×ÖËÏÁÉÓ ÀÖÝÉ-
ËÄÁÄËÉ ÃÀ ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ. ÌÏÝÄÌÖËÉÀ C2-äÏËÏÌÏ-
Ò×ÖËÉ ÊÅÀÔÄÒÍÉÏÍÖËÉ ×ÖÍØÝÉÉÓ ßÀÒÌÏÃÂÄÍÀ ÏÒÌÀÂÉ ÉÍÔÄ-
ÂÒÀËÉÈ ÃÀ ÏÒÌÀÂÉ áÀÒÉÓáÏÅÀÍÉ ÌßÊÒÉÅÉÈ.

1. Introduction

We consider a quaternion function u = f(z) of the quaternion variable z,
where z =

∑3
k=0 xkik, u(z) =

∑3
k=0 uk(z)ik and i0 = 1, i21 = i22 = i23 = −1,

i1i2 = i3 = −i2i1, i2i3 = i1 = −i3i2, i3i1 = i2 = −i1i3. After introducing
the complex variables z1 = x0 + x1i1 and z2 = x2 + x3i1, the quaternion z
takes the form

z = z1 + z2i2 (1.1)
or, briefly, z = (z1, z2). Hence the four-dimensional real Euclidean space
R4 is identified with the two-dimensional complex space C2 having points
z = (z1, z2).

The conjugate quaternion z = x0 − x1i1 − x2i2 − x3i3 will have the form
z = z1 − z2i2, where z1 = x0 − x1i1. We also have the equality

z2i2 = i2z2. (1.2)
Therefore z1 + z2i2 = z1 − i2z2. The equality z = 0 is equivalent to two
equalities z1 = 0 and z2 = 0.
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The product of the quaternion z = z1 + z2i2 by the quaternion w =
w1 + w2i2, which we denote by zw, is defined by the formula [1, p. 37]
zw = (z1w1 −w2z2)+ (w2z1 + z2w1)i2. In particular, for complex variables
z1 and z2 we have

z1z2 = z2z1, z1 ∈ C1, z2 ∈ C1. (1.3)
The set of all points z = (z1, z2) ∈ C2 with the property ∥z − z0∥ < δ,

where ∥z∥ = ∥z1∥ + ∥z2∥, ∥z1∥ = |x0| + |x1|, ∥z2∥ = |x2| + |x3|, is called
the δ-neighborhood of a point z0 = (z01 , z

0
2) ∈ C2 denoted by U(z0, δ). We

denote by the symbol U(z0) the neighborhood of a point z0 in general.
Analogously to equality (1.1), the function u = f(z) takes the form

f = f1 + f2i2, (1.4)
where

f1(z1, z2) = u0(z1, z2) + i1u1(z1, z2)

and
f2(z1, z2) = u2(z1, z2) + i1u3(z1, z2).

2. Differentiability of Quaternion Functions

In this paper we establish some properties of quaternion functions f =
f1 + f2i2 with respect to the complex variables z1 and z2. For this, we
use the necessary and sufficient condition of existence at a point z0 = x0

0 +
x0
1i1 + x0

2i2 + x0
3i3 of the differential df(z0) (with respect to the collection

(x0, x1, x2, x3) of real variables). This condition means the finiteness of the
angular gradient (i.e. the finiteness of all its components) of the function f
at a point z0 and is written as

anggrad df(z0) = (f ′
x̂0
(z0), f ′

x̂1
(z0), f ′

x̂2
(z0), f ′

x̂3
(z0)). (2.1)

This anggrad f(z0) is a particular case of the general case where the
function F (t), t = (t1, . . . , tn), given in a neighborhood of a point t0 =
(t01, . . . , t

0
n) ∈ Rn has the finite angular partial derivative [2, p. 24; 3, p. 61]

with respect to each tk

F ′
t̂k
(t0) = lim

tk→t0k
|tj−t0j |≤cj |tk−t0k|

j ̸=k

F (t)− F (t(t0k))

tk − t0k
(2.2)

where t(t0k) = (t1, . . . , tk−1, t
0
k, tk+1, . . . , tn), provided that it is assumed

that this limit exists and is independent of an arbitrarily chosen collection
c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive constants.

Since the difference tk−t0k in equality (2.2) is a real number, the necessary
and sufficient condition of Rn-differentiability (shortened to differentiability
in the sequel) has one and the same form for real, complex and quaternion
functions.
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Thus, for a quaternion function f = u0 + u1i1 + u2i2 + u3i3 to be differ-
entiable at the point z = x0+x1i1+x2i2+x3i3 the necessary and sufficient
condition is the existence, at z, of finite angular partial derivatives f ′

x̂0
(z),

f ′
x̂1
(z), f ′

x̂2
(z), f ′

x̂3
(z), where f ′

x̂k
= (u0)

′
x̂k

+ i1(u1)
′
x̂k

+ i2(u2)
′
x̂k

+ i3(u3)
′
x̂k

,
k = 0, 1, 2, 3.

Along with this, when the function f is differentiable at a point z, the
following equality [2, p. 25; 3, p. 64] is fulfilled for its differential df(z)

df(z) = f ′
x̂0
(z)dx0 + f ′

x̂1
(z)dx1 + f ′

x̂2
(z)dx2 + f ′

x̂3
(z)dx3,

df(z) = du0(z) + i1du1(z) + i2du2(z) + i3du3(z).
(2.3)

It can be easily verified that the existence of an angular partial derivative
∂f
∂x̂k

of a quaternion function f with respect to a variable xk is equivalent
to the concurrent existence of the angular partial derivatives ∂f1

∂x̂k
and ∂f2

∂x̂k

of the complex functions f1 and f2 with respect to the same xk and the
equality

∂f

∂x̂k
=

∂f1
∂x̂k

+
∂f2
∂x̂k

i2, k = 0, 1, 2, 3, (2.4)

holds, where
∂f1
∂x̂k

=
∂u0

∂x̂k
+ i1

∂u1

∂x̂k
, (2.5)

∂f2
∂x̂k

=
∂u2

∂x̂k
+ i1

∂u3

∂x̂k
. (2.6)

Moreover, the differentiability of a quaternion function f at a point z is
equivalent to the differentiability of the complex functions f1 and f2 at z
and we have the equality

df(z) = df1(z) + df2(z)i2, (2.7)

where

df1(z) = du0(z) + i1du1(z), df2(z) = du2(z) + i1du3(z). (2.8)

3. C2-Differentiability of Quaternion Functions

Definition 3.1. A quaternion function f(z) = f1(z) + f2(z)i2, z =
(z1, z2) = z1 + z2i2, is called C2-differentiable at a point z0 = (z01 , z

0
2) =

z01 + z02i2 if there exist quaternion numbers d1 + d′1i2 and d2 + d′2i2, such
that the equality

lim
z→z0

f(z)− f(z0)−
∑2

k=1(zk − z0k)(dk + d′ki2)

∥z − z0∥
= 0 (3.1)

is fulfilled.
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In that case, we call the sum
2∑

k=1

(zk − z0k)(dk + d′ki2) (3.2)

the C2-differential of the quaternion function f at the point z0.

The following statement is true.

Theorem 3.2. For a quaternion function f(z) = f1(z) + f2(z)i2 to be
C2-differentiable at a point z0 it is necessary and sufficient that one of the
following three conditions be fulfilled:

(i) The complex functions f1(z) and f2(z) are C2-differentiable at the
point z0;

(ii) The equalities
∂f

∂x̂0
(z0) + i1

∂f

∂x̂1
(z0) = 0 (3.3)

and
∂f

∂x̂2
(z0) + i1

∂f

∂x̂3
(z0) = 0 (3.4)

are fulfilled at the point z0;
(iii) The equality

df(z0) = dz1
∂f

∂ẑ1
(z0) + dz2

∂f

∂ẑ2
(z0) (3.5)

holds, where
∂f

∂ẑ1
=

∂f1
∂ẑ1

+
∂f1
∂ẑ1

i1,
∂f

∂ẑ2
=

∂f1
∂ẑ2

+
∂f2
∂ẑ2

i1 (3.6)

and for a complex function g(z1, z2) of two complex variables z1 and z2 the
formal angular partial derivatives ∂g

∂ẑ1
and ∂g

∂ẑ2
with respect to z1 and z2 are

defined by the equality [4]

∂g

∂ẑ1
=

1

2

( ∂g

∂x̂0
− i1

∂g

∂x̂1

)
,

∂g

∂ẑ2
=

1

2

( ∂g

∂x̂2
− i1

∂g

∂x̂3

)
. (3.7)

Proof. (i) Equality (3.1) is equivalent to the fulfillment of the following two
equalities

lim
z→z0

f1(z)− f1(z
0)−

∑2
k=1 dk(zk − z0k)

∥z − z0∥
= 0 (3.8)

and

lim
z→z0

f2(z)− f2(z
0)−

∑2
k=1 d

′
k(zk − z0k)

∥z − z0∥
= 0, (3.9)

which are respectively equivalent to the C2-differentiability of the complex
functions f1(z) and f2(z) at the point z0 [4, equality (3.2)].
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(ii) According to the statement (i), the C2-differentiability of a quaternion
function f = f1+f2i2 at a point z0 is equivalent to the C2-differentiability of
the complex functions f1 and f2. On the other hand, the C2-differentiability
of the complex function f1 at the point z0 is equivalent to the fulfillment of
the equalities [4, equality (3.1)]

∂f1
∂x̂0

(z0) + i1
∂f1
∂x̂1

(z0) = 0,
∂f1
∂x̂2

(z0) + i1
∂f1
∂x̂3

(z0) = 0. (3.10)

Analogously, for the complex function f2 we have
∂f2
∂x̂0

(z0) + i1
∂f2
∂x̂1

(z0) = 0,
∂f2
∂x̂2

(z0) + i1
∂f2
∂x̂3

(z0) = 0. (3.11)

If we perform the right multiplication of equalities (3.11) by i2 and sum
the resulting equalities with equalities (3.10), then we will obtain equalities
(3.3) and (3.4).

(iii) Again, by virtue of statement (i), the C2-differentiability of the
quaternion function f is equivalent to the C2-differentiability of the com-
plex functions f1 and f2. But the complex function f1 is C2-differentiable
at the point z0 if and only if the equality [4, equality (3.7)]

df1(z
0) =

2∑
k=1

∂f1
∂ẑk

(z0)dzk (3.12)

is fulfilled.
Analogously, for the complex function f2 to be C2-differentiable at a

point z0 it is necessary and sufficient that the equality

df2(z
0) =

2∑
k=1

∂f2
∂ẑk

(z0)dzk (3.13)

be fulfilled.
Using (1.3) we can rewrite equalities (3.12) and (3.13) in the form

df1 = dz1
∂f1
∂ẑ1

+ dz2
∂f1
∂ẑ2

, df2 = dz1
∂f2
∂ẑ1

+ dz2
∂f2
∂ẑ2

. (3.14)

Hence we obtain the equality

df1 + dfii2 = dz1
∂(f1 + f2i2)

∂ẑ1
+ dz2

∂(f1 + f2i2)

∂ẑ2
,

from which by virtue of (2.7) we obtain equality (3.5). �
Remark 3.3. The equivalence of the C2-differentiability of a quaternion

function f = f1+f2i2 with the concurrent C2-differentiability of its complex
components f1 and f2 (see statement (i) from Theorem 3.2) has no analogue
for the C1-differentiability in the domain. That this is so follows from the
fact that a C1-differentiable real function in a domain is necessarily constant
in this domain.
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Theorem 3.4. The C2-differential of a quaternion function f is equal
to the differential of this function.

Proof. For the coefficients dk and d′k figuring in equalities (3.8) and (3.9)
we know the equalities [5, p. 31]

dk =
∂f1
∂zk

(z0), d′k =
∂f2
∂zk

(z0).

But for a C2-differentiable complex function the partial derivative with
respect to the variable zk is equal to its angular partial derivative with
respect to the same zk [4, equality (2.1)]. Therefore the C2-differential of
the function f = f1+f2i2 defined by equality (3.2) at the point z0 is written
as

2∑
k=1

dzk
∂f

∂ẑk
(z0).

But the latter expression is equal by virtue of equality (3.5) to df(z0). �

4. C2-Holomorphy of Quaternion Functions

Definition 4.1. A quaternion function f(z) = f1(z) + f2(z)i2 will be
called C2-holomorphic at a point z0 or in a domain D ⊂ C2 if f is C2-
differentiable in the neighborhood of z0 or at every point of the domain D.

The following statement holds true.

Proposition 4.1. For a quaternion function f(z) to C2-holomorphic at
a point z0 or in any domain D ⊂ C2 it is necessary and sufficient that one
of conditions (i)–(iii) from Theorem 3.2 be fulfilled in the neighbothood of
x0 or at every point of the domain D.

In particular, we have

Proposition 4.2. The C2-holomorphy at a point or in a domain of a
quartenion function f(z) = f1(z) + f2(z)i2 is equivalent to the concurrent
C2-holomorphy at the same point or in the same domain of the complex
functions f1(z) and f2(z).

5. Integral Representations of C2-Holomorphic Quaternion
Functions

Theorem 5.1. Let a quaternion function f(z) = f1(z) + f2(z)i2 be C2-
holomorphic in a domain D ⊂ C2 which is the Cartesian product of simply
connected domains D1 ⊂ C1 and D2 ⊂ C1. Then at any point z = (z1, z2)
the representation

f(z1, z2) = − 1

4π2

∫
Γ1

∫
Γ2

dt1dt2
(t1 − z1)(t2 − z2)

f(t1, t2), (5.1)
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is fulfilled, where Γ1 and Γ2 are any closed paths in D1 and D2, respectively,
which envelop the points z1 and z2.

Proof. By Proposition 4.2. we have the equalities [5, p. 28]

f1(z1, z2) = − 1

4π2

∫
Γ1

∫
Γ2

f1(t1, t2)

(t1 − z1)(t2 − z2)
dt1dt2, (5.2)

f2(z1, z2) = − 1

4π2

∫
Γ1

∫
Γ2

f2(t1, t2)

(t1 − z1)(t2 − z2)
dt1dt2. (5.3)

By virtue of equality (1.3) we can write f1(t1, t2)dt1dt2 = dt1dt2f1(t1, t2)
and f2(t1, t2)dt1dt2 = dt1dt2f2(t1, t2). Hence, from equalities (5.2) and (5.3)
we obtain the equality

f1(z1, z2) + f2(z1, z2)i2 =

= − 1

4π2

∫
Γ2Γ1

dt1dt2
(t1 − z1)(t2 − z2)

[f1(t1, t2) + f2(t1, t2)i2],

which is equivalent to equality (5.1) �

Theorem 5.2. If a quaternion function f(z1, z2) = f1(z1, z2)+f2(z1, z2)i2
is C2-holomorphic in the Cartesian product D1 × D2 of simply connected
domains D1 ⊂ C1 and D2 ⊂ C1, then its partial derivatives f ′

z1 and f ′
z2 are

also C2-holomorphic quaternion functions in D1 ×D2 ⊂ C2.

Proof. According to Proposition 4.2, the C2-holomorphy of a quaternion
function f imples the C2-holomorphy of the complex functions f1 and f2

given by equalities (5.2) and (5.3). Therefore their partial derivatives df1
∂z1

,
df1
∂z2

, df2
∂z1

and df2
∂z2

are C2-holomorphic complex functions in D1×D2. Thus
equalities (3.10) and (3.11) which are fulfilled for the functions f1 and f2 will
also be fulfilled for their partial derivatives df1

∂z1
, df1
∂z2

, df2
∂z1

, df2
∂z2

. Hence it
follows that, as was shown when proving Theorem 3.2, these partial deriva-
tives satisfy equalities (3.3) and (3.4), i.e. are C2-holomorphic quaternion
functions by virtue of statement (ii) from Theorem 3.2. �

6. Representation of C2-Holomorhic Functions by Power
Series

Theorem 6.1. Let a quaternion function f(z) = f1(z) + f2(z)i2 be
C2-holomorphic in a domain D ⊂ C2 which is the Cartesian product of
simply connected domains D1 ⊂ C1 and D2 ⊂ C1. Then at any point z =
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(z1, z2) ∈ D from the neighborhood of z0 = (z01 , z
0
2) ∈ D the representation

of f by the power series

f(z1, z2) =

∞∑
m,n=0

(z1 − z01)
m(z2 − z02)

ncmn, (6.1)

is fulfilled, where the quaternion coefficients cmn of the function f are defined
by the equalities

cmn = − 1

4π2

∫
Γ1

∫
Γ2

dt1dt2
(t1 − z01)

m+1(t2 − z02)
n+1

f(t1, t2), (6.2)

m!n!cmn =
(∂m+nf(z1, z2)

∂zm1 ∂zn2

)
z1=z0

1

z2=z0
2

. (6.3)

Proof. By virtue of Proposition 4.2, the complex functions f1 and f2 are
C2-holomorphic or, which is the same, C2-analytic in the domain D. Hence
we have the equalities

f1(z1, z2) =

∞∑
m,n=0

1cmn(z1 − z01)
m(z2 − z02)

n, (6.4)

f2(z1, z2) =
∞∑

m,n=0

2cmn(z1 − z01)
m(z2 − z02)

n, (6.5)

where the complex coefficients of the functions f1 and f2 are given by the
formulas

1cmn = − 1

4π2

∫
Γ1

∫
Γ2

f1(t1, t2)

(t1 − z01)
m+1(t2 − z02)

n+1
dt1dt2, (6.6)

2cmn = − 1

4π2

∫
Γ1

∫
Γ2

f2(t1, t2)

(t1 − z01)
m+1(t2 − z02)

n+1
dt1dt2. (6.7)

Using (1.3) and the equality f1 + f2i2 = f , from (6.4), (6.5) and (6.6),
(6.7) we obtain respectively equalities (6.1) and (6.2). As to equality (6.3),
it is obtained from the well known formulas [5, p. 31]

m!n!1cmn =
(∂m+nf1(t1, t2)

∂tm1 ∂tn2

)
t1=z0

1

t2=z0
2

,

m!n!2cmn =
(∂m+nf2(t1, t2)

∂tm1 ∂tn2

)
t1=z0

1

t2=z0
2

,

taking into account the equalities
df

dz1
=

∂f1
∂z1

+
∂f2
∂z1

i2,
df

dz2
=

∂f1
∂z2

+
∂f2
∂z2

i2. �
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