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NEW ESTIMATIONS OF THE REMAINDER IN
THREE-POINT AND FOUR-POINT QUADRATURE
FORMULAE VIA THE CHEBYSHEV FUNCTIONAL

K. M. AWAN, J. PECARIC AND M. R. PENAVA

Abstract. We derive some new bounds for general weighted
three-point and four-point quadrature formulae by using re-
cently obtained inequality for the Chebyshev functional. As
special cases, we provide some new estimates for the error in
Gauss-Chebyshev quadrature rules.
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1. INTRODUCTION

The well known Chebyshev functional [4] is defined by

1

b b b
T(19)= 5 [ 16 90— [Fe)ds 7 [o(s)as

where f,g : [a,b] — R are two real functions such that f, g, f - g€ L' [a, b].

In paper [2] P. Cerone and S. S. Dragomir proved the following result:

Lemma 1. If h: [a,b] = R is an absolutely continuous function with

(—a) (b= (1) €L [ab],
then the following inequality holds
b
1 / 2

a

T (hh) <
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The constant 1/2 is the best possible.

Many researchers have investigated the Chebyshev functional and in-
equalities related to the Chebyshev functional (see [4], [5], [6] and the
references cited therein). In this note we will give some new bounds for
three-point and four-point quadrature formulae using Lemma 1 and general
weighted three-point and four-point quadrature formulae recently published
in [7] and [8]. We will use the above results to get the error estimates
for Simpson’s, dual Simpson’s and Maclaurin’s three-point formula and for
three-point Gauss-Chebyshev formulae of the first kind and of the second
kind. Also, the corresponding error estimates for Simpson’s 3/8 formula
and Lobatto four-point formula will be derived. More about quadrature
formulae and error estimations (from the point of view of inequality theory)
can be found in monographs [1] and [3]. The usual convention f() = f,

~1
0'=1and > - =0 will be used.
i=0

2. THREE-POINT QUADRATURE FORMULAE

Here and hereafter the nonnegative normalized weighted function w :
[a,b] = [0,00) is integrable function satisfying fab w(s)ds=1,and W (s) =
[ w(u)du for s € [a,b], W(s) =0 for s < a and W (s) =1 for s > b.
J. Pecari¢ and M. Ribici¢ Penava [7] proved the following general weighted
three-point quadrature formula:

Theorem 1. Let I be an open interval in R, [a,b] C I, and let f :
I — R be such that f Y is absolutely continuous for some n > 1. Let

w : [a,b] — [0,00) be some nonnegative normalized weighted function and
A a, “+b) — RT. Then for each x € |[a, “TH’) the following identity holds

b
Juworos=Qun + oty [ Fs s @

where

+nz:1f() a+b_m)/bw(S)(S—a—b+x)id3:|+

a
b

+(1—2A(m))§f(i)(_a;b)/w(s) (s— a;rbyds (2.2)

7!
i=0

a
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and the function FY (x,s) satisfies the conditions

EY (z,s) =

n

a+b

<s<a+b-—rz,
b

/w(u)(u—s)"_ldu, at+b—z<s<b.

S

Using identity (2.1) and Lemma 1 we get some new bounds for the re-
mainders in general weighted three-point formula. Let us recall the divided
difference of function f() is defined as

[fa0] = LS

Theorem 2. Let I be an open interval in R, [a,b] C I, and let w : [a,b] —
[0,00) be some nonnegative normalized weighted function. Let f : I — R
be such that f) is absolutely continuous and A : (a, %H’) — R™. Then for

each x € [a, “E2) we have
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and the remainder G¥(f,x) satisfies the estimation

G(f.)] < TS T (B (). B (0)]
b

<[ fe-ae-a (1o @) 0 C e

a

where F (x,-) is defined by (2.3).
Proof. The identity (2.1) can be rewritten as

b

=Qu(f) + —————— 5=a) /F z,s ds/f(")(s)ds—FG;f(f,x).

(n—l

b
/ £ (s)ds = fO () — £ ()

then
b

[ e s)as-

Gg(f,x):m

a

b
L f0) — ") [
e o /Fn (z, s)ds. (2.6)

a

Now, by using Cauchy-Schwartz inequality for double integrals and applying
Lemma 1 with £ in place of h, we obtain

b b b
1 1 1
- w (n) = w . (n) <
L R - [ R e [ 50 <

{ 0 55 e >)}”2 [ (5, 5)] " <
|:T 7 n (x’.)):|1/2

b Iy
x [ [e-ae-s (0 m) ] (27)

X
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a

Finally, after multiplying (2.7) by ﬁ and combining this with (2.6) we
get the estimation (2.5). O

Now, we apply the previous results to obtain some error estimates for
Gauss-Chebyshev quadrature rules (see [9]). For w (s) = ﬁ, se(=1,1)
we get some new bounds for Gauss-Chebyshev three-point formulae of the
first kind (Corollaries 1, 2, 3). Further, for w (s) = 2v/1—s%,s € [-1,1] we
derive some new bounds for Gauss-Chebyshev three-point formulae of the
second kind (Corollaries 4, 5, 6).

Corollary 1. Let I be an open interval in R, [-1,1] C I, and let f : I —
R be such that f' is absolutely continuous. Then the following inequality

holds
e 5b(2)- (2

e (_V;) . Uj (1— %) (5" (s))st] "

where C; (7@> _ (M)UQ'

2 3
Proof. This is a special case of Theorem 2 forn = 1, a = —1, b = 1,
xz—@,A(—?):%andw(s):ﬂ\/ll_ﬁﬂse(—l,l). O

Corollary 2. Let I be an open interval in R, [-1,1] C I, and let f : I —

R be such that f" is absolutely continuous. Then the following inequality
holds

where Co (—@) = ﬁ(256 + 167 — 27w2)1/2,

Proof. Applying Theorem 2 with n = 2, a = -1, b = 1, « = 773,

A (—?) =z and w(s) = ﬁ, s € (—1,1) we get above inequality. [
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Corollary 3. Let I be an open interval in R, [-1,1] C I, and let
f I — R be such that " is absolutely continuous. Then the follow-
ing inequality holds

V3 _ 1 1/2
where Cs (—7) = o5obs (—32768 + 24655m) /2.
Proof. Applying Theorem 2 with n = 3, a = =1, b = 1, x = —73,
A (—@) = % and w (s) = ﬁ, s € (—1,1) we get above inequality. O

Corollary 4. Let I be an open interval in R, [-1,1] C I, and let
f I — R be such that f' is absolutely continuous. Then the following
inequality holds

o320 ()]

2

where Cy (—2) = ke (~2048 4 60(8 + 5v2)m — 45v37%) %,

2410
Proof. This is a special case of Theorem 2 forn = 1, a = =1, b = 1,
xz—%,A(—@)z%and w(s)leﬂﬂz?se[—l,l]. O

Corollary 5. Let I be an open interval in R, [-1,1] C I, and let
f I — R be such that " is absolutely continuous. Then the following
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inequality holds

[ 2[5 E) oo o(2)]-

2 2
V2 V2Y (V2] Ty
_ VA (2 Ty o1
5 (-%) 7 (F)] -5l <
1
3 1/2
<02<_\2f> . {/(1_32) (f”’(s))zds] ,
where Cy (—32) = 5k (65536 — 1057 (64— 92v/2 + 15 (3 +v2) 1)) ”.
Proof. This is a special case of Theorem 2 for n = 2, a = =1, b = 1,
xz—%,A(—@)z%and w(s)=2yV1-5% s€[-1,1]. O

Corollary 6. Let I be an open interval in R, [-1,1] C I, and let
f I — R be such that f"" is absolutely continuous. Then the following
inequality holds

]jﬂﬂs)ds—g[f(—ﬂ) +2f(0)+f<\fﬂ—

2
SZ(-9)A )
_67;[3]“”(— ?) +2f”(0)+3f”(‘fﬂ

< 03( ?) : Ul (1= (r® (5))2d5] 1/2,

<

where Cs (—%) = oo (~16777216 + 2520m(1376 + 3887v2)—
15545251/272)1/2,

Proof. Applying Theorem 2 with n = 3, a = =1, b = 1, z = —g,
A(—g) = 7 and w(s) = 2v/1—s2, s € [—1,1] we get above inequal-
ity. O

In non-weighted case for a special choice of the function A, A(xz) =

(5*0)2 a+b : : _ __ 3a+b __ ba+b
Tars a2 T € [a, 3%) and special choices of z (z = a,z = 4=, r = >4=2)
we obtain some new bounds for the well-known Simpson’s, dual Simpson’s

and Maclaurin’s formula, respectively. In the following corollaries we will
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use the Beta function and the incomplete Beta function of Euler type defined
by

T

1
:/3“71 (1-s)"""'ds, B, (u,v):/s“*1 (1—s)"""ds, u,v>0.
0 0

Corollary 7. Let I be an open interval in R, [a,b] C I, andlet f : I - R
be such that f™) is absolutely continuous. Then the following identity holds

: n—1 Z
b= “/f s =53 V“” (=1 1 )] (éﬁ;.
a 1+ (=1)") (b—a)
+ 5 Zf(z ( +b) ( 9i+1 (ill)! +

' +1) 0+ DG -a)”
327 (n+1)!

[/ D50,0] + Gl ).

The remainder G, (f,a) satisfies the estimation

where

T(Fn (a,-), Fy (a, )) =
(ba)Q"‘Q[ 222 1 3 5(-1)"B(n+1n+1)

B 9 22n=1(2n + 1) * 2
- <(2”1 +1) (1+ (—D"))Q]
2" (n+1) '

Proof. This is a special case of Theorem 2 for w (s) = 7=, s € [a,b], z = a

and A (a) = %. O
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Remark 1. For n =1 in Corollary 7 we have

biajf@Ms;(fm>ww(a;b)+fwﬂ\<

<€Eﬁ[i®—@@—ﬂ0%@ﬂ4ué

Corollary 8. Let I be an open interval in R, [a,b] C I, andlet f : I — R
be such that f™ is absolutely continuous. Then the following identity holds

S () o ()]

1=0

L3 o (o) 1+ D) (o —a)
_§;f (2) G+l

o DA+ (-1)")(b—a)" 7, 3a+b
+( 3.227)L+1(n+1)! {f( 1);a’b}+G”(f’ a4 )

The remainder G, (f, 3‘2“’) satisfies the bound

3a+b b—a 3a+b 3a+b 1/2
o 1) = e () (2

where

3a+b 3a+b
r(m () () -

4(b—a)*" 23241l 3. 221 4 9
9 24n+1 (20 + 1)

+ (=" (B% (n+1,n+1)-B1 (n+1,n+1)) -

_CW“—W+UO+F®ﬂY}

22042 (1 + 1)

Proof. This is a special case of Theorem 2 for w(s) = =, s € [a,0],
x:—gajb andA(—:g“jb) =2 O
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Remark 2. Let us consider the special case n = 1 in Corollary 8. We

have
b
L frag (o (B0) - (457) +2r (457)) <

E
S -L;@—wow—sﬂf%@fd%

a

1/2

IS

Corollary 9. Let I be an open interval in R, [a,b] C I, andlet f : I - R
be such that f™) is absolutely continuous. Then the following identity holds
b

b— aa/f

S (51 e (2

6 6i+1 (i41)!
L o (atb) (D)) b —a)
1 Mf ( ) G0l
57 423"+ 1) 1+ (-1)")(b—a)" [, 5a +b
+( 2”+4'§"(n+1)! [f( 1);a,b}+Gn(f7 a6 )

The remainder G, (f, 5‘1T+b) satisfies the bound

(B e (0 ()]

b

x [ / (s—a)(b—s) (f<n+1> (S)>2ds} 1/2, (2.10)

a

5a+b 5a+b
T Fn 5" 7Fn )" =

_(b—a)® ?[3.52" 11632 + 13
- 16 22n+2 . 32n (2n + 1)

where

+ B gy (Br

5 s(n+1ln+1)-B

(n+1,n+1))—

1
6

e ]
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Proof. This is a special case of Theorem 2 for w(s) = =, s € [a,0],
o= 55 and A (35) — 0

Remark 3. Let us consider the special case n = 1 in Corollary 3. We
have

b
1 1 5a + b a+b a—+ 5b
i s g (o (550 2 () +or (457)) | <
b

<Xt [s-ae-s 0@ v

a

3. FOUR-POINT QUADRATURE FORMULAE

Using weighted Montgomery identity the following general weighted closed
four-point quadrature formula was proved in [8]:

Theorem 3. Let I be an open interval in R, [a,b] C I, and let f :
I — R be such that f=Y is absolutely continuous for some n > 1. Let
w : [a,b] — [0,00) be some nonnegative normalized weighted function and
A: (a, “T'*'b] — R™. Then for each x € (a, ‘%b] the following representation
holds

b b
Jw@r@as = P+ o=y [ SE@ O 6)

where

g\@ Q\Q‘
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and the function S (x,s) satisfies the conditions

S;f ($7 8) -

(3.2)

1 _

+ <2+A(m)> /w(u)(ufs)n Ydu, a+b—z<s<bh.
Now, we obtain some new bound for the remainder in general weighted

four-point formula. This will be done using identity (3.1) and Lemma 1.

Theorem 4. Let I be an open interval in R, [a,b] C I, and letw : [a,b] —
[0,00) be some nonnegative normalized weighted function. Let f: 1 — R
be such that f) is absolutely continuous and A : (a, ‘IT“’] — R*. Then for
each x € (a, “T“’] the following identity holds

b

b
/w(s)f(s)ds =P, (f) + (n_l ol /S;f(m,s)ds [f("_l);a,b} +

a

+ RY(f, x). (3.3)

The remainder RY(f,x) satisfies the estimation

V(b —a)

RG] < L (S ). 52 (0)

where S¥ (z,-) is define by (3.2).

Proof. The proof is similar to the proof of Theorem 2. ]
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2
For w(s) = ;=-, s € [a,b] and A(z) = %7 z € (a,%t] and
special choices of variable z, (z = 2% and z = —Y5 for [a,b] = [-1,1] )
we get some new error estimates for the well-known Slmpson s 3/8 formula
and Lobatto four-point formula.

Corollary 10. Let I be an open interval in R, [a,b] C I, and let
f: I — R be such that f™ is absolutely continuous. Then the follow-
ing tdentity holds

5 (2a+D o (a+20\] [2H + (1)) (b —a)’
o () e (5 BT
; ; [P0+ o]
L ;.13)”((1711(1)1!)”) oo [f(nil); @ b} i (f’ = b)

The remainder R, (f, 2“3“’) satisfies the bound

(2 b () ()

b

X {/ (s —a)(b—s) (f<n+1) (S))2 ds} 1/2, (3.5)

where
2a 4+ b 2a + b
(s () s (M5) -

(b—a)*" 2 [32 4+5.22+1 4 11
16 232 (2n + 1)

+(—1)" (8-B§ (n+1,n+1)—B (n+1,n—|—1))—

1
3

B ((3" ot 1) (14 (—1)”))2}
; .

2-3"(n+1

Proof. This is a special case of Theorem 4 for w(s) = =, s € [a,b],

_ 2a+b 2a+b) _ 3
r =52 andA(—3 )—8. O
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Remark 4. For n =1 in Corollary 10 we have

\bia/bﬂs)ds;( rasr (250 var (52 11 m) |<

1/2

< */SZ [/b<s—a> 0= 6 as

a

Corollary 11. Let I be an open interval in R, [-1,1] C I, and let

f: I — R be such that f™) is absolutely continuous. Then the following
identity holds

AN

2. 5+1 (i41)! '

CE‘&”.

s
I
o

—

n—

0D + (19 (1))

1=0
&U kw)““ (o v8) ez [«
+2-Rn<f7—\§>-

@M—l

The remainder R, ( 55

)
()RR

/1 1-52) <n+1>( )>2d5] 1/2, (3.6)

satisfies the bound

X

[ —

where

(£ 5(-5)-

210 417(5 - V5" 47 (54 VR
B 576 (2n + 1) 527

22n (_1)”

+ 144

(1835wg (n+1,n+1)— 7By ys (n+1,n+ 1)) -
10 10
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_ (1 + (1" )>2 ((5+ \/5)n+1 +(5- \/S)n+1 42, 10")2

48-5" (n+1
Proof. This is a special case of Theorem 4 for a = -1, b =1, x = _éa
A(=F) = fandw(s) =} s€ -11] .

Remark 5. For n =1 in Corollary 11 we have

‘/lﬂs)ds—;(f(—l)wf(— D)5 (F) +10)]

<WU

IN

1/2
< . (1—5%) (£ (s) )st] .
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