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A NOTE ON THE UNIVALENCE OF APPROXIMATE

CONFORMAL MAPPING FUNCTIONS

K. AMANO, G. SILAGADZE AND M. ZAKRADZE

Abstract. It is pointed out that when approximate conformal map-
pings are applied to practical problems the univalence of their map-
ping functions in general should be investigated. Simple examples
show that a high accuracy of the approximate mapping functions
does not necessarily mean the univalence of them, which may cause
a certain difficulty in the problem solving.
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1. Introduction

Let G and D be domains given in the ζ = ξ + iη ≡ (ξ, η) plane and the
z = x + iy ≡ (x, y) plane, respectively. In addition, assume that they have
an identical connectivity and are respectively bounded by piecewise smooth
closed curves Γ and S without multiple points, i.e., Γ and S are simple
curves, whose parametric equations are given.

One of the most basic problems in complex analysis is to find an analytic
function z = f(ζ) that conformally maps the domain G onto the domain
D, and inversely [1,2].

It is well known that, by the Riemann mapping theorem, all simply
connected domains are conformally equivalent to each other, and can con-
formally be mapped onto the unit disk [1,2,3,4]. In the case of multiply
connected domains of connectivity n (n ≥ 2), though two domains can be
mapped onto each other if and only if they agree in a modulus (n = 2)
or 3n − 6 moduli (n ≥ 3), any domain can be conformally mapped onto
some canonical domains defined by geometric properties [3,4] (e.g., see [4,
p. 240-241]). However, these conformal mapping functions can be written
in explicit forms only for a small family of domains.
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Conformal mappings are familiar also in science and engineering. They
have been used for solving practical problems in various fields, e.g., hydro-
dynamics, aerodynamics, elasticity, filtration, electricity, magnetism and
heat flows [1,2,4,5], where construction of the mapping function for given
domains is a key problem. One has often to resort to approximation since
it is difficult to obtain the exact mapping function in explicit forms.

The method of conformal mapping (MCM) has continuously been de-
veloped for the last one hundred years, whose basics are found in many
publications, e.g., Kantorovich and Krylov [1], Koppenfels and Stallmann
[6] Filchakov [7], Gaier [8] and Ugodchikov, et al. [9]. In recent years, the
MCM has attracted a new attention in scientific computing from theoretical
and practical viewpoints, due to the progress of modern computers [10-24].
See Henrici [25], Trefethen [26], Kythe [27], Driscoll and Trefethen [28] for
a survey of approximate conformal mappings, which are usually called the
numerical conformal mapping (NCM).

As is known (e.g., see [2, p.111]), in order that the function z = f(ζ) was
realizing conformal mapping the domain G, it is necessary and sufficient that
it was analytic and univalent in this domain. Since, under an approximate
construction of a conformal mapping function practically it is impossible to
provide of the univalence, therefore as a rulle, it is possible it was univalent
or not in G, i. e., the mapping may be was one-to-one or not. On the basis of
noted in general, and in particular when approximate conformal mappings
are applied to practical problems the univalence of their mapping functions
should carefully be investigated. For example, under solving boundary value
problems in the theory of plane elasticity by the Muskhelishvili method (see
e.g., [5,p. 279]) is required not only the univalence of the function z = f(ζ)
in the domain G but to satisfy of the condition f ′(ζ) 6= 0 (ζ ∈ Ḡ), where
the function z = f(ζ) conformally maps the canonical domain (a disk,
an annulus) G with the boundary Γ onto the basic or problem domain D
with the boundary S. Simple examples show that a high accuracy of the
approximate mapping functions does not necessarily mean the univalence
of them, which may cause a certain difficulty in the problem solving.

2. A Method of Univalence Investigation

It should be noted that for obtaining an approximate function of z =
f(ζ), as a rule, a sequence {fn(ζ), n = 1, 2, . . .}, where fn(ζ) is analytic in
G and continuous in G, is constructed which uniformly converges to f(ζ)
on the boundary Γ for n → ∞, i.e.,

lim
n→∞

fn(ζ) = f(ζ), ζ ∈ Γ. (1)

It means that for an arbitrary ε > 0 we can find N(ε) such that

|fn(ζ) − f(ζ)| < ε, (2)
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where ζ ∈ Γ and n ≥ N . From the maximum modulus principle for analytic
functions, the inequality (2) is satisfied on G. The function z = fn(ζ)
usually maps the domain G not onto the domain D but onto some “domain”
Dn (Dn may not be a domain) with a boundary Sn, which is “near” the
domain D. From (1), Dn → D (or Sn → S) for n → ∞.

After a function fn(ζ) is obtained, it should carefully be examined in
the following way: (1) First the accuracy of fn(ζ) should be estimated; (2)
Next the univalence of fn(ζ) should be investigated. The univalence of the
function z = fn(ζ) as well as its accuracy has an essential importance when
it is applied to practical problems [1,2].

The accuracy of fn(ζ) is usually estimated by the maximal deviation or
distance of Sn from S either numerically with their equations or graphically
with their contours. In many cases, if the function fn(ζ) has a sufficiently
high accuracy ε (strictly speaking, a sufficiently small error), it is considered
without further investigation that z = fn(ζ) conformally maps the domain
G onto the “domain” Dn. However, as shown in Section 3, the inequality (2)
does not necessarily mean the univalence of the analytic function z = fn(ζ)
or the conformality of the mapping function z = fn(ζ) in the domain G.
Thus, the univalence of fn(ζ) should still be investigated.

In general, it is a difficult problem to analytically establish the univalence
of the function z = fn(ζ) in the domain G, even if G is the unit disk (e.g.,
see [4, p.574]). However, the univalence of the function z = fn(ζ) can
graphically be investigated based on the following Osgood’s theorem [5].

Theorem 1. Let G be a finite or an infinite domain bounded by a

simple closed curve Γ in the ζ plane, and f(ζ) a function analytic in G
and continuous on G. Let further the point defined by z = f(ζ), moving

always in one and the same direction, describe a simple closed contour S
in the z plane when ζ describes the contour Γ . Then the relation z = f(ζ)
gives a conformal mapping of the domain G onto the domain D bounded

by the contour S, and inversely. In addition it can be assumed that, if the

point ζ describes the boundary of the domain G in the positive direction,

i.e., it leaves G always to the left, then the corresponding point z describes

the boundary of the domain D also in the positive direction.

A generalization of this theorem for multiply connected domains is given
in [5].

On the basis of the theorem above mentioned:

1) If we see on the screen of a monitor that the contour Sn has loops,
then one-to-one correspondence between the contours Γ and Sn is
violated, and the mapping z = fn(ζ) is not conformal in G;

2) If we see on the screen of a monitor that the contour Sn has no
loops, the mapping z = fn(ζ) is “expected to be” conformal in G.
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However, even in the latter case the function z = fn(ζ) may not confor-
mally map the domain G onto a “domain” Dn, because human eyes have
a limitted resolution. It is known that human eyes can not clearly perceive
an object with dimensions smaller than 0.02 mm, so that we can clearly see
a contour only when it is drawn with a physical thickness greater than 0.02
mm. If ε � d, i.e., the deviation of the contour Sn from the contour S lies in
a neighborhood of d from S, where d is the physical thickness of the contour
Sn, the contour Sn should further be investigated by scale magnification,
because the following cases are still possible in this neighborhood:

a) The contour Sn has loops;
b) The contour Sn has no loops, but has an error in local curvature

so that such an important property as the star-shapedness of a
boundary element of S is violated.

Here, a simply connected domain D and its boundary S are star-shaped
with respect to a point z0 ∈ D if an arbitrary ray radiated from the point
z0 intersects the contour S only once. In the former case, the mapping
z = fn(ζ) is not conformal, and the MCM with the function z = fn(ζ)
can not be applied to practical problems. In the latter case, the mapping
z = fn(ζ) is conformal, but the MCM with the function z = fn(ζ), as a
rule, gives essential errors.

To avoid these difficulties, n should be increased and the process of the
examination of fn(ζ) should be repeated again.

3. Examples

In the following examples, we draw the contour Γ̃ (or S̃) with the points
ζk = f1(z(tk)) (or zk = f1(ζ(tk))), k = 1, 2, . . . , N (N = 100000), where
f1(z) (or f1(ζ)) means an approximate mapping function, and the points
zk = z(tk) (or ζk = ζ(tk)) are placed on the contour S (or Γ ) uniformly
with respect to the parameter t.

3.1. A lemniscate. It is known (see [5], p. 510) that the function

ζ = f(z) = z2 − 1 (3)

conformally maps the domain inside the right (or left) loop of a Bernoulli’s
lemniscate onto the unit disk G (|ζ| < 1) (see Figure 1(a), (b)). From (3)
we have

z =
√

1 + ζ =
√

r

(
cos

ϕ + 2kπ

2
+ i sin

ϕ + 2kπ

2

)
,

where r = |1 + ζ|, ϕ = arg(1 + ζ), −π/2 ≤ ϕ ≤ π/2, k = 0, 1. When k = 0
and the point ζ describes the unit circle Γ , the right loop is obtained; and
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when k = 1, the left loop is obtained. It is easy to see that a parametric
equation of the right loop S is given by

x =
√

2 cos t cos(t/2), y =
√

2 cos t sin(t/2), −π/2 ≤ t ≤ π/2.

Figure 1. A Bernoulli’s lemniscate.

For the right loop (i.e., in the domain D with the boundary S, see Figure
1(b)), we consider the function

ζ = f1(z) = z2 − 1 − εz, ε > 0

which is analytic in D and continuous on D. Then we have

|f1(z) − f(z)| = ε|z| ≤ ε
√

2, z ∈ S,

for an arbitrary ε > 0, where the function f(z) is univalent in D. However,
the function f1(z) is not univalent in D. Indeed, the necessary condition
for f1(z) to be univalent in D, i.e., f ′

1(z) 6= 0, z ∈ D, is violated since
f ′

1(ε/2) = 0.
It is easy to see that, when z describes the contour S, the parametric

equation of the contour Γ̃ : ζ = f1(z) is given by

ξ = 2 cos2 t − ε
√

2 cos t cos(t/2) − 1,

η = sin 2t − ε
√

2 cos t sin(t/2), −π/2 ≤ t ≤ π/2.

If the contour Γ̃ is drawn for ε = 0.03, a “simple” closed contour Γ̃ that is
close to Γ is obtained as shown in Figure 1(c). Based on Osgood’s theorem,
it is expected to follow that the function ζ = f1(z) conformally maps the
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domain D onto the “domain” G̃ with the boundary Γ̃ . However, it is

imposible since ζ = f1(z) is not univalent in D, i.e., the contour Γ̃ can

not be simple. Indeed, if the contour Γ̃ is piecewise investigated by scale
magnification Figure 1(d) is obtained near the point ζ = (−1, 0), which

shows that the contour Γ̃ has a multiple (double) point.
It is easy to see that the points z1 and z2 (z1 6= z2) of domain D̄ at

which f1(z1) = f1(z2) are situated symmetrically to the point (ε/2, 0) ∈ D.
Thus we have z1 = 0.5ε − δ + iy, z2 = 0.5ε + δ − iy, where δ ∈ [0, ε/2].
For the indicated points f1(z1) = f1(z2) = −1− y2 − (ε2/4− δ2)− i2δy. In
particular : if δ = 0 then f1(z1) = f1(z2) = −1− y2 − ε2/4; if δ = ε/2 then
on the basis of condition z1, z2 ∈ D we have y = 0, i.e., z1 = 0, z2 = ε and
f1(0) = f1(ε) = −1 , respectively (which was expected). It is evident that
if δ ∈ [0, ε/2] then f1(z1) = f1(z2) ∈̄ Ḡ.

3.2. A cardioid. It is known [5] that the function

z = f(ζ) = ζ + 0.5ζ2

conformally maps the unit disk G (|ζ| < 1) onto the domain inside a car-
dioid. Consider the function

f1(ζ) = ζ + 0.5ζ2 + εζ2, ε > 0,

which is analytic in G and continuous on G. Then we have

|f1(ζ) − f(ζ)| = ε. (4)

Thus the equality (4) is satisfied on the unit circle Γ (|ζ| = 1) for an
arbitrary ε > 0, where the function f(ζ) is univalent in G, while the function
f1(ζ) is not. Indeed, f ′

1(−1/(1 + 2ε)) = 0, i.e., the condition necessary for
the univalence of f1(ζ) in G is violated since (−1/(1 + 2ε), 0) ∈ G.

If the contour S̃ : z = f1(ζ) is drawn for ε = 0.05, when ζ describes

the circle Γ , a “simple” closed contour S̃, the cardioid in Figure 2(a), is
obtained. However it is imposible since the function f1(ζ) is not univalent in

G. Indeed, if the contour S̃ is piecewise investigated by scale magnification
Figure 2(b) is obtained near the point z = (−0.5, 0), which shows that the

contour S̃ has a multiple point.
Similarly to Section 3.1 for those points ζ1 and ζ2 (ζ1 6= ζ2) of domain

Ḡ at which f1(ζ1) = f1(ζ2) we have ζ1 = −1/(1 + 2ε) − δ + iη, ζ2 =
−1/(1 + 2ε) + δ − iη, where δ ∈ [0, 2ε/(1 + 2ε)]. For the noted points
f1(ζ1) = f1(ζ2) = −0.5/(1 + 2ε) + (0.5 + ε)(δ2 − η2) − i(1 + 2ε)ηδ. In
particular: if δ = 0 then f1(ζ1) = f1(ζ2) = −0.5/(1+2ε)−(0.5+ε)η2 < −0.5;
if δ = 2ε/(1 + 2ε) then η = 0, i.e., ζ1 = −1, ζ2 = −1 + 4ε/(1 + 2ε) and
f1(ζ1) = f1(ζ2) = −0.5 + ε, respectively.



A NOTE ON THE UNIVALENCE 7

Figure 2. A cardioid and the unit disk.

3.3. A disk. Consider the conformal mapping of the unit disk G onto itself,

z = f(ζ) = ζ, |ζ| < 1,

and a perturbation of the function f(ζ),

z = f1(ζ) = ζ − ε

1 − aζ
, 0 < a < 1, 0 < ε < 1.

It is evident that the function z = f1(ζ) is analytic in G and continuous on
G.

We now show that for an arbitrary ε ∈ (0, 1) the constant a can be se-
lected from the interval (0, 1) so that the function f1(ζ) will not be univalent
in G. The equation f ′

1(ζ) = 0 has the solutions

ζ1 =
1 −√

εa

a
> 0, ζ2 =

1 +
√

εa

a
,

and ζ2 6∈ G. It is easy to see that if

2 + ε −
√

4ε + ε2

2
< a < 1

then ζ1 ∈ G, and consequently the function f1(ζ) will not be univalent in
the domain G. For example, if

a =
4 + ε −

√
4ε + ε2

4
,



8 K. AMANO, G. SILAGADZE AND M. ZAKRADZE

then
ε

|1 − aζ| ≤
ε

|1 − a|
on the unit circle Γ : |ζ| = 1, and

ε

|1 − a| =
4

| − 1 +
√

4/ε + 1|
= ε1(ε) → 0 for ε → 0.

Thus, for the functions f(ζ) and f1(ζ) the constants ε and a can be
selected so that for an arbitrary ε1 > 0 the inequality

|f1(ζ) − f(ζ)| < ε1

is satisfied on the circle Γ : |ζ| = 1, where the function f(ζ) is univalent in
the disk G, while the function f1(ζ) is not.

If the contour S̃ : z = f1(ζ) is drawn for ε = 0.00002, when ζ describes

the circle Γ , a “simple” closed contour S̃ is obtained as shown in Figure
2(c). However, similarly to the previous examples, Figure 2(d) is obtained

by scale magnification, which shows that the contour S̃ has a multiple point
near the point z = (1, 0).

Those points ζ1 and ζ2 (ζ1 6= ζ2) of domain Ḡ which f1(ζ1) = f1(ζ2) the
condition (1− aζ1)(1− aζ2) = εa or ζ2 = ζ̄1 fullfils, i. e., ζ1 = ξ + iη, ζ2 =
ξ − iη. It is easy to show that the noted points are situated on the circle
γ whose radius is (ε/a)1/2 and the center is at the point (1/a, 0). We have
1/a > 1 and (ε/a)1/2 > 1/a − 1, therefore the above mentioned points ζ1

and ζ2 are situated on the arc G ∩ γ symmetrically of to the axis Oξ.

4. Concluding Remarks

The considered examples have shown that when approximate conformal
mappings are applied to practical problems the univalence of their mapping
functions should carefully be investigated. Concerning high accuracy con-
structed non- univalence mapping functions, their application for solving
practical problems depend on the following circumstances: 1) The charac-
ter of the considered problem; 2) The method applied to solution of the
obtained new problem in the canonical domain; 3) The character of diffi-
culties which arise after application of a non-univalence mapping function.

Although the method of univalence investigation with the help of com-
puters may not have high mathematical accuracy, as shown by examples, it
is simple and gives almost real pictures of the approximate mapping func-
tion.
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