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NEW ESTIMATIONS OF THE REMAINDER IN
THREE-POINT AND FOUR-POINT QUADRATURE
FORMULAE VIA THE CHEBYSHEV FUNCTIONAL

K. M. AWAN, J. PEČARIĆ AND M. R. PENAVA

Abstract. We derive some new bounds for general weighted
three-point and four-point quadrature formulae by using re-
cently obtained inequality for the Chebyshev functional. As
special cases, we provide some new estimates for the error in
Gauss-Chebyshev quadrature rules.

ÒÄÆÉÖÌÄ. ÜÄÁÉÛÄÅÉÓ ×ÖÍØÝÉÏÍÀËÉÓÀÈÅÉÓ ÁÏËÏ ÃÒÏÓ ÌÉÙÄ-
ÁÖËÉ ÖÔÏËÄÁÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ, ÃÀÃÂÄÍÉËÉÀ ÓÀÌßÄÒÔÉËÉ-
ÀÍÉ ÃÀ ÏÈáßÄÒÔÉËÉÀÍÉ ÆÏÂÀÃÉ ßÏÍÉÀÍÉ ÊÅÀÃÒÀÔÖÒÖËÉ
×ÏÒÌÖËÄÁÉÓ ÝÃÏÌÉËÄÁÀÈÀ ÀáÀËÉ ÓÀÆÙÅÒÄÁÉ. ÒÏÂÏÒÝ
ÊÄÞÏ ÛÄÌÈáÅÄÅÀ ÌÏÝÄÌÖËÉÀ ÂÀÖÓ-ÜÄÁÉÛÄÅÉÓ ÊÅÀÃÒÀÔÖËÉ
×ÏÒÌÖËÉÓ ÝÃÏÌÉËÄÁÉÓ ÆÏÂÉÄÒÈÉ ÀáÀËÉ ÛÄ×ÀÓÄÁÀ.

1. Introduction

The well known Chebyshev functional [4] is defined by

T (f, g) =
1

b− a

b∫
a

f (s) g (s)ds− 1

b− a

b∫
a

f (s) ds · 1

b− a

b∫
a

g (s)ds.

where f, g : [a, b] → R are two real functions such that f, g, f · g∈L1 [a, b].
In paper [2] P. Cerone and S. S. Dragomir proved the following result:

Lemma 1. If h : [a, b] → R is an absolutely continuous function with

(· − a) (b− ·) (h′)
2 ∈ L1 [a, b] ,

then the following inequality holds

T (h, h) ≤ 1

2 (b− a)

b∫
a

(s− a) (b− s) [h′ (s)]
2 ds. (1.1)
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The constant 1/2 is the best possible.

Many researchers have investigated the Chebyshev functional and in-
equalities related to the Chebyshev functional (see [4], [5], [6] and the
references cited therein). In this note we will give some new bounds for
three-point and four-point quadrature formulae using Lemma 1 and general
weighted three-point and four-point quadrature formulae recently published
in [7] and [8]. We will use the above results to get the error estimates
for Simpson’s, dual Simpson’s and Maclaurin’s three-point formula and for
three-point Gauss-Chebyshev formulae of the first kind and of the second
kind. Also, the corresponding error estimates for Simpson’s 3/8 formula
and Lobatto four-point formula will be derived. More about quadrature
formulae and error estimations (from the point of view of inequality theory)
can be found in monographs [1] and [3]. The usual convention f (0) = f ,

0! = 1 and
−1∑
i=0

· = 0 will be used.

2. Three-point quadrature formulae

Here and hereafter the nonnegative normalized weighted function w :

[a, b] → [0,∞) is integrable function satisfying
∫ b

a
w (s) ds = 1, and W (s) =∫ s

a
w (u) du for s ∈ [a, b], W (s) = 0 for s < a and W (s) = 1 for s > b.

J. Pečarić and M. Ribičić Penava [7] proved the following general weighted
three-point quadrature formula:

Theorem 1. Let I be an open interval in R, [a, b] ⊂ I, and let f :
I → R be such that f (n−1) is absolutely continuous for some n ≥ 1. Let
w : [a, b] → [0,∞) be some nonnegative normalized weighted function and
A : [a, a+b

2 ) → R+. Then for each x ∈ [a, a+b
2 ) the following identity holds

b∫
a

w(s)f(s)ds = Qn (f) +
1

(n− 1)!

b∫
a

Fw
n (x, s)f (n)(s)ds, (2.1)

where

Qn (f) =A (x)

[ n−1∑
i=0

f (i)(x)

i!

b∫
a

w(s)(s− x)ids+

+
n−1∑
i=0

f (i)(a+ b− x)

i!

b∫
a

w(s)(s− a− b+ x)ids
]
+

+
(
1− 2A (x)

) n−1∑
i=0

f (i)
(
a+b
2

)
i!

b∫
a

w(s)

(
s− a+ b

2

)i

ds (2.2)
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and the function Fw
n (x, s) satisfies the conditions

Fw
n (x, s) =

=



−
s∫

a

w (u) (u− s)
n−1

du, a ≤ s ≤ x,

(A (x)− 1)

s∫
a

w (u) (u− s)
n−1

du+

+A (x)

b∫
s

w (u) (u− s)
n−1

du, x < s ≤ a+ b

2
,

−A (x)

s∫
a

w (u) (u− s)
n−1

du−

− (A (x)− 1)

b∫
s

w (u) (u− s)
n−1

du,

a+ b

2
< s ≤ a+ b− x,

b∫
s

w (u) (u− s)
n−1

du, a+ b− x < s ≤ b.

(2.3)

Using identity (2.1) and Lemma 1 we get some new bounds for the re-
mainders in general weighted three-point formula. Let us recall the divided
difference of function f (n) is defined as

[
f (n); a, b

]
=

f (n)(b)− f (n)(a)

b− a
.

Theorem 2. Let I be an open interval in R, [a, b] ⊂ I, and let w : [a, b] →
[0,∞) be some nonnegative normalized weighted function. Let f : I → R
be such that f (n) is absolutely continuous and A : (a, a+b

2 ) → R+. Then for
each x ∈ [a, a+b

2 ) we have

b∫
a

w(s)f(s)ds = Qn(f)+
1

(n− 1)!

b∫
a

Fw
n (x, s)ds

[
f (n−1); a, b

]
+

+Gw
n (f, x) (2.4)
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and the remainder Gw
n (f, x) satisfies the estimation∣∣Gw

n (f, x)
∣∣ ≤ √

(b− a)√
2 (n− 1)!

[
T (Fw

n (x, ·) , Fw
n (x, ·))

]1/2×
×
[ b∫

a

(s− a) (b− s)
(
f (n+1) (s)

)2
ds
]1/2

, (2.5)

where Fw
n (x, ·) is defined by (2.3).

Proof. The identity (2.1) can be rewritten as
b∫

a

w(s)f(s)ds =

= Qn(f) +
1

(n− 1)! (b− a)

b∫
a

Fw
n (x, s)ds

b∫
a

f (n)(s)ds+Gw
n (f, x).

Since
b∫

a

f (n) (s)ds = f (n−1) (b)− f (n−1) (a) .

then

Gw
n (f, x) =

1

(n− 1)!

b∫
a

Fw
n (x, s)f (n)(s)ds−

− 1

(n− 1)!
· f

(n−1)(b)− f (n−1)(a)

b− a

b∫
a

Fw
n (x, s)ds. (2.6)

Now, by using Cauchy-Schwartz inequality for double integrals and applying
Lemma 1 with f (n) in place of h, we obtain∣∣∣∣ 1

b− a

b∫
a

Fw
n (x, s)f (n)(s)ds− 1

b− a

b∫
a

Fw
n (x, s)ds · 1

b− a

b∫
a

f (n)(s)ds
∣∣∣∣ ≤

≤
[
T
(
Fw
n (x, ·) , Fw

n (x, ·)
)]1/2

·
[
T
(
f (n), f (n)

)]1/2
<

<
1√

2 (b− a)

[
T
(
Fw
n (x, ·) , Fw

n (x, ·)
)]1/2

×

×
[ b∫

a

(s− a) (b− s)
(
f (n+1) (s)

)2
ds
]1/2

. (2.7)
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Finally, after multiplying (2.7) by b−a
(n−1)! and combining this with (2.6) we

get the estimation (2.5). �

Now, we apply the previous results to obtain some error estimates for
Gauss-Chebyshev quadrature rules (see [9]). For w (s) = 1

π
√
1−s2

, s ∈ (−1, 1)

we get some new bounds for Gauss-Chebyshev three-point formulae of the
first kind (Corollaries 1, 2, 3). Further, for w (s) = 2

π

√
1− s2, s ∈ [−1, 1] we

derive some new bounds for Gauss-Chebyshev three-point formulae of the
second kind (Corollaries 4, 5, 6).

Corollary 1. Let I be an open interval in R, [−1, 1] ⊂ I, and let f : I →
R be such that f ′ is absolutely continuous. Then the following inequality
holds ∣∣∣∣

1∫
−1

f (s)√
1− s2

ds− π

3

[
f

(
−
√
3

2

)
+ f (0) + f

(√
3

2

)] ∣∣∣∣ <
< C1

(
−
√
3

2

)
·
[ 1∫
−1

(
1− s2

)
(f ′′ (s))

2 ds
]1/2

,

where C1

(
−

√
3
2

)
=
(
2π−6

3

)1/2.

Proof. This is a special case of Theorem 2 for n = 1, a = −1, b = 1,
x = −

√
3
2 , A

(
−

√
3
2

)
= 1

3 and w (s) = 1
π
√
1−s2

, s ∈ (−1, 1). �

Corollary 2. Let I be an open interval in R, [−1, 1] ⊂ I, and let f : I →
R be such that f ′′ is absolutely continuous. Then the following inequality
holds ∣∣∣∣

1∫
−1

f (s)√
1− s2

ds− π

3

[
f

(
−
√
3

2

)
+ f (0) + f

(√
3

2

)]
−

− π
√
3

6

[
f ′

(
−
√
3

2

)
− f ′

(√
3

2

)]
− π

2
[f ′;−1, 1]

∣∣∣∣ <
< C2

(
−
√
3

2

)
·
[ 1∫
−1

(
1− s2

)
(f ′′′ (s))

2 ds
]1/2

,

where C2

(
−

√
3
2

)
= 1

12
√
3
(256 + 16π − 27π2)1/2.

Proof. Applying Theorem 2 with n = 2, a = −1, b = 1, x = −
√
3
2 ,

A
(
−

√
3
2

)
= 1

3 and w (s) = 1
π
√
1−s2

, s ∈ (−1, 1) we get above inequality. �
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Corollary 3. Let I be an open interval in R, [−1, 1] ⊂ I, and let
f : I → R be such that f ′′′ is absolutely continuous. Then the follow-
ing inequality holds

∣∣∣∣
1∫

−1

f (s)√
1− s2

ds− π

3

[
f

(
−
√
3

2

)
+ f (0) + f

(√
3

2

)]
−

− π
√
3

6

[
f ′

(
−
√
3

2

)
− f ′

(√
3

2

)]
−

− π

12

[
5

2
f ′′

(
−
√
3

2

)
+ f ′′ (0) +

5

2
f ′′

(√
3

2

)] ∣∣∣∣ <
< C3

(
−
√
3

2

)
·
[ 1∫
−1

(
1− s2

) (
f (4) (s)

)2
ds
]1/2

,

where C3

(
−

√
3
2

)
= 1

120
√
30
(−32768 + 24655π)1/2.

Proof. Applying Theorem 2 with n = 3, a = −1, b = 1, x = −
√
3
2 ,

A
(
−

√
3
2

)
= 1

3 and w (s) = 1
π
√
1−s2

, s ∈ (−1, 1) we get above inequality. �

Corollary 4. Let I be an open interval in R, [−1, 1] ⊂ I, and let
f : I → R be such that f ′ is absolutely continuous. Then the following
inequality holds

∣∣∣∣
1∫

−1

√
1− s2f (s) ds− π

8

[
f

(
−

√
2

2

)
+ 2f (0) + f

(√
2

2

)]∣∣∣∣ <
< C1

(
−

√
2

2

)
·
[ 1∫
−1

(
1− s2

)
(f ′′ (s))

2 ds
]1/2

,

where C1

(
−

√
2
2

)
= 1

24
√
10

(
−2048 + 60(8 + 5

√
2)π − 45

√
2π2
)1/2.

Proof. This is a special case of Theorem 2 for n = 1, a = −1, b = 1,
x = −

√
2
2 , A

(
−

√
2
2

)
= 1

4 and w (s) = 2
√
1−s2

π , s ∈ [−1, 1]. �

Corollary 5. Let I be an open interval in R, [−1, 1] ⊂ I, and let
f : I → R be such that f ′′ is absolutely continuous. Then the following
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inequality holds∣∣∣∣
1∫

−1

√
1− s2f (s)ds− π

8

[
f

(
−

√
2

2

)
+ 2f (0) + f

(√
2

2

)]
−

− π
√
2

16

[
f ′
(
−

√
2

2

)
− f ′

(√
2

2

)]
− π

8

[
f ′;−1, 1

]∣∣∣∣ <
< C2

(
−

√
2

2

)
·
[ 1∫
−1

(
1− s2

)
(f ′′′ (s))

2 ds
]1/2

,

where C2

(
−

√
2
2

)
= 1

240
√
21

(
65536− 105π

(
64− 92

√
2 + 15

(
3 +

√
2
)
π
))1/2.

Proof. This is a special case of Theorem 2 for n = 2, a = −1, b = 1,
x = −

√
2
2 , A

(
−

√
2
2

)
= 1

4 and w (s) = 2
π

√
1− s2, s ∈ [−1, 1]. �

Corollary 6. Let I be an open interval in R, [−1, 1] ⊂ I, and let
f : I → R be such that f ′′′ is absolutely continuous. Then the following
inequality holds∣∣∣∣

1∫
−1

√
1− s2f (s)ds− π

8

[
f

(
−

√
2

2

)
+ 2f (0) + f

(√
2

2

)]
−

− π
√
2

16

[
f ′
(
−

√
2

2

)
− f ′

(√
2

2

)]
−

− π

64

[
3f ′′

(
−

√
2

2

)
+ 2f ′′ (0) + 3f ′′

(√
2

2

)]∣∣∣∣ <
< C3

(
−

√
2

2

)
·
[ 1∫
−1

(
1− s2

) (
f (4) (s)

)2
ds
]1/2

,

where C3

(
−

√
2
2

)
= 1

20160
√
10
(−16777216 + 2520π(1376 + 3887

√
2)−

1554525
√
2π2)1/2.

Proof. Applying Theorem 2 with n = 3, a = −1, b = 1, x = −
√
2
2 ,

A
(
−

√
2
2

)
= 1

4 and w (s) = 2
π

√
1− s2, s ∈ [−1, 1] we get above inequal-

ity. �

In non-weighted case for a special choice of the function A, A (x) =
(b−a)2

6(a+b−2x)2
, x ∈ [a, a+b

2 ) and special choices of x (x = a, x = 3a+b
4 , x = 5a+b

6 )

we obtain some new bounds for the well-known Simpson’s, dual Simpson’s
and Maclaurin’s formula, respectively. In the following corollaries we will
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use the Beta function and the incomplete Beta function of Euler type defined
by

B (u, v)=

1∫
0

su−1 (1− s)
v−1 ds, Br (u, v)=

r∫
0

su−1 (1− s)
v−1 ds, u, v > 0.

Corollary 7. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n) is absolutely continuous. Then the following identity holds

1

b− a

b∫
a

f(s)ds = 1

6

n−1∑
i=0

[
f (i) (a) + (−1)

i
f (i) (b)

] (b− a)
i

(i+ 1)!
+

+
2

3

n−1∑
i=0

f (i)

(
a+ b

2

) (1 + (−1)
i
)
(b− a)

i

2i+1 (i+ 1)!
+

+

(
2n−1 + 1

)
(1 + (−1)

n
) (b− a)

n

3 · 2n (n+ 1)!

[
f (n−1); a, b

]
+Gn(f, a).

The remainder Gn(f, a) satisfies the estimation

∣∣Gn(f, a)
∣∣ ≤ √

b− a√
2 · n!

[
T
(
Fn (a, ·) , Fn (a, ·)

)]1/2
×

×
[ b∫

a

(s− a) (b− s)
(
f (n+1) (s)

)2
ds
]1/2

, (2.8)

where

T
(
Fn (a, ·) , Fn (a, ·)

)
=

=
(b− a)

2n−2

9

[
22n−2 + 3

22n−1 (2n+ 1)
+

5 (−1)
n
B (n+ 1, n+ 1)

2
−

−
((

2n−1 + 1
)
(1 + (−1)

n
)

2n (n+ 1)

)2]
.

Proof. This is a special case of Theorem 2 for w (s) = 1
b−a , s ∈ [a, b], x = a

and A (a) = 1
6 . �
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Remark 1. For n = 1 in Corollary 7 we have∣∣∣∣ 1

b− a

b∫
a

f(s)ds− 1

6

(
f (a) + 4f

(
a+ b

2

)
+ f (b)

) ∣∣∣∣ <
<

√
b− a

6
√
2

·
[ b∫

a

(s− a) (b− s)
(
f ′′ (s)

)2ds
]1/2

.

Corollary 8. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n) is absolutely continuous. Then the following identity holds

1

b− a

b∫
a

f(s)ds =

=
2

3

n−1∑
i=0

[
f (i)

(
3a+ b

4

)
+ (−1)

i
f (i)

(
a+ 3b

4

)] [
3i+1 − (−1)

i+1 ]
(b− a)

i

4i+1 (i+ 1)!
−

− 1

3

n−1∑
i=0

f (i)

(
a+ b

2

) (
1 + (−1)

i )
(b− a)

i

2i+1 (i+ 1)!
+

+

(
3n+1 − 2n + 1

)
(1 + (−1)

n
) (b− a)

n

3 · 22n+1 (n+ 1)!

[
f (n−1); a, b

]
+Gn

(
f,

3a+ b

4

)
.

The remainder Gn

(
f, 3a+b

4

)
satisfies the bound∣∣∣∣Gn

(
f,

3a+ b

4

)∣∣∣∣ ≤ √
b− a√
2 · n!

[
T

(
Fn

(
3a+ b

4
, ·
)
, Fn

(
3a+ b

4
, ·
))]1/2

×

×
[ b∫

a

(s− a) (b− s)
(
f (n+1) (s)

)2
ds
]1/2

, (2.9)

where

T

(
Fn

(
3a+ b

4
, ·
)
, Fn

(
3a+ b

4
, ·
))

=

=
4 (b− a)

2n−2

9

[
32n+1 − 3 · 22n−1 + 2

24n+1 (2n+ 1)
+

+ (−1)
n
(
B 3

4
(n+ 1, n+ 1)−B 1

4
(n+ 1, n+ 1)

)
−

−

((
3n+1 − 2n + 1

)
(1 + (−1)

n
)

22n+2 (n+ 1)

)2 ]
.

Proof. This is a special case of Theorem 2 for w (s) = 1
b−a , s ∈ [a, b],

x = 3a+b
4 and A

(
3a+b
4

)
= 2

3 . �
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Remark 2. Let us consider the special case n = 1 in Corollary 8. We
have∣∣∣∣ 1

b− a

b∫
a

f(s)ds− 1

3

(
2f

(
3a+ b

4

)
− f

(
a+ b

2

)
+ 2f

(
a+ 3b

4

)) ∣∣∣∣ <
<

√
b− a

6
·
[ b∫

a

(s− a) (b− s) (f ′′ (s))
2 ds

]1/2
.

Corollary 9. Let I be an open interval in R, [a, b] ⊂ I, and let f : I → R
be such that f (n) is absolutely continuous. Then the following identity holds

1

b− a

b∫
a

f(s)ds =

=
3

8

n−1∑
i=0

[
f (i)

(
5a+ b

6

)
+ (−1)

i
f (i)

(
a+ 5b

6

)][
5i+1 − (−1)

i+1 ]
(b− a)

i

6i+1 (i+ 1)!
+

+
1

4

n−1∑
i=0

f (i)

(
a+ b

2

) (
1 + (−1)

i )
(b− a)

i

2i+1 (i+ 1)!
+

+

(
5n+1 + 2 · 3n + 1

)
(1 + (−1)

n
) (b− a)

n

2n+4 · 3n (n+ 1)!

[
f (n−1); a, b

]
+Gn

(
f,

5a+ b

6

)
.

The remainder Gn

(
f, 5a+b

6

)
satisfies the bound∣∣∣∣Gn

(
f,

5a+ b

6

)∣∣∣∣ ≤ √
b− a√
2 · n!

[
T

(
Fn

(
5a+ b

6
, ·
)
, Fn

(
5a+ b

6
, ·
))]1/2

×

×
[ b∫

a

(s− a) (b− s)
(
f (n+1) (s)

)2
ds
]1/2

, (2.10)

where

T

(
Fn

(
5a+ b

6
, ·
)
, Fn

(
5a+ b

6
, ·
))

=

=
(b− a)

2n−2

16

[
3 · 52n+1 + 16 · 32n + 13

22n+2 · 32n (2n+ 1)
+

+
15

2
(−1)

n
(
B 5

6
(n+ 1, n+ 1)−B 1

6
(n+ 1, n+ 1)

)
−

−
((

5n+1 + 2 · 3n + 1
)
(1 + (−1)

n
)

3n · 2n+2 (n+ 1)

)2]
.
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Proof. This is a special case of Theorem 2 for w (s) = 1
b−a , s ∈ [a, b],

x = 5a+b
6 and A

(
5a+b
6

)
= 3

8 . �

Remark 3. Let us consider the special case n = 1 in Corollary 3. We
have∣∣∣∣ 1

b− a

b∫
a

f(s)ds− 1

8

(
3f

(
5a+ b

6

)
+ 2f

(
a+ b

2

)
+ 3f

(
a+ 5b

6

)) ∣∣∣∣ <
<

√
b− a

8
√
3

·
[ b∫

a

(s− a) (b− s) (f ′′ (s))
2 ds

]1/2
.

3. Four-point quadrature formulae

Using weighted Montgomery identity the following general weighted closed
four-point quadrature formula was proved in [8]:

Theorem 3. Let I be an open interval in R, [a, b] ⊂ I, and let f :
I → R be such that f (n−1) is absolutely continuous for some n ≥ 1. Let
w : [a, b] → [0,∞) be some nonnegative normalized weighted function and
A :

(
a, a+b

2

]
→ R+. Then for each x ∈

(
a, a+b

2

]
the following representation

holds
b∫

a

w(s)f(s)ds = Pn(f) +
1

(n− 1)!

b∫
a

Sw
n (x, s)f

(n)(s)ds, (3.1)

where

Pn(f) = A (x)

[ n−1∑
i=0

f (i)(x)

i!

b∫
a

w(s)(s− x)ids+

+
n−1∑
i=0

f (i)(a+ b− x)

i!

b∫
a

w(s)(s− a− b+ x)ids
]
+

+

(
1

2
−A (x)

)[ n−1∑
i=0

f (i) (a)

i!

b∫
a

w(s) (s− a)
i ds+

+
n−1∑
i=0

f (i) (b)

i!

b∫
a

w(s) (s− b)
i ds
]
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and the function Sw
n (x, s) satisfies the conditions

Sw
n (x, s) =

=



−
(
1

2
+A (x)

) s∫
a

w (u) (u− s)
n−1

du+

+

(
1

2
−A (x)

) b∫
s

w (u) (u− s)
n−1

du, a ≤ s ≤ x,

−1

2

[ s∫
a

w (u) (u− s)
n−1

du−
b∫

s

w (u) (u− s)
n−1

du

]
,

x < s ≤ a+ b− x,

−
(
1

2
−A (x)

) s∫
a

w (u) (u− s)
n−1

du+

+

(
1

2
+A (x)

) b∫
s

w (u) (u− s)
n−1

du, a+ b− x < s ≤ b.

(3.2)

Now, we obtain some new bound for the remainder in general weighted
four-point formula. This will be done using identity (3.1) and Lemma 1.

Theorem 4. Let I be an open interval in R, [a, b] ⊂ I, and let w : [a, b] →
[0,∞) be some nonnegative normalized weighted function. Let f : I → R
be such that f (n) is absolutely continuous and A :

(
a, a+b

2

]
→ R+. Then for

each x ∈
(
a, a+b

2

]
the following identity holds

b∫
a

w(s)f(s)ds =Pn(f) +
1

(n− 1)!

b∫
a

Sw
n (x, s)ds

[
f (n−1); a, b

]
+

+Rw
n (f, x). (3.3)

The remainder Rw
n (f, x) satisfies the estimation

∣∣Rw
n (f, x)

∣∣ ≤ √
(b− a)√

2 (n− 1)!

[
T
(
Sw
n (x, ·) , Sw

n (x, ·)
)]1/2

×

×
[ b∫

a

(s− a) (b− s)
(
f (n+1) (s)

)2
ds
]1/2

, (3.4)

where Sw
n (x, ·) is define by (3.2).

Proof. The proof is similar to the proof of Theorem 2. �
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For w (s) = 1
b−a , s ∈ [a, b] and A (x) = (b−a)2

12(x−a)(b−x) , x ∈
(
a, a+b

2

]
and

special choices of variable x,
(
x = 2a+b

3 and x = −
√
5
5 , for [a, b] = [−1, 1]

)
,

we get some new error estimates for the well-known Simpson’s 3/8 formula
and Lobatto four-point formula.

Corollary 10. Let I be an open interval in R, [a, b] ⊂ I, and let
f : I → R be such that f (n) is absolutely continuous. Then the follow-
ing identity holds

1

b− a

b∫
a

f(s)ds =

=
1

8

n−1∑
i=0

[
f (i)

(
2a+ b

3

)
+(−1)

i
f (i)

(
a+ 2b

3

)] [
2i+1 + (−1)

i ]
(b− a)

i

3i (i+ 1)!
+

+
1

8

n−1∑
i=0

[
f (i)(a) + (−1)

i
f (i)(b)

] (b− a)
i

(i+ 1)!
+

+

(
3n + 2n+1 + 1

)
(1 + (−1)

n
) (b− a)

n

8 · 3n (n+ 1)!

[
f (n−1); a, b

]
+Rn

(
f,

2a+ b

3

)
.

The remainder Rn

(
f, 2a+b

3

)
satisfies the bound∣∣∣∣Rn

(
f,

2a+ b

3

)∣∣∣∣ ≤ √
b− a√
2 · n!

[
T

(
Sn

(
2a+ b

3
, ·
)
, Sn

(
2a+ b

3
, ·
))]1/2

×

×
[ b∫

a

(s− a) (b− s)
(
f (n+1) (s)

)2
ds
]1/2

, (3.5)

where

T

(
Sn

(
2a+ b

3
, ·
)
, Sn

(
2a+ b

3
, ·
))

=

=
(b− a)

2n−2

16

[
32n + 5 · 22n+1 + 11

2 · 32n (2n+ 1)
+

+ (−1)
n
(
8 ·B 2

3
(n+ 1, n+ 1)−B 1

3
(n+ 1, n+ 1)

)
−

−

((
3n + 2n+1 + 1

)
(1 + (−1)

n
)

2 · 3n (n+ 1)

)2 ]
.

Proof. This is a special case of Theorem 4 for w (s) = 1
b−a , s ∈ [a, b],

x = 2a+b
3 and A

(
2a+b
3

)
= 3

8 . �
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Remark 4. For n = 1 in Corollary 10 we have∣∣∣∣ 1

b− a

b∫
a

f(s)ds− 1

8

(
f (a)+3f

(
2a+ b

3

)
+3f

(
a+ 2b

3

)
+f (b)

) ∣∣∣∣<
<

√
b− a

8
√
3

·
[ b∫

a

(s− a) (b− s) (f ′′ (s))
2 ds

]1/2
.

Corollary 11. Let I be an open interval in R, [−1, 1] ⊂ I, and let
f : I → R be such that f (n) is absolutely continuous. Then the following
identity holds

1∫
−1

f(s)ds =

=
5

6

n−1∑
i=0

[
f (i)

(
−

√
5

5

)
+(−1)

i
f (i)

(√
5

5

)](
5+

√
5
)i+1

+(−1)
i (
5−

√
5
)i+1

2 · 5i+1 (i+1)!
+

+
1

6

n−1∑
i=0

[
f (i)(−1) + (−1)if (i) (1)

] 2i

(i+ 1)!
+

+
1 + (−1)

n

12 · 5n (n+ 1)!

[(
5 +

√
5
)n+1

+
(
5−

√
5
)n+1

+ 2 · 10n
] [

f (n−1);−1, 1
]
+

+ 2 ·Rn

(
f,−

√
5

5

)
.

The remainder Rn

(
f,−

√
5
5

)
satisfies the bound∣∣∣∣Rn

(
f,−

√
5

5

)∣∣∣∣ ≤ 1

n!

[
T

(
Sn

(
−

√
5

5
, ·
)
, Sn

(
−

√
5

5
, ·
))]1/2

×

×
[ 1∫
−1

(
1− s2

) (
f (n+1) (s)

)2
ds
]1/2

, (3.6)

where

T

(
Sn

(
−

√
5

5
, ·
)
, Sn

(
−

√
5

5
, ·
))

=

=
2 · 102n + 17

(
5−

√
5
)2n+1

+ 7
(
5 +

√
5
)2n+1

576 (2n+ 1) 52n
+

+
22n (−1)

n

144

(
18B 5+

√
5

10

(n+ 1, n+ 1)− 7B 5−
√

5
10

(n+ 1, n+ 1)
)
−
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−
(

1 + (−1)
n

48 · 5n (n+ 1)

)2((
5 +

√
5
)n+1

+
(
5−

√
5
)n+1

+ 2 · 10n
)2

.

Proof. This is a special case of Theorem 4 for a = −1, b = 1, x = −
√
5
5 ,

A
(
−

√
5
5

)
= 5

12 and w (s) = 1
2 , s ∈ [−1, 1]. �

Remark 5. For n = 1 in Corollary 11 we have∣∣∣∣
1∫

−1

f(s)ds− 1

6

(
f (−1) + 5f

(
−

√
5

5

)
+ 5f

(√
5

5

)
+ f (1)

)∣∣∣∣ ≤
≤
√
13− 5

√
5

6
·
[ 1∫
−1

(
1− s2

) (
f ′′ (s)

)2ds
]1/2

.
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