Proceedings of A. Razmadze
Mathematical Institute
Vol. 167 (2015), 3-18

NEW ESTIMATIONS OF THE REMAINDER IN THREE-POINT AND FOUR-POINT QUADRATURE FORMULAE VIA THE CHEBYSHEV FUNCTIONAL

K. M. AWAN, J. PEC̆ARIĆ AND M. R. PENAVA

Abstract

We derive some new bounds for general weighted three-point and four-point quadrature formulae by using recently obtained inequality for the Chebyshev functional. As special cases, we provide some new estimates for the error in Gauss-Chebyshev quadrature rules.

1. Introduction

The well known Chebyshev functional [4] is defined by

$$
T(f, g)=\frac{1}{b-a} \int_{a}^{b} f(s) g(s) \mathrm{d} s-\frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s \cdot \frac{1}{b-a} \int_{a}^{b} g(s) \mathrm{d} s .
$$

where $f, g:[a, b] \rightarrow \mathbf{R}$ are two real functions such that $f, g, f \cdot g \in L^{1}[a, b]$. In paper [2] P. Cerone and S. S. Dragomir proved the following result:

Lemma 1. If $h:[a, b] \rightarrow \mathbf{R}$ is an absolutely continuous function with

$$
(\cdot-a)(b-\cdot)\left(h^{\prime}\right)^{2} \in L^{1}[a, b],
$$

then the following inequality holds

$$
\begin{equation*}
T(h, h) \leq \frac{1}{2(b-a)} \int_{a}^{b}(s-a)(b-s)\left[h^{\prime}(s)\right]^{2} \mathrm{~d} s \tag{1.1}
\end{equation*}
$$

[^0]The constant $1 / 2$ is the best possible.
Many researchers have investigated the Chebyshev functional and inequalities related to the Chebyshev functional (see [4], [5], [6] and the references cited therein). In this note we will give some new bounds for three-point and four-point quadrature formulae using Lemma 1 and general weighted three-point and four-point quadrature formulae recently published in $[7]$ and [8]. We will use the above results to get the error estimates for Simpson's, dual Simpson's and Maclaurin's three-point formula and for three-point Gauss-Chebyshev formulae of the first kind and of the second kind. Also, the corresponding error estimates for Simpson's $3 / 8$ formula and Lobatto four-point formula will be derived. More about quadrature formulae and error estimations (from the point of view of inequality theory) can be found in monographs [1] and [3]. The usual convention $f^{(0)}=f$, $0!=1$ and $\sum_{i=0}^{-1} \cdot=0$ will be used.

2. Three-Point quadrature formulae

Here and hereafter the nonnegative normalized weighted function w : $[a, b] \rightarrow[0, \infty)$ is integrable function satisfying $\int_{a}^{b} w(s) d s=1$, and $W(s)=$ $\int_{a}^{s} w(u) \mathrm{d} u$ for $s \in[a, b], W(s)=0$ for $s<a$ and $W(s)=1$ for $s>b$. J. Pečarić and M. Ribičić Penava [7] proved the following general weighted three-point quadrature formula:

Theorem 1. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let f : $I \rightarrow \mathbf{R}$ be such that $f^{(n-1)}$ is absolutely continuous for some $n \geq 1$. Let $w:[a, b] \rightarrow[0, \infty)$ be some nonnegative normalized weighted function and $A:\left[a, \frac{a+b}{2}\right) \rightarrow R^{+}$. Then for each $x \in\left[a, \frac{a+b}{2}\right)$ the following identity holds

$$
\begin{equation*}
\int_{a}^{b} w(s) f(s) \mathrm{d} s=Q_{n}(f)+\frac{1}{(n-1)!} \int_{a}^{b} F_{n}^{w}(x, s) f^{(n)}(s) \mathrm{d} s \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
Q_{n}(f)= & A(x)\left[\sum_{i=0}^{n-1} \frac{f^{(i)}(x)}{i!} \int_{a}^{b} w(s)(s-x)^{i} \mathrm{~d} s+\right. \\
& \left.+\sum_{i=0}^{n-1} \frac{f^{(i)}(a+b-x)}{i!} \int_{a}^{b} w(s)(s-a-b+x)^{i} \mathrm{~d} s\right]+ \\
& +(1-2 A(x)) \sum_{i=0}^{n-1} \frac{f^{(i)}\left(\frac{a+b}{2}\right)}{i!} \int_{a}^{b} w(s)\left(s-\frac{a+b}{2}\right)^{i} \mathrm{~d} s \tag{2.2}
\end{align*}
$$

and the function $F_{n}^{w}(x, s)$ satisfies the conditions

$$
\begin{align*}
& F_{n}^{w}(x, s)= \\
& = \begin{cases}-\int_{a}^{s} w(u)(u-s)^{n-1} d u, & a \leq s \leq x, \\
(A(x)-1) \int_{a}^{s} w(u)(u-s)^{n-1} d u+ \\
\quad+A(x) \int_{s}^{b} w(u)(u-s)^{n-1} d u, & x<s \leq \frac{a+b}{2}, \\
-A(x) \int_{a}^{s} w(u)(u-s)^{n-1} d u- & \\
\quad-(A(x)-1) \int_{s}^{b} w(u)(u-s)^{n-1} d u, \\
\int_{s}^{b} w(u)(u-s)^{n-1} d u, & a+b \\
2 & a+b-x<s \leq b .\end{cases}
\end{align*}
$$

Using identity (2.1) and Lemma 1 we get some new bounds for the remainders in general weighted three-point formula. Let us recall the divided difference of function $f^{(n)}$ is defined as

$$
\left[f^{(n)} ; a, b\right]=\frac{f^{(n)}(b)-f^{(n)}(a)}{b-a}
$$

Theorem 2. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let $w:[a, b] \rightarrow$ $[0, \infty)$ be some nonnegative normalized weighted function. Let $f: I \rightarrow \mathbf{R}$ be such that $f^{(n)}$ is absolutely continuous and $A:\left(a, \frac{a+b}{2}\right) \rightarrow R^{+}$. Then for each $x \in\left[a, \frac{a+b}{2}\right)$ we have

$$
\begin{gather*}
\int_{a}^{b} w(s) f(s) \mathrm{d} s=Q_{n}(f)+\frac{1}{(n-1)!} \int_{a}^{b} F_{n}^{w}(x, s) \mathrm{d} s\left[f^{(n-1)} ; a, b\right]+ \\
+G_{n}^{w}(f, x) \tag{2.4}
\end{gather*}
$$

and the remainder $G_{n}^{w}(f, x)$ satisfies the estimation

$$
\begin{align*}
\left|G_{n}^{w}(f, x)\right| & \leq \frac{\sqrt{(b-a)}}{\sqrt{2}(n-1)!}\left[T\left(F_{n}^{w}(x, \cdot), F_{n}^{w}(x, \cdot)\right)\right]^{1 / 2} \times \\
& \times\left[\int_{a}^{b}(s-a)(b-s)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2} \tag{2.5}
\end{align*}
$$

where $F_{n}^{w}(x, \cdot)$ is defined by (2.3).
Proof. The identity (2.1) can be rewritten as

$$
\begin{aligned}
& \int_{a}^{b} w(s) f(s) \mathrm{d} s= \\
& =Q_{n}(f)+\frac{1}{(n-1)!(b-a)} \int_{a}^{b} F_{n}^{w}(x, s) \mathrm{d} s \int_{a}^{b} f^{(n)}(s) \mathrm{d} s+G_{n}^{w}(f, x)
\end{aligned}
$$

Since

$$
\int_{a}^{b} f^{(n)}(s) \mathrm{d} s=f^{(n-1)}(b)-f^{(n-1)}(a)
$$

then

$$
\begin{align*}
G_{n}^{w}(f, x) & =\frac{1}{(n-1)!} \int_{a}^{b} F_{n}^{w}(x, s) f^{(n)}(s) \mathrm{d} s- \\
& -\frac{1}{(n-1)!} \cdot \frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a} \int_{a}^{b} F_{n}^{w}(x, s) \mathrm{d} s . \tag{2.6}
\end{align*}
$$

Now, by using Cauchy-Schwartz inequality for double integrals and applying Lemma 1 with $f^{(n)}$ in place of h, we obtain

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} F_{n}^{w}(x, s) f^{(n)}(s) \mathrm{d} s-\frac{1}{b-a} \int_{a}^{b} F_{n}^{w}(x, s) \mathrm{d} s \cdot \frac{1}{b-a} \int_{a}^{b} f^{(n)}(s) \mathrm{d} s\right| \leq \\
& \leq\left[T\left(F_{n}^{w}(x, \cdot), F_{n}^{w}(x, \cdot)\right)\right]^{1 / 2} \cdot\left[T\left(f^{(n)}, f^{(n)}\right)\right]^{1 / 2}< \\
& <\frac{1}{\sqrt{2(b-a)}}\left[T\left(F_{n}^{w}(x, \cdot), F_{n}^{w}(x, \cdot)\right)\right]^{1 / 2} \times \\
& \quad \times\left[\int_{a}^{b}(s-a)(b-s)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2} . \tag{2.7}
\end{align*}
$$

Finally, after multiplying (2.7) by $\frac{b-a}{(n-1)!}$ and combining this with (2.6) we get the estimation (2.5).

Now, we apply the previous results to obtain some error estimates for Gauss-Chebyshev quadrature rules (see [9]). For $w(s)=\frac{1}{\pi \sqrt{1-s^{2}}}, s \in(-1,1)$ we get some new bounds for Gauss-Chebyshev three-point formulae of the first kind (Corollaries 1, 2, 3). Further, for $w(s)=\frac{2}{\pi} \sqrt{1-s^{2}}, s \in[-1,1]$ we derive some new bounds for Gauss-Chebyshev three-point formulae of the second kind (Corollaries 4, 5, 6).

Corollary 1. Let I be an open interval in $\mathbf{R},[-1,1] \subset I$, and let $f: I \rightarrow$ \mathbf{R} be such that f^{\prime} is absolutely continuous. Then the following inequality holds

$$
\begin{gathered}
\left|\int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}} \mathrm{~d} s-\frac{\pi}{3}\left[f\left(-\frac{\sqrt{3}}{2}\right)+f(0)+f\left(\frac{\sqrt{3}}{2}\right)\right]\right|< \\
\quad<C_{1}\left(-\frac{\sqrt{3}}{2}\right) \cdot\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{\prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{gathered}
$$

where $C_{1}\left(-\frac{\sqrt{3}}{2}\right)=\left(\frac{2 \pi-6}{3}\right)^{1 / 2}$.
Proof. This is a special case of Theorem 2 for $n=1, a=-1, b=1$, $x=-\frac{\sqrt{3}}{2}, A\left(-\frac{\sqrt{3}}{2}\right)=\frac{1}{3}$ and $w(s)=\frac{1}{\pi \sqrt{1-s^{2}}}, s \in(-1,1)$.

Corollary 2. Let I be an open interval in $\mathbf{R},[-1,1] \subset I$, and let $f: I \rightarrow$ \mathbf{R} be such that $f^{\prime \prime}$ is absolutely continuous. Then the following inequality holds

$$
\begin{aligned}
& \left\lvert\, \int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}} \mathrm{~d} s-\frac{\pi}{3}\left[f\left(-\frac{\sqrt{3}}{2}\right)+f(0)+f\left(\frac{\sqrt{3}}{2}\right)\right]-\right. \\
& \left.\quad-\frac{\pi \sqrt{3}}{6}\left[f^{\prime}\left(-\frac{\sqrt{3}}{2}\right)-f^{\prime}\left(\frac{\sqrt{3}}{2}\right)\right]-\frac{\pi}{2}\left[f^{\prime} ;-1,1\right] \right\rvert\,< \\
& \quad<C_{2}\left(-\frac{\sqrt{3}}{2}\right) \cdot\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{\prime \prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

where $C_{2}\left(-\frac{\sqrt{3}}{2}\right)=\frac{1}{12 \sqrt{3}}\left(256+16 \pi-27 \pi^{2}\right)^{1 / 2}$.
Proof. Applying Theorem 2 with $n=2, a=-1, b=1, x=-\frac{\sqrt{3}}{2}$, $A\left(-\frac{\sqrt{3}}{2}\right)=\frac{1}{3}$ and $w(s)=\frac{1}{\pi \sqrt{1-s^{2}}}, s \in(-1,1)$ we get above inequality.

Corollary 3. Let I be an open interval in $\mathbf{R},[-1,1] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{\prime \prime \prime}$ is absolutely continuous. Then the following inequality holds

$$
\begin{aligned}
& \left\lvert\, \int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}} \mathrm{~d} s-\frac{\pi}{3}\left[f\left(-\frac{\sqrt{3}}{2}\right)+f(0)+f\left(\frac{\sqrt{3}}{2}\right)\right]-\right. \\
& \quad-\frac{\pi \sqrt{3}}{6}\left[f^{\prime}\left(-\frac{\sqrt{3}}{2}\right)-f^{\prime}\left(\frac{\sqrt{3}}{2}\right)\right]- \\
& \left.\quad-\frac{\pi}{12}\left[\frac{5}{2} f^{\prime \prime}\left(-\frac{\sqrt{3}}{2}\right)+f^{\prime \prime}(0)+\frac{5}{2} f^{\prime \prime}\left(\frac{\sqrt{3}}{2}\right)\right] \right\rvert\,< \\
& \quad<C_{3}\left(-\frac{\sqrt{3}}{2}\right) \cdot\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{(4)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

where $C_{3}\left(-\frac{\sqrt{3}}{2}\right)=\frac{1}{120 \sqrt{30}}(-32768+24655 \pi)^{1 / 2}$.
Proof. Applying Theorem 2 with $n=3, a=-1, b=1, x=-\frac{\sqrt{3}}{2}$, $A\left(-\frac{\sqrt{3}}{2}\right)=\frac{1}{3}$ and $w(s)=\frac{1}{\pi \sqrt{1-s^{2}}}, s \in(-1,1)$ we get above inequality.

Corollary 4. Let I be an open interval in $\mathbf{R},[-1,1] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that f^{\prime} is absolutely continuous. Then the following inequality holds

$$
\begin{aligned}
& \left|\int_{-1}^{1} \sqrt{1-s^{2}} f(s) \mathrm{d} s-\frac{\pi}{8}\left[f\left(-\frac{\sqrt{2}}{2}\right)+2 f(0)+f\left(\frac{\sqrt{2}}{2}\right)\right]\right|< \\
& \quad<C_{1}\left(-\frac{\sqrt{2}}{2}\right) \cdot\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{\prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

where $C_{1}\left(-\frac{\sqrt{2}}{2}\right)=\frac{1}{24 \sqrt{10}}\left(-2048+60(8+5 \sqrt{2}) \pi-45 \sqrt{2} \pi^{2}\right)^{1 / 2}$.
Proof. This is a special case of Theorem 2 for $n=1, a=-1, b=1$, $x=-\frac{\sqrt{2}}{2}, A\left(-\frac{\sqrt{2}}{2}\right)=\frac{1}{4}$ and $w(s)=\frac{2 \sqrt{1-s^{2}}}{\pi}, s \in[-1,1]$.

Corollary 5. Let I be an open interval in $\mathbf{R},[-1,1] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{\prime \prime}$ is absolutely continuous. Then the following
inequality holds

$$
\begin{aligned}
& \left\lvert\, \int_{-1}^{1} \sqrt{1-s^{2}} f(s) \mathrm{d} s-\frac{\pi}{8}\left[f\left(-\frac{\sqrt{2}}{2}\right)+2 f(0)+f\left(\frac{\sqrt{2}}{2}\right)\right]-\right. \\
& \left.\quad-\frac{\pi \sqrt{2}}{16}\left[f^{\prime}\left(-\frac{\sqrt{2}}{2}\right)-f^{\prime}\left(\frac{\sqrt{2}}{2}\right)\right]-\frac{\pi}{8}\left[f^{\prime} ;-1,1\right] \right\rvert\,< \\
& \quad<C_{2}\left(-\frac{\sqrt{2}}{2}\right) \cdot\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{\prime \prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

where $C_{2}\left(-\frac{\sqrt{2}}{2}\right)=\frac{1}{240 \sqrt{21}}(65536-105 \pi(64-92 \sqrt{2}+15(3+\sqrt{2}) \pi))^{1 / 2}$.
Proof. This is a special case of Theorem 2 for $n=2, a=-1, b=1$, $x=-\frac{\sqrt{2}}{2}, A\left(-\frac{\sqrt{2}}{2}\right)=\frac{1}{4}$ and $w(s)=\frac{2}{\pi} \sqrt{1-s^{2}}, s \in[-1,1]$.

Corollary 6. Let I be an open interval in $\mathbf{R},[-1,1] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{\prime \prime \prime}$ is absolutely continuous. Then the following inequality holds

$$
\begin{aligned}
\mid \int_{-1}^{1} & \sqrt{1-s^{2}} f(s) \mathrm{d} s-\frac{\pi}{8}\left[f\left(-\frac{\sqrt{2}}{2}\right)+2 f(0)+f\left(\frac{\sqrt{2}}{2}\right)\right]- \\
& -\frac{\pi \sqrt{2}}{16}\left[f^{\prime}\left(-\frac{\sqrt{2}}{2}\right)-f^{\prime}\left(\frac{\sqrt{2}}{2}\right)\right]- \\
& \left.-\frac{\pi}{64}\left[3 f^{\prime \prime}\left(-\frac{\sqrt{2}}{2}\right)+2 f^{\prime \prime}(0)+3 f^{\prime \prime}\left(\frac{\sqrt{2}}{2}\right)\right] \right\rvert\,< \\
& <C_{3}\left(-\frac{\sqrt{2}}{2}\right) \cdot\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{(4)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

where $C_{3}\left(-\frac{\sqrt{2}}{2}\right)=\frac{1}{20160 \sqrt{10}}(-16777216+2520 \pi(1376+3887 \sqrt{2})-$ $\left.1554525 \sqrt{2} \pi^{2}\right)^{1 / 2}$.

Proof. Applying Theorem 2 with $n=3, a=-1, b=1, x=-\frac{\sqrt{2}}{2}$, $A\left(-\frac{\sqrt{2}}{2}\right)=\frac{1}{4}$ and $w(s)=\frac{2}{\pi} \sqrt{1-s^{2}}, s \in[-1,1]$ we get above inequality.

In non-weighted case for a special choice of the function $A, A(x)=$ $\frac{(b-a)^{2}}{6(a+b-2 x)^{2}}, x \in\left[a, \frac{a+b}{2}\right)$ and special choices of $x\left(x=a, x=\frac{3 a+b}{4}, x=\frac{5 a+b}{6}\right)$ we obtain some new bounds for the well-known Simpson's, dual Simpson's and Maclaurin's formula, respectively. In the following corollaries we will
use the Beta function and the incomplete Beta function of Euler type defined by
$B(u, v)=\int_{0}^{1} s^{u-1}(1-s)^{v-1} \mathrm{~d} s, \quad B_{r}(u, v)=\int_{0}^{r} s^{u-1}(1-s)^{v-1} \mathrm{~d} s, \quad u, v>0$.
Corollary 7. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{(n)}$ is absolutely continuous. Then the following identity holds

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s=\frac{1}{6} \sum_{i=0}^{n-1}\left[f^{(i)}(a)+(-1)^{i} f^{(i)}(b)\right] \frac{(b-a)^{i}}{(i+1)!}+ \\
& \quad+\frac{2}{3} \sum_{i=0}^{n-1} f^{(i)}\left(\frac{a+b}{2}\right) \frac{\left(1+(-1)^{i}\right)(b-a)^{i}}{2^{i+1}(i+1)!}+ \\
& \quad+\frac{\left(2^{n-1}+1\right)\left(1+(-1)^{n}\right)(b-a)^{n}}{3 \cdot 2^{n}(n+1)!}\left[f^{(n-1)} ; a, b\right]+G_{n}(f, a)
\end{aligned}
$$

The remainder $G_{n}(f, a)$ satisfies the estimation

$$
\begin{align*}
\left|G_{n}(f, a)\right| & \leq \frac{\sqrt{b-a}}{\sqrt{2} \cdot n!}\left[T\left(F_{n}(a, \cdot), F_{n}(a, \cdot)\right)\right]^{1 / 2} \times \\
& \times\left[\int_{a}^{b}(s-a)(b-s)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}, \tag{2.8}
\end{align*}
$$

where

$$
\begin{aligned}
& T\left(F_{n}(a, \cdot), F_{n}(a, \cdot)\right)= \\
& =\frac{(b-a)^{2 n-2}}{9}\left[\frac{2^{2 n-2}+3}{2^{2 n-1}(2 n+1)}+\frac{5(-1)^{n} B(n+1, n+1)}{2}-\right. \\
& \left.\quad-\left(\frac{\left(2^{n-1}+1\right)\left(1+(-1)^{n}\right)}{2^{n}(n+1)}\right)^{2}\right] .
\end{aligned}
$$

Proof. This is a special case of Theorem 2 for $w(s)=\frac{1}{b-a}, s \in[a, b], x=a$ and $A(a)=\frac{1}{6}$.

Remark 1. For $n=1$ in Corollary 7 we have

$$
\begin{aligned}
& \left|\frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s-\frac{1}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)\right|< \\
& <\frac{\sqrt{b-a}}{6 \sqrt{2}} \cdot\left[\int_{a}^{b}(s-a)(b-s)\left(f^{\prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

Corollary 8. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{(n)}$ is absolutely continuous. Then the following identity holds

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s= \\
& =\frac{2}{3} \sum_{i=0}^{n-1}\left[f^{(i)}\left(\frac{3 a+b}{4}\right)+(-1)^{i} f^{(i)}\left(\frac{a+3 b}{4}\right)\right] \frac{\left[3^{i+1}-(-1)^{i+1}\right](b-a)^{i}}{4^{i+1}(i+1)!}- \\
& -\frac{1}{3} \sum_{i=0}^{n-1} f^{(i)}\left(\frac{a+b}{2}\right) \frac{\left(1+(-1)^{i}\right)(b-a)^{i}}{2^{i+1}(i+1)!}+ \\
& +\frac{\left(3^{n+1}-2^{n}+1\right)\left(1+(-1)^{n}\right)(b-a)^{n}}{3 \cdot 2^{2 n+1}(n+1)!}\left[f^{(n-1)} ; a, b\right]+G_{n}\left(f, \frac{3 a+b}{4}\right) .
\end{aligned}
$$

The remainder $G_{n}\left(f, \frac{3 a+b}{4}\right)$ satisfies the bound

$$
\begin{align*}
\left|G_{n}\left(f, \frac{3 a+b}{4}\right)\right| & \leq \frac{\sqrt{b-a}}{\sqrt{2} \cdot n!}\left[T\left(F_{n}\left(\frac{3 a+b}{4}, \cdot\right), F_{n}\left(\frac{3 a+b}{4}, \cdot\right)\right)\right]^{1 / 2} \times \\
& \times\left[\int_{a}^{b}(s-a)(b-s)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}, \tag{2.9}
\end{align*}
$$

where

$$
\begin{aligned}
& T\left(F_{n}\left(\frac{3 a+b}{4}, \cdot\right), F_{n}\left(\frac{3 a+b}{4}, \cdot\right)\right)= \\
& =\frac{4(b-a)^{2 n-2}}{9}\left[\frac{3^{2 n+1}-3 \cdot 2^{2 n-1}+2}{2^{4 n+1}(2 n+1)}+\right. \\
& +(-1)^{n}\left(B_{\frac{3}{4}}(n+1, n+1)-B_{\frac{1}{4}}(n+1, n+1)\right)- \\
& \left.-\left(\frac{\left(3^{n+1}-2^{n}+1\right)\left(1+(-1)^{n}\right)}{2^{2 n+2}(n+1)}\right)^{2}\right] .
\end{aligned}
$$

Proof. This is a special case of Theorem 2 for $w(s)=\frac{1}{b-a}, s \in[a, b]$, $x=\frac{3 a+b}{4}$ and $A\left(\frac{3 a+b}{4}\right)=\frac{2}{3}$.

Remark 2. Let us consider the special case $n=1$ in Corollary 8. We have

$$
\begin{aligned}
& \left|\frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s-\frac{1}{3}\left(2 f\left(\frac{3 a+b}{4}\right)-f\left(\frac{a+b}{2}\right)+2 f\left(\frac{a+3 b}{4}\right)\right)\right|< \\
& <\frac{\sqrt{b-a}}{6} \cdot\left[\int_{a}^{b}(s-a)(b-s)\left(f^{\prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

Corollary 9. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{(n)}$ is absolutely continuous. Then the following identity holds

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s= \\
& =\frac{3}{8} \sum_{i=0}^{n-1}\left[f^{(i)}\left(\frac{5 a+b}{6}\right)+(-1)^{i} f^{(i)}\left(\frac{a+5 b}{6}\right)\right] \frac{\left[5^{i+1}-(-1)^{i+1}\right](b-a)^{i}}{6^{i+1}(i+1)!}+ \\
& +\frac{1}{4} \sum_{i=0}^{n-1} f^{(i)}\left(\frac{a+b}{2}\right) \frac{\left(1+(-1)^{i}\right)(b-a)^{i}}{2^{i+1}(i+1)!}+ \\
& +\frac{\left(5^{n+1}+2 \cdot 3^{n}+1\right)\left(1+(-1)^{n}\right)(b-a)^{n}}{2^{n+4} \cdot 3^{n}(n+1)!}\left[f^{(n-1)} ; a, b\right]+G_{n}\left(f, \frac{5 a+b}{6}\right)
\end{aligned}
$$

The remainder $G_{n}\left(f, \frac{5 a+b}{6}\right)$ satisfies the bound

$$
\begin{align*}
\left|G_{n}\left(f, \frac{5 a+b}{6}\right)\right| & \leq \frac{\sqrt{b-a}}{\sqrt{2} \cdot n!}\left[T\left(F_{n}\left(\frac{5 a+b}{6}, \cdot\right), F_{n}\left(\frac{5 a+b}{6}, \cdot\right)\right)\right]^{1 / 2} \times \\
& \times\left[\int_{a}^{b}(s-a)(b-s)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}, \tag{2.10}
\end{align*}
$$

where

$$
\begin{aligned}
& T\left(F_{n}\left(\frac{5 a+b}{6}, \cdot\right), F_{n}\left(\frac{5 a+b}{6}, \cdot\right)\right)= \\
& =\frac{(b-a)^{2 n-2}}{16}\left[\frac{3 \cdot 5^{2 n+1}+16 \cdot 3^{2 n}+13}{2^{2 n+2} \cdot 3^{2 n}(2 n+1)}+\right. \\
& +\frac{15}{2}(-1)^{n}\left(B_{\frac{5}{6}}(n+1, n+1)-B_{\frac{1}{6}}(n+1, n+1)\right)- \\
& \left.-\left(\frac{\left(5^{n+1}+2 \cdot 3^{n}+1\right)\left(1+(-1)^{n}\right)}{3^{n} \cdot 2^{n+2}(n+1)}\right)^{2}\right] .
\end{aligned}
$$

Proof. This is a special case of Theorem 2 for $w(s)=\frac{1}{b-a}, s \in[a, b]$, $x=\frac{5 a+b}{6}$ and $A\left(\frac{5 a+b}{6}\right)=\frac{3}{8}$.

Remark 3. Let us consider the special case $n=1$ in Corollary 3. We have

$$
\begin{aligned}
& \left|\frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s-\frac{1}{8}\left(3 f\left(\frac{5 a+b}{6}\right)+2 f\left(\frac{a+b}{2}\right)+3 f\left(\frac{a+5 b}{6}\right)\right)\right|< \\
& <\frac{\sqrt{b-a}}{8 \sqrt{3}} \cdot\left[\int_{a}^{b}(s-a)(b-s)\left(f^{\prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

3. Four-point quadrature formulae

Using weighted Montgomery identity the following general weighted closed four-point quadrature formula was proved in [8]:

Theorem 3. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let f : $I \rightarrow \mathbf{R}$ be such that $f^{(n-1)}$ is absolutely continuous for some $n \geq 1$. Let $w:[a, b] \rightarrow[0, \infty)$ be some nonnegative normalized weighted function and $A:\left(a, \frac{a+b}{2}\right] \rightarrow R^{+}$. Then for each $x \in\left(a, \frac{a+b}{2}\right]$ the following representation holds

$$
\begin{equation*}
\int_{a}^{b} w(s) f(s) \mathrm{d} s=P_{n}(f)+\frac{1}{(n-1)!} \int_{a}^{b} S_{n}^{w}(x, s) f^{(n)}(s) \mathrm{d} s \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{n}(f) & =A(x)\left[\sum_{i=0}^{n-1} \frac{f^{(i)}(x)}{i!} \int_{a}^{b} w(s)(s-x)^{i} \mathrm{~d} s+\right. \\
& \left.+\sum_{i=0}^{n-1} \frac{f^{(i)}(a+b-x)}{i!} \int_{a}^{b} w(s)(s-a-b+x)^{i} \mathrm{~d} s\right]+ \\
& +\left(\frac{1}{2}-A(x)\right)\left[\sum_{i=0}^{n-1} \frac{f^{(i)}(a)}{i!} \int_{a}^{b} w(s)(s-a)^{i} \mathrm{~d} s+\right. \\
& \left.+\sum_{i=0}^{n-1} \frac{f^{(i)}(b)}{i!} \int_{a}^{b} w(s)(s-b)^{i} \mathrm{~d} s\right]
\end{aligned}
$$

and the function $S_{n}^{w}(x, s)$ satisfies the conditions

$$
\begin{align*}
& S_{n}^{w}(x, s)= \\
& =\left\{\begin{array}{l}
-\left(\frac{1}{2}+A(x)\right) \int_{a}^{s} w(u)(u-s)^{n-1} d u+ \\
\quad+\left(\frac{1}{2}-A(x)\right) \int_{s}^{b} w(u)(u-s)^{n-1} d u, \quad a \leq s \leq x, \\
-\frac{1}{2}\left[\int_{a}^{s} w(u)(u-s)^{n-1} d u-\int_{s}^{b} w(u)(u-s)^{n-1} d u\right], \\
-\left(\frac{1}{2}-A(x)\right) \int_{a}^{s} w(u)(u-s)^{n-1} d u+ \\
+\left(\frac{1}{2}+A(x)\right) \int_{s}^{b} w(u)(u-s)^{n-1} d u, \quad a+b-x<s \leq b-x .
\end{array}\right.
\end{align*}
$$

Now, we obtain some new bound for the remainder in general weighted four-point formula. This will be done using identity (3.1) and Lemma 1.

Theorem 4. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let $w:[a, b] \rightarrow$ $[0, \infty)$ be some nonnegative normalized weighted function. Let $f: I \rightarrow \mathbf{R}$ be such that $f^{(n)}$ is absolutely continuous and $A:\left(a, \frac{a+b}{2}\right] \rightarrow R^{+}$. Then for each $x \in\left(a, \frac{a+b}{2}\right]$ the following identity holds

$$
\begin{gather*}
\int_{a}^{b} w(s) f(s) \mathrm{d} s=P_{n}(f)+\frac{1}{(n-1)!} \int_{a}^{b} S_{n}^{w}(x, s) \mathrm{d} s\left[f^{(n-1)} ; a, b\right]+ \\
+R_{n}^{w}(f, x) \tag{3.3}
\end{gather*}
$$

The remainder $R_{n}^{w}(f, x)$ satisfies the estimation

$$
\begin{align*}
\left|R_{n}^{w}(f, x)\right| & \leq \frac{\sqrt{(b-a)}}{\sqrt{2}(n-1)!}\left[T\left(S_{n}^{w}(x, \cdot), S_{n}^{w}(x, \cdot)\right)\right]^{1 / 2} \times \\
& \times\left[\int_{a}^{b}(s-a)(b-s)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2} \tag{3.4}
\end{align*}
$$

where $S_{n}^{w}(x, \cdot)$ is define by (3.2).
Proof. The proof is similar to the proof of Theorem 2.

For $w(s)=\frac{1}{b-a}, s \in[a, b]$ and $A(x)=\frac{(b-a)^{2}}{12(x-a)(b-x)}, x \in\left(a, \frac{a+b}{2}\right]$ and special choices of variable $x,\left(x=\frac{2 a+b}{3}\right.$ and $x=-\frac{\sqrt{5}}{5}$, for $\left.[a, b]=[-1,1]\right)$, we get some new error estimates for the well-known Simpson's $3 / 8$ formula and Lobatto four-point formula.

Corollary 10. Let I be an open interval in $\mathbf{R},[a, b] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{(n)}$ is absolutely continuous. Then the following identity holds

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s= \\
& =\frac{1}{8} \sum_{i=0}^{n-1}\left[f^{(i)}\left(\frac{2 a+b}{3}\right)+(-1)^{i} f^{(i)}\left(\frac{a+2 b}{3}\right)\right] \frac{\left[2^{i+1}+(-1)^{i}\right](b-a)^{i}}{3^{i}(i+1)!}+ \\
& +\frac{1}{8} \sum_{i=0}^{n-1}\left[f^{(i)}(a)+(-1)^{i} f^{(i)}(b)\right] \frac{(b-a)^{i}}{(i+1)!}+ \\
& +\frac{\left(3^{n}+2^{n+1}+1\right)\left(1+(-1)^{n}\right)(b-a)^{n}}{8 \cdot 3^{n}(n+1)!}\left[f^{(n-1)} ; a, b\right]+R_{n}\left(f, \frac{2 a+b}{3}\right)
\end{aligned}
$$

The remainder $R_{n}\left(f, \frac{2 a+b}{3}\right)$ satisfies the bound

$$
\begin{align*}
& \left|R_{n}\left(f, \frac{2 a+b}{3}\right)\right| \leq \frac{\sqrt{b-a}}{\sqrt{2} \cdot n!}\left[T\left(S_{n}\left(\frac{2 a+b}{3}, \cdot\right), S_{n}\left(\frac{2 a+b}{3}, \cdot\right)\right)\right]^{1 / 2} \times \\
& \times\left[\int_{a}^{b}(s-a)(b-s)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2} \tag{3.5}
\end{align*}
$$

where

$$
\begin{aligned}
& T\left(S_{n}\left(\frac{2 a+b}{3}, \cdot\right), S_{n}\left(\frac{2 a+b}{3}, \cdot\right)\right)= \\
& =\frac{(b-a)^{2 n-2}}{16}\left[\frac{3^{2 n}+5 \cdot 2^{2 n+1}+11}{2 \cdot 3^{2 n}(2 n+1)}+\right. \\
& +(-1)^{n}\left(8 \cdot B_{\frac{2}{3}}(n+1, n+1)-B_{\frac{1}{3}}(n+1, n+1)\right)- \\
& \left.-\left(\frac{\left(3^{n}+2^{n+1}+1\right)\left(1+(-1)^{n}\right)}{2 \cdot 3^{n}(n+1)}\right)^{2}\right] .
\end{aligned}
$$

Proof. This is a special case of Theorem 4 for $w(s)=\frac{1}{b-a}, s \in[a, b]$, $x=\frac{2 a+b}{3}$ and $A\left(\frac{2 a+b}{3}\right)=\frac{3}{8}$.

Remark 4. For $n=1$ in Corollary 10 we have

$$
\begin{aligned}
& \left|\frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s-\frac{1}{8}\left(f(a)+3 f\left(\frac{2 a+b}{3}\right)+3 f\left(\frac{a+2 b}{3}\right)+f(b)\right)\right|< \\
& \quad<\frac{\sqrt{b-a}}{8 \sqrt{3}} \cdot\left[\int_{a}^{b}(s-a)(b-s)\left(f^{\prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2}
\end{aligned}
$$

Corollary 11. Let I be an open interval in $\mathbf{R},[-1,1] \subset I$, and let $f: I \rightarrow \mathbf{R}$ be such that $f^{(n)}$ is absolutely continuous. Then the following identity holds

$$
\begin{aligned}
& \int_{-1}^{1} f(s) \mathrm{d} s= \\
& =\frac{5}{6} \sum_{i=0}^{n-1}\left[f^{(i)}\left(-\frac{\sqrt{5}}{5}\right)+(-1)^{i} f^{(i)}\left(\frac{\sqrt{5}}{5}\right)\right] \frac{(5+\sqrt{5})^{i+1}+(-1)^{i}(5-\sqrt{5})^{i+1}}{2 \cdot 5^{i+1}(i+1)!}+ \\
& +\frac{1}{6} \sum_{i=0}^{n-1}\left[f^{(i)}(-1)+(-1)^{i} f^{(i)}(1)\right] \frac{2^{i}}{(i+1)!}+ \\
& +\frac{1+(-1)^{n}}{12 \cdot 5^{n}(n+1)!}\left[(5+\sqrt{5})^{n+1}+(5-\sqrt{5})^{n+1}+2 \cdot 10^{n}\right]\left[f^{(n-1)} ;-1,1\right]+ \\
& +2 \cdot R_{n}\left(f,-\frac{\sqrt{5}}{5}\right) .
\end{aligned}
$$

The remainder $R_{n}\left(f,-\frac{\sqrt{5}}{5}\right)$ satisfies the bound

$$
\begin{align*}
\left|R_{n}\left(f,-\frac{\sqrt{5}}{5}\right)\right| & \leq \frac{1}{n!}\left[T\left(S_{n}\left(-\frac{\sqrt{5}}{5}, \cdot\right), S_{n}\left(-\frac{\sqrt{5}}{5}, \cdot\right)\right)\right]^{1 / 2} \times \\
& \times\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{(n+1)}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2} \tag{3.6}
\end{align*}
$$

where

$$
\begin{aligned}
& T\left(S_{n}\left(-\frac{\sqrt{5}}{5}, \cdot\right), S_{n}\left(-\frac{\sqrt{5}}{5}, \cdot\right)\right)= \\
& =\frac{2 \cdot 10^{2 n}+17(5-\sqrt{5})^{2 n+1}+7(5+\sqrt{5})^{2 n+1}}{576(2 n+1) 5^{2 n}}+ \\
& +\frac{2^{2 n}(-1)^{n}}{144}\left(18 B_{\frac{5+\sqrt{5}}{10}}(n+1, n+1)-7 B_{\frac{5-\sqrt{5}}{10}}(n+1, n+1)\right)-
\end{aligned}
$$

$$
-\left(\frac{1+(-1)^{n}}{48 \cdot 5^{n}(n+1)}\right)^{2}\left((5+\sqrt{5})^{n+1}+(5-\sqrt{5})^{n+1}+2 \cdot 10^{n}\right)^{2}
$$

Proof. This is a special case of Theorem 4 for $a=-1, b=1, x=-\frac{\sqrt{5}}{5}$, $A\left(-\frac{\sqrt{5}}{5}\right)=\frac{5}{12}$ and $w(s)=\frac{1}{2}, s \in[-1,1]$.

Remark 5. For $n=1$ in Corollary 11 we have

$$
\begin{aligned}
& \left|\int_{-1}^{1} f(s) \mathrm{d} s-\frac{1}{6}\left(f(-1)+5 f\left(-\frac{\sqrt{5}}{5}\right)+5 f\left(\frac{\sqrt{5}}{5}\right)+f(1)\right)\right| \leq \\
& \leq \frac{\sqrt{13-5 \sqrt{5}}}{6} \cdot\left[\int_{-1}^{1}\left(1-s^{2}\right)\left(f^{\prime \prime}(s)\right)^{2} \mathrm{~d} s\right]^{1 / 2} .
\end{aligned}
$$

References

1. A. Aglić Aljinović, A. Čivljak, S. Kovač, J. Pečarić and M. Ribičić Penava, General Integral Identities and Related Inequalities. Element, Zagreb, 2013.
2. P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional and applications. J. Math.Inequal. 8 (2014), No. 1, 159-170.
3. I. Franić, J. Pečarić, I. Perić and A. Vukelić, Euler integral identity, quadrature formulae and error estimations (from the point of view of inequality theory). Monographs in Inequalities, 2, Element, Zagreb, 2011.
4. D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New inequalities in Analysis. Kluwer Academic, Dordrecht, 1993.
5. B. G. Pachpatte, On Cebyšev-Grüss type inequalities via Pečarić s extension of the Montgomery identity. J. Inequal. Pure Appl. Math. 8, (2006), No. 1, Article 11, (electronic).
6. J. Pečarić, On the Čebyšev inequality. Bul. Inst. Politehn. Timisoara 2539 (1980), No. 1, 10-11.
7. J. Pečarić and M. Ribičić Penava, Sharp integral inequalities based on general threepoint formula via a generalization of Montgomery identity. An. Univ. Craiova Ser. Mat. Inform. Annals of the University of Craiova-Mathematics and Computer Science Series 39 (2012), No. 2, 132-147.
8. J. Pečarić and M. Ribičić Penava, Sharp Integral Inequalities Based on a General Four-Point Quadrature Formula via a Generalization of the Montgomery Identity. International Journal of Mathematics and Mathematical Sciences, 2012
9. A. Ralston and P. Rabinowitz, A First Course in numerical analysis. Dover Publications, Inc., Mineola, New York, 2001.
(Received 18.12.2014; revised 08.02.2015)

Authors' addresses:
K. M. Awan

Department of Mathematics, University of Sargodha
Sargodha, Pakistan
E-mail: khalid819@uos.edu.pk
J. Pečarić

Faculty of textile technology
University of Zagreb, Pierottijeva 6, 10000
Zagreb, Croatia
E-mail: pecaric@hazu.hr
M. R. Penava

Department of Mathematics, University of Osijek
Trg Ljudevita Gaja 6, 31000
Osijek, Croatia
E-mail: mihaela@mathos.hr

[^0]: 2000 Mathematics Subject Classification. 26D15, 26D20, 26D99.
 Key words and phrases. Chebyshev functional, three-point quadrature, four-point quadrature.

