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Abstract. A single-valued analytic function of general type is con-
structed which maps a half-plane onto a circular polygon with a finite num-
ber of vertices and with arbitrary finite angles at those vertices. It is proved
that this function is a general solution of the Schwartz equation.

Transcendent equations of higher order connecting geometrical character-
istics of circular polygons with unknown parameters of Schwartz equation,
are investigated. Possible intervals of variation of unknown accessory pa-
rameters are established.

A general mathematical method of constructing solutions of spatial ax-
ially symmetric stationary with partially unknown boundaries problems of
the theory of get flows and filtration is given.

îâäæñéâ. ŽàâĲñèæŽ äëàŽáæ ïŽýæï ùŽèïŽýŽ ŽêŽèæäñîæ òñêóùæŽ, îëéâèæù êŽýâ-
ãŽîïæĲîðõâï àŽáŽïŽýŽãï ûîæñè éîŽãŽèçñåýâáäâ ûãâîëâĲæï ïŽïîñèæ îŽëáâêëĲæå
áŽ Žé ûãâîëâĲåŽê êâĲæïéæâîæ ïŽïîñèæ çñåýââĲæå. áŽéðçæùâĲñèæŽ, îëé âï òñêóùæŽ
öãŽîùæï àŽêðëèâĲæï äëàŽáæ ŽéëêŽýïêæŽ.

àŽéëçãèâñèæŽ éŽôŽèæ îæàæï ðîŽêïùâêáâêðñèæ àŽêðëèâĲâĲæ, îëéèâĲæù ŽçŽãöæ-
îâĲï ûîæñè éîŽãŽèçñåýâáâĲæï àâëéâðîæñè éŽýŽïæŽåâĲèâĲï öãŽîùæï àŽêðëèâĲæï
ñùêëĲ ìŽîŽéâðîâĲåŽê. áŽáàâêæèæŽ ñùêëĲæ Žóïâïëîñèæ ìŽîŽéâðîâĲæï ùãèæèâĲâĲæï
öâïŽúèë æêðâîãŽèâĲæ.

éëùâéñèæŽ üŽãèñîæ åâëîææïŽ áŽ òæèðîŽùææï åâëîææï ïæãîùæåæ ôâîúïæéâðîæ-
ñèæ êŽûæèëĲîæã ñùêëĲïŽäôãîæŽêæ ïðŽùæëêŽîñèæ ŽéëùŽêâĲæï ŽéëêŽýïêâĲæï ŽàâĲæï
äëàŽáæ éŽåâéŽðæçñîæ éâåëáæ.
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Preface

The present monograph includes chapters from some papers reflecting
the most important earlier and the latest results of investigations carried
out by the author.

A brief list of problems: :

1. Assume that an upper half-plane of the plane ζ = t + iτ is mapped
conformally by the function z = z(ζ) onto circular polygons on the plane
z = x + iy. Moreover, let the points t, a1, a2, . . . , am (where −∞ < a1 <
a2 < · · · < am < +∞) of the real axis turn into the corresponding vertices of
a circular (or linear) polygon b1, b2, . . . , bm. An unknown function z = z(ζ)
satisfies the known Schwarts equation

z′′′(ζ)/z′(ζ)− 3
[
z′′′(ζ)/z′(ζ)

]2
/2 = R(ζ),

R(ζ) =
m∑

k=1

[
(1− v2

k)(ζ − ak)−2/2 + ck(ζ − ak)−1
]
,

(1)

where ck are unknown accessory parameters, πvk are the given interior
angles of the circular polygon at the vertices bk. Equation (1) depends on

2(m− 3) unknown parameters ak, ck,
m∑

k=1

ck = 0,,

m∑

k=1

[
akck + 0, 5(1− v2

k)
]

= 0,

m∑

k=1

[
a2

kck + ak(1− v2
k)

]
= 0. (2)

An unknown function z = z(ζ), being a solution of equation (1), must
satisfy the linear boundary condition

A(t) z(t) z(t)− i B(t) z(t) + i B z(t) + D(t) = 0, (3)

where A(t), B(t), D(t) are the given piecewise-constant functions satisfying
the condition B(t)B(t)−A(t)D(t) = 1; z(t)B(t) are the complex-conjugate
functions, respectively, of z(t) and B(t).

2. A plane of stationary motion of incompressible liquid in a porous
medium, subject to the Darcy law, coincides with the plane of a com-
plex variable z = x + iy. The porous medium is assumed to be isotropic,
homogeneous and undeformable. The boundary `(z) of the domain S(z)
of liquid motion consists of a depression curve to be determined and of
the known segments of straight, semidirect and direct lines. In the do-
main S(z) with the boundary `(z) we seek for a reduced complex potential
ω(z) = ϕ(x, y) + iψ(x, y), where ϕ(x, y) is the velocity potential, ψ(x, y) is



7

a stream function satisfying the Cauchy-Riemann conditions and the con-
ditions

ak1ϕ(x, y) + ak2ψ(x, y) + ak3x + ak4y = fk, k = 1, 2, (x, y) ∈ `(z), (0.1)

where ak, fk, k = 1, 2, j = 1, 4 are the known piecewise-constant real func-
tions; fk, k = 1, 2, dapend on the parameter Q, where Q is the liquid
discharge per filtration.

3. Solutions of spatial axially symmetric problems with partially un-
known boundaries become more complicated as compared with analogous
plane problems 1 and 2.

Such kind of problems are encountered in the theory of filtration, in get
flows theory, and also in various parts of mathematical physics.

In the present monograph we investigate the above-mentioned problems
and these which are tightly connected with them.

The monograph consists of five chapters.
Each chapter is supplied with an abstract, introduction, sections and

references.



Chapter I

Solution of the Schwarz Differential Equation

Abstract. A circular polygon of general form with a finite number of
vertices and arbitrary angles at these vertices is given. A single-valued an-
alytic function mapping conformally a half-plane onto the given circular
polygon is constructed in a general form. The function is proved to be
a general solution of the Schwarz equation. First we construct functional
series convergent uniformly and rapidly near all singular points and then
fundamental local matrices which are connected by analytic continuation.
The constructed analytic function satisfies nonlinear boundary conditions.
In a general form, we compose and investigate all higher transcendental
equations connecting geometric characteristics of circular polygons with un-
known parameters of the Schwarz equation. Possible intervals of variation
of unknown accessory parameters are established.

1. Introduction

Let on a complex plane w be given a simply connected domain S(w)
with the boundary l consisting of a finite number m + 1 of circular arcs or
linear segments; note that the latter are regarded as degenerated circular
arcs. The vertices of circular polygons are denoted by b1, b2, . . . , bm+1, while
the sizes of inward with respect to the domain S(w) angles are denoted by
πν1, πν2, . . . , πνm+1. The domain S(w) may be assumed to be bounded.
This can always be achieved by a suitable linear-fractional mapping.

Without restriction of generality, one can by means of a linear-fractional
transformation, combine one of the sides of circular polygons, say the side
(bm, bm+1), with a segment of abscissa axis, the origin coinciding with the
vertex bm. For νm 6= n, n = 0, 1, 2, and the side (bm−1, bm) becomes a
segment of the straight line forming with the abscissa axis the angle πνm.
This remark will be used in the sequel.

Find and investigate the function w(ζ) which conformally maps the half-
plane =(ζ) > 0 (or =(ζ) < 0) of the plane ζ = t+ iτ onto the domain S(w).
Using the theorem on the correspondence of boundaries of the domains
=(ζ) > 0 and S(w), we denote by ak, k = 1, 2, . . . , m + 1, the points of
the real axis of the plane ζ = t + iτ (in this case −∞ < a1 < a2 < · · · <
am < +∞) to which on the plane w there correspond the vertices of circular
polygons bk, k = 1, 2, . . . ,m, m + 1. Suppose that the point am+1 = ∞ is
mapped into the point w = bm+1. On every interval of the t-axis, the

8



Solution of the Schwartz Differential Equation 9

unknown function w = w(ζ) takes between neighboring points ak, ak+1 the
values which lie on the corresponding circular arc [5,6].

A not complete bibliography dealing with those problems can be found
in [1–27].

The function w = w(ζ) is the solution of the Schwarz equation [5–7, 9–11]

w′′′(ζ)/w′(ζ)− 1, 5[w′′(ζ)/w′(ζ)]2 = R(ζ), (1.1)

R(ζ) =
m∑

k=1

[0, 5(1− ν2
k)/(ζ − ak)2 + ck/(ζ − ak)], (1.2)

where ck, k = 1, 2, . . . , m are unknown real accessory parameters satisfying
the conditions

m∑

k=1

ck = 0,

m∑

k=1

[akck + 0, 5(1− ν2
k)] = 0, 5(1− ν2

m+1). (1.3)

By bk, b′k, k = 1, 2, . . . , m + 1 we denote the complex coordinates of the
vertices of a circular polygon at which two neighboring circumferences may
intersect; but if the neighboring circumferences are tangents at the vertex
w = bk, then bk = b′k.

The function w = w(ζ) on the boundary l of S(w) must satisfy the
nonlinear boundary condition [19, 20]

iA(t)w(t)w(t) + B(t)w(t)−B(t)w(t) + iD(t) = 0, −∞ < t < +∞, (1.4)

B(t)B(t)−A(t)D(t) = 1, (1.5)

where A(t), B(t), B(t), D(t) are the given piecewise constant functions;
A(t), D(t) are real, while B(t) and B(t), w(t) and w(t) are mutually complex
conjugate.

It should be noted that (1.4) is the equation of the contour of the circular
polygon.

It is known that every function w(ζ), conformally mapping =(ζ) > 0 onto
a circular polygon, satisfies (1.1), and vice versa, every solution of (1.1) con-
formally maps the domain =(ζ) > 0 onto a some circular polygon [10, p.
137]. Moreover, due to the boundary correspondence under conformal map-
ping, every solution of (1.1), w = w(ζ), will satisfy the boundary condition
(1.4). Note hereat that when passing in (1.4) to complex conjugate values,
the equation (1.4) remains unchanged.

If w = w1(ζ) is a particular solution of (1.1), then the general solution of
(1.1) is given by

w(ζ) = [pw1(ζ) + q]/[rw1(ζ) + S], ps− rq = 1, (1.6)

where p, q, r, s are arbitrary, parameters of integration of the equation (1.1),
connected by the condition ps− rq = 1.
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Equation (1.1) is invariant with respect to a linear-fractional transfor-
mation of the independent ζ and dependent w variable; given ζ, the coef-
ficients of the linear-fractional transformation are real, but given w, they
are complex. Therefore we can fix arbitrarily three of the parameters ak,
k = 1, 2, . . . , m, m + 1 one of which, am+1 = ∞, is already fixed. It remains
to fix the rest two parameters by taking, e.g., a1 = −m, am = m.

Thus it becomes evident that the equation (1.1) depends on 2(m − 2)
unknown parameters ak, ck, k = 1, 2, . . . , m and a number of singular points
ζ = ak equals m + 1.

The contour of the circular polygon l consists of arcs of m + 1 circum-
ferences. For their definition, we need 3(m + 1) real parameters. As it will
be seen, there are exactly 3(m + 1) parameters at our disposal. Indeed, the
equation (1.1) depends both on 2(m − 2) unknown parameters ak, ck and
on m + 1 known parameters νk, k = 1, 2, . . . ,m + 1. In defining a general
solution of (1.1), there appear six more additional parameters of integration
(see (1.6)). Thus we have 2(m− 2) + m + 1 + 6 = 3(m + 1) parameters [7].

If we assume that w′ = 1/u2(ζ), then the solution of (1.1) reduces to
that of the Fuchs class differential equation [5–13]

u′′(ζ) + 0, 5R(ζ)u(ζ) = 0. (1.7)

If we find linear independent partial v1(ζ), v2(ζ) solutions of (1.7), then
a general solution of (1.1) can be obtained by the formula (1.6) assuming
w1(ζ) = v1(ζ)/v2(ζ).

Below we will consider the Fuchs class equation of the kind

v′′(ζ) + p(ζ)v′(ζ) + q(ζ)v(ζ) = 0, (1.8)

where

p(ζ) =
m∑

k=1

βk/(ζ − ak), q(ζ) =
m∑

k=1

[σk/(ζ − ak)2 + ck/(ζ − ak)]; (1.9)

βk, σk are the given constants and ck are unknown p′(s) accessory parame-
ters.

Substituting

v(ζ) = u(zt) exp
[
− 1

2

ζ∫

0

p(ζ)dζ

]
, (1.10)

the equation (1.8) reduces to the equation (1.7), where

0, 5R(ζ) = q(ζ)− 0, 5(p′(ζ))2 − 0, 25(p(ζ))2. (1.11)
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One frequently uses equations of the type (1.8) in which p(ζ) and q(ζ)
are of the form [4, 15]

p(ζ) =
m∑

k=1

(1− νk)/(ζ − ak),

q(s) = α′α′′
m−2∏

k=1

(ζ − λk)/
m∏

k=1

(ζ − ak),

(1.12)

where
m∑

k=1

νk + α′ + α′′ = m− 1, α′ − α′′ = νm+1, (1.13)

and λ1, λ2, . . . , λm−2 are accessory parameters.
If we consider a circular polygon with equal angles πνj = π, j = 1, 2, . . . ,

m + 1, then α′ = 0, and hence in this case it is necessary to consider the
limits lim(α′α′′λk), k = 1, 2, . . . ,m− 2 as α′ → 0. Therefore it is better to
write q(ζ) in the form [7]

q(ζ) =

[
α′α′′ζm−2 + δ1ζ

m−3 + δ2ζ
m−4 + · · ·+ δm−3ζ + δm−2

]
m∏

k=1

(ζ − ak)
, (1.14)

where δk, k = 1, 2, . . . ,m− 2 are unknown accessory parameters.
The Fuchs class equations are solved by means of the power series, hence

we represent (1.14) as a sum of partial fractions

q(ζ) =
m∑

j=1

cj/(ζ − aj), (1.15)

where
m∑

j=1

cj = 0,

m∑

j=1

cjaj = α′α′′, (1.16)

ck =

[
α′α′′am−2

k + δ1a
m−3
k + · · ·+ δm−3ak + δm−2

]
m∏

j=1,j 6=k

(ak − aj)
. (1.17)

The equation (1.1), as well as the method of constructing w(ζ) for m = 2,
was obtained by H. A. Schwarz in 1873.

The equation (1.8) for m = 3 was considered by K. Heun in 1889 and by
Ch. Snow in 1952. But they failed in connecting the constructed local solu-
tions [3]. G.N. Goluzin [6] constructed w(ζ) for equilateral and equiangular
circular polygons. V. Koppenfels and F. Stallmann constructed w(ζ) for
some particular cases of circular polygons with angles, multiple of π

2 [10].
Approximate methods for finding the parameters ak, ck can be found in [2].
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P. Ya. Polubarinova-Kochina has obtained important results in con-
structing w(ζ) and in its application to the problems of filtration, when a
finite number of new singular points, the so-called removable points, are
added to the points ζ = ak.

A general analytic solution of the equation (1.1) for circular polygons
with a finite number of vertices bk k = 1, 2, . . . ,m+1 is given in [19–26]. In
other works, one can get systems of equations for finding the parameters aj ,
cj , p, q, r, s, j = 1, 2, . . . , m. The method making it possible to construct
explicitly a solution of (1.1) for circular polygons with angles, multiple of
π/2, is described in [22].

Below we present our new, not published yet, results as well as those
published earlier [19–26].

2. Application of Matrix Calculus to Determination of the
Fundamental System of Solutions

Denote linearly independent local solutions of (1.8) near singular points
ζ = ak, k = 1, 2, . . . ,m + 1, by vkj(ζ), k = 1, 2; j = 1, . . . ,m + 1, while the
solutions containing integration constants p, q, r, s satisfying ps− rq = 1

u1j(ζ) = pv1j(ζ) + qv2j(ζ), u2j(ζ) = rv1j(ζ) + sv2j(ζ). (2.1)

The ratios u1j/u2j are local solutions of (1.1) (see (1.6))
Linear independent local solutions of (1.8) are proved to be suitable only

near the points ζ = ak, k = 1, 2, . . . ,m + 1.
The equation (1.8) can be written in the form of a system

χ′(ζ) = χ(ζ)P(ζ), (2.2)

where

χ(ζ) =
(

u1j(ζ), u′1j(ζ)
u2j(ζ), u′2j(ζ)

)
,P(ζ) =

(
0, −q(ζ)
1, −p(ζ)

)
, (2.3)

χ′(ζ) =
d

dζ
χ(ζ), u′kj(ζ) =

d

dζ
ukj(ζ), (2.4)

and u1(ζ), u2(ζ) are the linear independent solutions of (1.8).
Note that since the coefficients of (1.1) and (1.8) are real, it becomes

obvious that if w(ζ) and ukj(ζ), k = 1, 2, are solutions of (1.1) and (1.8),
respectively then w(ζ) and ukj(ζ) are likewise the solutions of (1.1) and
(1.8) respectively.

In [26] we proved the basic

Theorem 2.1. If w(ζ) = u1(ζ)/u2(ζ), where u1(ζ) and u2(ζ) are linearly
independent solutions of (1.8), then the linear boundary condition (1.4) is
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equivalent to the conditions [19, 20]

u1(t) = λ[B(t)u1(t)− iD(t)u2(t)], −∞ < t < +∞, (2.5)

u2(t) = λ[iA(t)u1(t) + B(t)u2(t)], −∞ < t < +∞, (2.6)

where λ = λ(t) takes on the intervals aj , aj+1 constant values equal to +1
or −1; uk(ζ), uk(ζ) are complex conjugates.

Proof. Assume λ = λ(t). We rewrite (2.5) and (2.6) as

u1(t) = λ(t)u∗1(t), u2(t) = λ(t)u∗2(t), −∞ < t < +∞, (2.7)

where

u∗1(t) = B(t)u1(t)− iD(t)u2(t), (2.8)

u∗2(t) = iA(t)u1(t) + B(t)u2(t) (2.9)

are linearly independent solutions of (1.8).
Substituting (2.7) in (1.8), we obtain

λ′′(t)u∗1(t) + λ′(t)[2(u∗1(t))
′ + p(t)u∗1(t)] = 0, −∞ < t < +∞, (2.10)

λ′′(t)u∗2(t) + λ′(t)[2(u∗2(t))
′ + p(t)u∗2(t)] = 0, −∞ < t < +∞, (2.11)

Multiplying (2.10) by u∗2(t) and (2.11) by u∗1(t) and then subtracting the
first equality from the second one, we get

2λ′(t)
[
[u∗1(t)]

′u∗2(t)− [u∗2(t)]
′u∗1(t)

]
= 0, (2.12)

The braces in (2.12) involve the Wronskian w[u∗1(t), u
∗
2(t)] 6= 0 for all ζ,

with the exception of ζ = ak, k = 1, 2, . . . , m. Hence (2.12) implies

λ(t) = const, t ∈ (aj , aj+1), j = 1, 2, . . . , m. (2.13)

From its side, (2.13) implies

λ′(t) = 0, t ∈ (aj , aj+1), j = 1, 2, . . . ,m. (2.14)

If we calculate the Wronskian for (2.7) and take into account (2.14), we
will obtain λ2 = 1, and hence λ = ±1. ¤

In §9, we will show which of the intervals (aj , aj+1), j = 1, 2, . . . ,m
requires λ = 1 and which one λ = −1.

As for the matrix χ(ζ) defined by (2.3), we can write the conditions (2.5)
and (2.6) as:

χ(t) = 6(t)χ(t), −∞ < t < +∞, (2.15)
where

G(t) =
(

B(t), −iD(t)
iA(t), B(t)

)
,−∞ < t < +∞, (2.16)

is a given piecewise constant matrix; by (1.5) det G(t) = 1, and G(t)G(t) =
E, where E is the unit matrix and χ(t) is a matrix, complex conjugate to
the matrix χ(t).
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For the intervals of the axis ζ = t, the matrix G(t) can be defined as
follows:

G(t) = Gj =
(

Bj −iDj

iAj Bj

)
, aj < t < aj+1, j = 1, 2, . . . , m + 1, (2.17)

where aj+1 = am+2 = a1 when j = m + 1.
As it has been said above, without restriction of generality, we may as-

sume that Gm = E. Due to this fact, we can extend the matrix χ(ζ)
analytically through the interval (am, am+1) to the lower half-plane, or vice
versa.

The matrix χ(ζ) defined by (2.3) is a solution of (2.2). Since detχ(ζ) 6= 0
for all ζ with the exception of the points ζ = ak, k = 1, 2, . . . , m+1, we can
see that χ(ζ) is likewise a fundamental matrix [8]. It is also known that if
the matrix χ(ζ) is a solution of (2.2), then the matrix C · χ(ζ) is likewise a
solution of (2.2), where C is a nonsingular constant matrix.

Below we will construct locally linearly independent solutions of (1.8),
Vkj(ζ), ϕkj(ζ) respectively for the points ζ = aj , j = 1, 2, . . . , m, m + 1,
ζ = ej = (aj + aj+1)/2, j = 1, 2, . . . ,m − 1, where k = 1, 2, and then by
means of these solutions we will construct for (2.2) the corresponding locally
fundamental matrices:

θj(ζ) =
(

V1j(ζ) V ′
1j(ζ)

V2j(ζ) V ′
2j(ζ)

)
,

j = 1, 2, 3, . . . , m,m + 1,

Hj(ζ) =
(

ϕ1j(ζ) ϕ′1j(ζ)
ϕ2j(ζ) ϕ′2j(ζ)

)
,

j = 1, 2, 3, . . . , m− 1.

(2.18)

3. Local Solutions Near Singular Points, When the
Difference of Characteristic Numbers is not an Integer

Equation (1.8) near ζ = aj can be rewritten as

(ζ − aj)2V ′′(ζ) + (ζ − aj)pj(ζ)V ′(ζ) + qj(ζ)V (ζ) = 0, (3.1)

where

pj(ζ) =
∞∑

k=0

pkj(ζ − aj)k, qj(ζ) =
∞∑

k=0

qkj(ζ − aj)k. (3.2)

For the point ζ = am+1 = ∞, by means of the transformation ζ = 1/x,
we can write the equation (1.8) as follows [1, 7, 13]:

x2V ′′(x) + x[2−
∞∑

k=0

p∞k xk]V ′(x) + [
∞∑

k=0

q∞k xk]V (x) = 0, (3.3)

where

p(1/x) = x

∞∑

k=0

p∞k xk, q(1/x)x2
∞∑

k=0

q∞k xk. (3.4)
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A solution of (3.1) respectively for the points ζ = ai, ζ = ∞, j =
1, 2, . . . ,m, is sought in the form [1, 7, 8, 12, 13]

Vj(ζ) = (ζ − aj)αj Ṽj(ζ), Ṽj(ζ) =
∞∑

n=0

γnj(ζ − aj)n, (3.5)

V∞(ζ) = ζ−α∞ Ṽ∞(ζ), Ṽ∞(ζ) =
∞∑

n=0

γn∞(ζ)−n. (3.6)

Theorem 3.1. If near the point t = aj the equation (3.1) has a solution
of the type (3.5), then after its substitution in (3.1) the equality

(ζ − ai)αj

[ ∞∑

k=0

Mkj(ζ − aj)k

]
= 0 (3.7)

should identically be fulfilled.

From this equality we obtain an infinite recursion system of equations for
determination of γnj , n = 1, 2, . . ..

M0j(αj) = γ0jf0j(αj), f0j(αj) = αj(αj − 1) + αjp0j + q0j = 0, (3.8)

M1j(αj) = γ1j(αj) · f0j(αj + 1) + γ0jf1j(αj) = 0, (3.9)

M2j(αi) = γ2j(αj)f0j(αj + 2)+

γ1j(αj)f1j(αj + 1) + γ0jf2j(αj) = 0, (3.10)
.......................................................

Mnj(αj) = γnj(αj)f0j(αj + n) + γ(n−1)j(αi)f1j(αj + n− 1) + · · ·+
+γ[n−(k−2)]j(αj)f(k−2)j(αj + n− k + 2) + · · ·+

+γ1j(αj)f(n−1)j(αj + 1) + γ0jfnj(αj) = 0, (3.11)
.........................................................

fkj(αj) = αjpkj + qkj (3.12)

Theorem 3.2. If for the point ζ = aj the determining equation (3.8) has
the roots α1j, α2j (α1j > α2j) such that α1j −α2j 6= n, n = 0, 1, 2, then for
the equation (3.1) we construct by formulas (3.9)–(3.11), two local linearly
independent solutions of the type

Vkj(ζ) = (ζ − aj)αkj γ0j Ṽkj(ζ),

Ṽkj(ζ) = 1 +
∞∑

n=1

γk
nj(ζ − aj)n, k = 1, 2. (3.13)

In a complete analogy with the above theorem, we can formulate and
prove the theorem for the point ζ = am+1 = ∞ [1, 7–13].
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The convergence radius of the series Ṽkj(ζ) is bounded by the distance
from the point ζ = aj to the nearest of the points ζ = aj−1, ζ = aj+1 [1,
7,8].

The coefficient γ0j 6= 0 will be defined below.

4. Construction of the Second Solution by Means of the
Frobenius Method, When the Difference of Characteristic

Numbers is Equal to an Integer

As is known, when α1j − α2j = n, n = 0, 1, 2, using the formulas (3.9)–
(3.11), one can construct at the point ζ = aj only one solution V1j(ζ)
corresponding to the root αj = α1j .

In such cases, there exist two methods to construction the second solution
V2j(ζ): the Frobenius method and the method of lowering the order of the
equation (1.8).

By the Frobenius method, V2j(ζ) is sought as follows [8].
Consider the case where α1j −α2j = 0. In this case, for the point ζ = aj

we seek for the second solution of (3.1). First we differentiate (3.5) with
respect to αj and then calculate the limit αj → α2j and obtain V2j(ζ). Thus
we have

V2j(ζ) = V1j(ζ) ln(ζ − aj) + (ζ − aj)α2j γ0j×

×
∞∑

n=0

{ d

dαj
γ2

nj(αj)
}

αj=α2j

× (ζ − aj)n. (4.1)

Consequently, the following theorem is valid.

Theorem 4.1. If for the point ζ = aj the determining equation (3.8) has
the roots such that α1j − α2j = 0 (at the point w = bj, the two neighboring
arcs are tangent, νj = 0 ), then for the point ζ = aj there exists the second
solution V2j(ζ) of the form (4.1).

If for the point ζ = aj the roots of (3.8) satisfy the condition α1j−α2j = s,
s ∈ {1, 2}, then the second linearly independent solution of (3.1) is sought
in the form [8]

Vj(ζ, α) = γ0j(ζ − aj)αj

[
αj − α2j +

∞∑
n=1

γnj(αj)(ζ − aj)n
]
. (4.2)

Substituting (4.2) in (3.1), we obtain for determination of γ2
n(αj), n =

1, 2,. . ., a recursion system of equations. This system can also be obtained
from (3.8)-(3.11), if instead of γ2

0j (αj − α2j) we substitute γ2
nj (αj), n =

1, 2,. . .. From this system we determine γ2
nj (αj), n=1, 2, . . ., and substitute
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them in (4.2). Then we differentiate (4.2) with respect to αj and finally
calculate the limits as αj → α2j . As a result, we get the solution V2j(ζ),

V2j(ζ) = lim
αj−α2j

γ0j

{
(ζ − aj)αj

[
αj − α2j +

∞∑
n=1

γnj(αj)(ζ − aj)n
]×

× ln(ζ − aj) + (ζ − aj)αj

[
1 +

∞∑
n=1

d

dαj
[γ2

nj(αj)](ζ − aj)n
]}

(4.3)

Reasoning as above, we have proved the following

Theorem 4.2. If for the point ζ = aj the equation (3.8) has the roots such
that α1j − α2j = s, s = {1, 2} (two neighboring circular arcs are tangent
and νj = 1 and νj = 2 ), then for the point ζ = aj the second linearly
independent solution of (3.1) is of the form (4.3).

5. Conditions for the Absence of the Logarithmic Term in the
Solution Vvj(ζ)

The boundary l of the domain s(w) may contain circular or rectilinear
cuts of s(w). For the cut end w = bj , equation (3.8) possesses the roots such
that α1j − α2j = 2. For the points ζ = aj , P. Ya. Polubarinova–Kochina
has proved that solutions V2j(ζ) contain no logarithmic terms. Moreover,
for these points she has obtained the equation connecting the parameters
aj , cj , ν of some circular polygons.

Below, using the method different from that used in [15], we derive for
the end of the cut of the angle 2π an equation connecting parameters aj , cj ,
νj for any circular polygons and then prove that the second solution V2j(ζ)
constructed for this end should not contain a logarithmic term.

Denoting the first summand in formula (4.3) by V 1
2j(ζ), we have

V 1
2j(ζ) = γ0j(ζ − aj)αj×

×
[
αj − α2j +

∞∑

k=1

γ2
nj(αj)(ζ − aj)n

]
ln(ζ − aj). (5.1)

For determination of the coefficients γ2
nj(α2j), we need the formulas (3.9)–

(3.12) in which we replace γ0j by γ0j (αj − α2j). Having defined γnj(αj)
and passing to the limit in γnj(α2j), as αj → α2j , we obtain from (5.1) the
equality

v1∗
2j (ζ) = lim

αj→α2j

V 1
2j(ζ) = γ2

2j(α2j) · V1j(ζ) ln(ζ − aj), (5.2)

where v1j(ζ) is the solution of (3.1) for αj = α1j .
Now we prove
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Theorem 5.1. A necessary and sufficient condition for the absence of a
logarithmic term in the solution v2j(ζ) constructed for the cut end is of the
form

γ2
2j(α2j) =

γ0j

2
×

×{−f1j(α2j) · f1j(α2j + 1)/f0j(α2j+1) + f2j(α2j)} = 0, (5.3)

where fkj(α), k = 0, 1, 2, are defined by (3.8) and (3.12).

Proof. Let us prove the sufficiency of (5.3). From (5.2) it is obvious that
if (5.3) holds, then v1∗

2j (ζ) = 0 which proves the sufficiency of the condition
(5.3).

Let us prove now the necessity of the condition (5.3). As far as the
equation (3.1) for the cut end ζ = aj must have two locally independent
solutions containing no logarithmic terms, we take this fact into account and
construct the solution v2j(ζ) by using the formulas (3.9)–(3.11) for, only the
solutions of (3.1) constructed by (3.9)–(3.12) contain no logarithmic terms.

Really, all γ2
nj , n = 1, 3, 4, . . ., with the exception of γ2

2j(α2j), are defined
from the system (3.9)–(3.11). For definition of γ2

2j we have equation (3.10)
in which the first term γ2

2j(αj)f0j(αj + 2) = 0 for αj = α2j . Hence the sum
of the last two summands in (3.10) must vanish,

γ2
1j(α2j)f1j(α2j + 1) + γ0jf2j(α2j) = 0; (5.4)

moreover, the equation (5.4) coincides with (5.3) if we substitute in it
γ2
1j(α2j) defined by (3.9).

From (5.4), we have

q2j + q2
1j + q1jp1j = 0, (5.5)

where q2j , q1j , p1j are defined from the corresponding coefficients of (3.2).
Finally, define γ2

2j(α2j) uniquely. To this end, from (3.10) we define
γ2j(αj) for αj 6= α2j . We have

γ2j(αj) = −γ1j(αj)f1j(αj + 1) + γ0jf2j(αj)
f0j(αj + 2)

(5.6)

¤
For αj = α2j , the numerator and the denominator in (5.6) vanish. Thus

we have indeterminacy 0/0. If we develop it by means of the de L’Hospital
rule, we will arrive at

γ2∗
2j (α2j) = −0, 5γ0j [p1j(p1j + 2q1j) + p2j ]. (5.7)

Thus by formulas (3.9)–(3.11), we define v2j(ζ) uniquely and complete
the proof of the necessity of the condition (5.3).

For the cut end ζ = aj , one can construct v2j(ζ) by means of the Frobe-
nius method under the condition (5.3). Indeed, if the condition (5.3) is
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fulfilled, then the first summand in (4.3) vanishes, while the second one
takes the form

V2j(ζ) = (ζ − aj)α2j γ0j

[
1 +

∞∑
n=1

γ2∗
nj(ζ − aj)n

]
, (5.8)

where all the coefficients γ2∗
nj , n = 1, 2, . . ., are defined by

lim
αj→α2j

d

dαj
[γnj(αj)] = γ2∗

nj n = 1, 2, 3, . . . . (5.9)

Among them γ2∗
2j is defined by

γ2∗
2j = −0, 5[p1j(p1j + 2q1j) + p2j ], (5.10)

which coincides with (5.7) since γ0j in (5.8) is a factor standing out of
brackets.

6. Searching for the Second Solution v2j(ζ) by the Method of
Lowering the Order of (1.8) when α1j − α2j = s, s = 0, 1, 2

There naturally arises the question whether there is a more simple way
of constructing v2j(ζ) than that indicated by Frobenius. They may say
that there is a second method, that is the method of lowering the order of
equation (1.8) [7, 9, 10, 11, 12].

Using this method, one can get the well-known Liouville formula which
in turn results in the following expression for v2j(ζ):

v2j(ζ) = A0jv1j(ζ) ln(ζ − aj) + v2
2j(ζ), (6.1)

where v1j(ζ) is the solution corresponding to the root α1j , A0j is an un-
known constant, and v2

2j(ζ) for the case α1j − α2j = 0 takes the form

v2
2j(ζ) = (ζ − aj)α2j γ0j

∞∑
n=1

hnj(t− aj)n, h1j = 1. (6.2)

For the cases α1j−α2j = s, s = 1, 2, the solution v2
2j(ζ) is defined as follows:

v2
2j(ζ) = (ζ − aj)α2j γ0j

∞∑
n=0

hnj(ζ − aj)n, h0j = 1, (6.3)

where the coefficients hnj n = 1, 2, . . ., can be defined theoretically by the
Liouville formula. but practically they cannot be defined in such a way.

Some well-known authors [9, 10, 12] recommend to substitute (6.1) in
(3.1) and to obtain the recursion formulas which no longer has those defects
we spoke about. Unfortunately, these statements are not true for α1j−α2j =
s, s = 1, 2. Such an approach leaves again the coefficients h1j , h2j for
f0j(α2j + s), where f0j(α2j + s) = 0, s = 1, 2, undefined.
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Indeed, the substitution of (6.1) in (3.1) results in

(ζ − aj)α1j−α2j Aj

{
2ṽ′1j(ζ) + ṽ1j(ζ)(p1j(ζ)− 1)

}
+

+
{
(ṽ2

2j(ζ))′′ + p1j(ζ)(ṽ2
2j(ζ))′ + q1j(ζ)ṽ2

2j(ζ)
}

= 0, (6.4)

where

v1j(ζ) = γ0j(ζ − aj)α1j ṽ1j(ζ), ṽ1j(ζ) = 1 +
∞∑

n=1

γ1
nj(ζ − aj)n, (6.5)

v′1j(ζ) = γ0j(ζ − aj)α1j−1ṽ1
1j(ζ)

ṽ1
1j(ζ) = α1j +

∞∑
n=1

γ1
nj(α1j + n)(ζ − aj)n. (6.6)

Formulas for ṽ2
2j(ζ), (ṽ2

2j(ζ))′, (ṽ2
2j(ζ))′′ are defined similarly.

After the substitution of ṽkj(ζ), k = 1, 2, in (6.4), we obtain
∞∑

k=0

Qkj(ζ − aj)n = 0, (6.7)

The equation (6.7) implies

Qkj = A0j l(k−s)j + Mkj = 0. (6.8)

For k = 0, we have

Q0j = A0j l(0−s)j + M0j = 0, s = 0, 1, 2; (6.9)

moreover,
l(k−s)j = 0, k − s < 0.

The coefficients Mkj , k = 0, 1, 2, . . ., can be defined by the formulas
(3.8)–(3.11), while coefficients l(k−s)j are defined by

l0j = 2α1j + p0j − 1 = α1j − α2j , (6.10)

l1j = γ1
1j [2(α1j + 1) + p0j − 1] + p1j , (6.11)

l2j = γ1
2j [2(α1j + 2) + α1j(p0j − 1)] + γ1

1jp1j + p2j , (6.12)
........................................

lnj = γ1
nj [2(α1j + n) + α1j(p0j − 1)] + γ1

(n−1)jα2jpnj + · · ·+
+γ1

2jα1jp(n−2)j + γ1
1jα1jp(n−1)j + pnj , (6.13)

........................................

According to (6.8), in order to define the parameter A0j for the cases
s = 1 and s = 2, respectively, we have the following equations:

A0j + h1jf0j(α2j + 1) + f1j(α2j) = 0 (6.14)

2A0j + h2jf0j(α2j + 1) + h1j · f1j(α2j + 1) + f2j(α2j) = 0. (6.15)
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From (6.14) and (6.15) we can see that the recursion formulas (6.8) do
not permit one to define v2j(ζ) in the cases α1j − α2j = s, s = 1, 2. Hence
it remains to use the Frobenius method. But one can act differently: first
calculate the coefficients hsj , s = 1, 2, by the Frobenius method and then
the rest coefficients hnj , n ≥ 3, by the formula (6.8). The parameter A0j

can be defined as

A0j = −f1j(α1j), s = 1. (6.16)

A0j = −h1jf0j(α2j + 1)− f2j(α2j), s = 2. (6.17)

If we use the above-indicated method, then in the solution v1j(ζ) instead
of γ0j we have to take γ0jA0j and instead of v2j(ζ) (formula (6.1)) the
formula

v2j(ζ) = v1j(ζ) ln(ζ − aj) + γ0jv
2
2j(ζ). (6.18)

7. Local Matrices

For multi-valued functions exp[αkj ln(ζ − aj)] encountered in local solu-
tions, we select single-valued branches such as

exp[αkj ln(t− aj)] > 0, t > aj ;

exp[αkj ln(t− aj)]± = exp[±iπαkj ] exp[αkj ln(aj − t)], t < aj ;

exp[−αk∞ ln(−t)]
]±

> 0, −∞ < t < a1;
[
exp[−αk∞ ln t]

]± = exp[±iπ(−αk∞)] exp[−αk∞ ln t]. am < t < +∞.

Besides the matrix (2.18), we introduce the matrices

θ∗j (t) =

(
v∗1j(t), v

′∗
1j(t)

v∗2j(t), v
′∗
2j(t)

)
, aj−1 < t < aj , (7.1)

where

v∗kj(t) = (aj − t)αkj γ0j ṽkj(t), (7.2)

v
′∗
kj(t) = −(aj − t)αkj γ0j ṽ

1∗(t) (7.3)

v′kj(t) = d[ukj(t)]/dt,

ṽ1∗
kj (t) = αkj +

∞∑
n=1

γk
nj(αkj + n)(t− aj)n,

Between the matrices θj(t) and θ∗j (t), there is a relation

θ±j (t) = ϑ±j θ∗j (t), aj−1 < t < aj , (7.4)

θ±∞(t) = ϑ±∞θ∗∞(t), am < t < ∞ (7.5)
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Matrices ϑ±j for α1j − α2j 6= s, s = 0, 1, 2, are defined by

ϑ±j =
(

exp(±iπα1j) 0
0 exp(±iπα2j)

)
. (7.6)

For α1j − α2j = s, s = 0, 1, 2, they are defined by the equality

ϑ±j = e±iπα2j

(
1 0
±πi 1

)
. (7.7)

Matrices ϑ±j for the cut end w = bj are defined as follows: if the use is
made of the equation (1.7), then the characteristic numbers can be defined
as α1j = 3/2 and α2j = −1/2. To this case there correspond matrices
ϑ±j = ∓iE; however if we use the equation (1.8), then characteristic numbers
are defined as α1j = 2, α2j = 0 with the corresponding matrices ϑ±j = E.

The elements of the matrix θ∗j (t) involving logarithmic terms are defined
by the formulas

v∗2j(t) = γ0j

{
(aj − t)α2j

[
(t− aj)sṽ1j(t) ln(t− aj) + ṽ2

2j(t)
]}

, (7.8)

v
′∗
2j(t) = −γ0j(aj − t)α2j−1×

×{[
(aj − t)seiπsṽ1

1j(t) ln(aj − t) + ṽ1j(t)
]
+ ṽ2

2j(t)
}
, (7.9)

In the local solutions vkj(ζ) and ϕkj(ζ), there respectively appear the
constants γ0j and ϕ0j defined with the help of the Liouville formula

γ0j =
{ m∏

k=1,k 6=j

|aj − ak|βk
}1/2

, (7.10)

ϕ0j =
{ m∏

k=1

|ej − ak|βk
}1/2 (7.11)

8. Construction of the Fundamental Matrix

Construct the matrix

χ(ζ) =
(

u1(ζ) u′1(ζ)
u2(ζ) u′2(ζ)

)
, (8.1)

where u1(ζ) and u2(ζ) are linearly independent solutions of (1.8); moreover,
u′1(ζ) = du1(ζ)/dζ and u′2(ζ) = du2(ζ)/dζ.

The domain of convergence of the matrices θj(t), Hj(t) has always a
general part in which we can write the equalities

θ∗j (t) = T ∗Hj(t), Hj(t) = T0jθj−1(t), aj−1 < t < aj , (8.2)

θ∗1(t) = T−∞θ∞(t), −∞ < t < a1,

θ∗∞(t) = T∞θm(t), am < t < +∞, (8.3)
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where T ∗j , T0j , T−∞, T∞ are the real constant matrices defined by the
equalities (8.2) and (8.3); in this case, we have to fix t in the domain where
the two local matrices converge.

Define the matrix (8.1) along the axis t of the plane ζ:

χ±(t) = Tθ±m(t), θ+
m(t) = θ−m(t), am < t < +∞ (8.4)

χ±(t) = Tϑ±mϑ∗m(t), am−1 < t < am; (8.5)

χ±(t) = Tϑ±mTmθm−1(t), Tm = T ∗m · T0m, am−1 < t < am; (8.6)

χ±(t) = Tϑ±mTmϑ±m−1θ
∗
m−1(t), am−2 < t < am−1; (8.7)

..............................

χ±(t) = Tϑ±mTm . . . T1ϑ
±
1 θ∗1(t), −∞ < t < a1; (8.8)

χ±(t) = Tϑ±mTm . . . ϑ±1 T−∞θ∞(t), −∞ < t < a1; (8.9)

χ±(t) = Tϑ±mTm . . . ϑ±∞T∞ϑ±∞(t), am < t < ∞. (8.10)

The upper signs (±) in the matrices (8.4)–(8.10) denote the limiting
values of the matrix χ(ζ) from the upper and lower half-planes, respectively.
The matrix T is defined by the equality

T =
(

p q
r s

)
. (8.11)

Obviously, the matrices (8.4)–(8.10) are the solutions of (2.2).

9. Solution of the Boundary Value Problem

Theorem 9.1. The solution of the equation (2.2) satisfying the boundary
condition (2.15) is given by formulas (8.4)–(8.10).

Proof. We begin with the interval (am,+∞). We have

Tθ+
m(t) = GmTθ−m(t), θ+

m(t) = θ−m(t),

Gm = E, T = T , am < t < +∞,
(9.1)

For the interval (am−1, am), there takes place the equality

Tϑ+
mθ∗m(t) = Gm−1Tϑ−mθ∗m(t), am−1 < t < am, (9.2)

The equalities (9.1) and (9.2) result in the matrix equation

(ϑ+
m)2 = TG−1

m Gm−1T (9.3)

It is seen from (9.3) that the matrices (ϑ+
m)2 and G−1

m Gm−1 are similar.
In a fashion analogous to the matrix equation (9.3), we find the corre-

sponding matrix equations for the remaining points ζ = aj , j = 1, 2, . . . , m,
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m + 1. We have

Tϑ+
mTmϑ+

m−1 = Gm−2Tϑ−mTmϑ−m−1, (9.4)

Tϑ+
mTmϑ+

m−1Tm−1ϑ
+
m−2 = Gm−3Tϑ−mTmϑ−m−1Tm−1θ

−
m−2, (9.5)

.....................................................

Tϑ+
mTmϑ+

m−1Tm−1ϑ
+
m−2Tm−2 . . . T1ϑ

+
1 =

= Gm+1Tϑ−mTmϑ−m−1Tm−1θ
−
m−2Tm−2 . . . T1ϑ

−
1 , (9.6)

Tϑ+
mTmϑ+

m−1Tm−1 . . . T−∞ϑ+
∞ =

= GmTϑ−mTmϑ−m−1Tm−1 . . . T−∞ϑ−∞. (9.7)

These equations can be written in terms of the equation (9.3), for exam-
ple, the equation (9.4) can be written in the form

(ϑ+
m−1)

2 = T−1
m (ϑ−m)−1T−1G−1

m−1Gm−2Tϑ−mTm.

As is said above, the matrices Gk can be defined first to within the factor
λ = ±1, and then exactly. To define Gk exactly, we proceed from equation
(3.8). Having defined χkj , it is necessary to construct the equation

det(G−1
j Gj−1 − λE) = 0. (9.8)

Denote the roots of (9.8) by λkj and consider the equality

αkj = (2πi)−1 ln λkj (9.9)

The right-hand side of (9.9) is defined to within an integer summand. A
suitable choice of λ = ±1 makes it always possible to fulfill the equation
(9.9) and to define the matrices Gj , j = 1, 2, . . . ,m, m + 1, exactly. But
this operation should be done successively beginning, for example, with the
matrix Gm−1.

It should be noted at this point that two neighboring circular arcs forming
a cut with the end w = bj (in particular, segments of straight lines) belong
to the same circumference. This implies that G(t) = Gj for ζ > aj and
G(t) = λGj for ζ < aj , where λ = ±1. If the use is made of the equation
(1.7), then the equation (3.8) has the roots 3/2 and −1/2, but if we use the
equation (1.8), then the equation (3.8) has the roots 2 and 0. In the first
case λ = −1, while in the second one λ = 1.

We rewrite the matrix equation (9.3) as follows:

Tϑ+
m = Gm−1Tϑ−m (9.10)
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From (9.10), we have

p exp(iπα1m) = Bm−1p exp(−iπα1m)− iDm−1r exp(−iπα1m), (9.11)

r exp(iπα1m) = iAm−1p exp(−iπα1m) + Bm−1r exp(−iπα1m), (9.12)

q exp(iπα2m) = Bm−1q exp(−iπα2m)− iDm−1s exp(−iπα2m), (9.13)

s exp(iπα2m) = iAm−1q exp(−iπα2m) + Bm−1s exp(−iπα2m). (9.14)

If we divide the corresponding parts of (9.11) and (9.12), (9.13) and
(9.14), then we can see that the ratios p/r and q/s on the interval (am−1, am)
satisfy the boundary condition (1.4):

p

r
=

Bm−1p/r − iDm−1

iAm−1p/r + Bm−1

,
q

s
=

Bm−1q/s− iDm−1

iAm−1q/s + Bm−1

. (9.15)

The same boundary condition is satisfied by the coordinates of the points
w = bm, w = b′m. Hence

p/r = bm, q/s = b′m. (9.16)

On the plane w, the origin of coordinates coincides with the point bm,
therefore bm = 0, b′m = ∞, and hence

p = 0, s = 0. (9.17)

If the determining equation (3.8) has for the point ζ = am the roots such
that α1j − α2j 6= n, n = 0, 1, 2, then we can define the matrix Gm−1:

Gm−1 =
(

Bm−1 0
0 Bm−1

)
(9.18)

Consider the matrix equation (9.4):

T∗mϑ+
m−1 = Gm−2T ∗mϑ−m−1, T∗m = Tϑ+

mTm. (9.19)

Reasoning as above, from (9.19) we have the following system of equa-
tions:

p∗m/r∗m = bm−1, q∗m/s∗m = b′m−1, (9.20)

where p∗m, q∗m, r∗m, s∗m are the elements of the matrix T∗m.
The equalities (9.20) can be rewritten as

p∗pm + q∗rm

r∗pm + s∗rm
= bm−1,

p∗pm + q∗sm

r∗qm + s∗sm
= b′m−1, (9.21)

where p∗, q∗, r∗, s∗ are the elements of the matrix T∗ = Tϑ+
m.

Taking (9.16) into account, we can rewrite (9.21) as

r∗pmbm + s∗rmb′m
r∗pm + s∗rm

= bm−1,
r∗qmbm + s∗smb′m

r∗qm + s∗sm
= b′m−1. (9.22)
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We rewrite (9.22) as

r∗pm(bm − bm−1) + s∗rm(b′m − bm−1) = 0, (9.23)

r∗qm(bm − b′m−1) + s∗sm(b′m − b′m−1) = 0. (9.24)

The condition of compatibility of the system of equations (9.23) and
(9.24) with respect to r∗ and s∗ has the form

pmsm

rmqm
=

b′m − bm−1

bm − bm−1
· bm − b′m−1

b′m − b′m−1

. (9.25)

Exactly in the same way as above, from the matrix equation (9.5) we
obtain a system of equations:

p∗(m−1)pm−1 + q∗(m−1)rm−1

r∗(m−1)pm−1 + s∗(m−1)rm−1
= bm−2,

p∗(m−1)qm−1 + q∗(m−1)sm−1

r∗(m−1)qm−1 + s∗(m−1)sm−1
= b′m−2

(9.26)

Taking into consideration (9.20), after certain transformations we rewrite
(9.26) as:

r∗(m−1)pm−1(bm−1 − bm−2) + s∗(m−1)rm−1(b′m−1 − bm−2) = 0, (9.27)

r∗(m−1)qm−1(bm−1 − b′m−2) + s∗(m−1)sm−1(b′m−1 − b′m−2) = 0. (9.28)

The condition of compatibility of the system of equations (9.27) and
(9.28) with respect to r∗(m−1) and s∗(m−1) is of the form

pm−1sm−1

rm−1qm−1
=

b′m−1 − bm−2

bm−1 − bm−2
· bm−1 − b′m−2

b′m−1 − b′m−2

. (9.29)

Reasoning analogously we can successively consider all matrix equations
(9.6) and (9.7).

The equations (9.25) and (9.29) represent invariant cross-ratios of four
points belonging to the same circumference at which the latter intersects
two neighboring circumferences.

From the matrix equations (9.3)–(9.7), we get all needed equations with
respect to ak, ck and to the integration parameters p, q, r, s, as well. For
every point ζ = aj , the obtained system of two equations is homogeneous
with respect to the elements of the matrix Tk. Its compatibility conditions,
for example, for the points ζ = am and ζ = am−1, are of the form (9.25)
and (9.29). These equations have been obtained under the assumption
α1j − α2j 6= n, n = 0, 1, 2.

Consider the case where α1j − α2j = n, n = 0, 1, 2.
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Using the representation (8.4)–(8.10) for the interval (aj−1, aj), the un-
known matrices χ+(t), χ−(t) must satisfy the boundary condition

(
p∗j q∗j
r∗j s∗j

)
eiπα2j

(
1 0
πi 1

)
=

=
(

Bj−1 −iDj−1

iAj−1 Bj−1

) (
p∗j q∗j
r∗j s∗j

)
e−iπα2j

(
1 0
−πi 1

)
, (9.30)

where p∗j , q∗j , r∗j , s∗j are defined by (8.4)–(8.10).
Reasoning in the same way as in deducing (9.11)–(9.14), we can see that

the ratios
p∗j + πiq∗j
r∗j + πis∗j

,
q∗j
s∗j

(9.31)

satisfy the boundary condition (2.15). The same condition will likewise be
satisfied by the coordinates of the point w = bj as well as by those of the
points bj−1 or b′j−1. Thus we obtain the following system of equations:

p∗j + πiq∗j
r∗j + πis∗j

= bj ,
q∗j
s∗j

= b∗j , (9.32)

where b∗j are equal either to bj−1 or to b∗j−1.
The system (9.32) is also homogeneous with respect to the elements of

the corresponding matrices Tj whose compatibility conditions by this time
does not provide the relations similar to (9.25)–(9.29).

As is said above, matrix equations similar to (9.3)–(9.7) can be obtained
for all points, with the exception of the points ζ = ak. To these points there
correspond the ends of the cuts w = bj for which νj = 2. For such points we
have conditions of the absence of logarithmic terms in the solutions v2j(ζ),
for example, the equation (5.5); the second equation will be given below.

From the matrix representations of χ+(t) we first define u+
1 (t), u+

2 (t) and
then compose the relation w+(t) = u+

1 (t)/u+
2 (t).

Suppose that the function w+(t) on the interval (ak, ak+1) is defined by

w+(t) = [A∗jv
+
1j(t) + B∗

j v+
2j(t)]/[c∗jv1j(t) + D∗

j v+
2j(t)], (9.33)

Using the formula (9.33) and calculating the limit as ζ → aj , we get the
equation

bj = B∗
j /D∗

j . (9.34)

The corresponding equations for another points ζ = ak can be obtained
analogously.

Finally, for every point t = aj we obtain two real homogeneous equations
with respect to pj , qj , rj , sj , for instance, the equations (9.11)–(9.14). From
the conditions of compatibility of homogeneous equations for νj 6= 0, 1, 2,
we obtain invariant cross-ratios for four points of one and the same circle,
for example, equations (9.25)–(9.29). In the case νj = 0, 1, 2, the condition
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of compatibility of two equations provides certain condition rather than a
cross-ratio.

Thus we can take from each system one equation and the compatibility
condition, i.e, two equations for each point ζ = aj . The number of equations
equals 2(m + 1), and the number of unknown parameters ak, ck, p, q, r,
s (ps − rq = 1) will be 2m − 1. Consequently, the number of equations is
greater by three than the number of unknown parameters. This is connected
with the fact that the bypass of all singular points ak, k = 1, 2, . . . , m,
is equivalent to going around the point ζ = ∞. This yields one matrix
equation. Therefore these three equations are consequences of the remaining
ones. This means that if we find all ak, ck and p, q, r, s and substitute them
in the remaining system of equations, then they will identically be equal
to zero. The appearance of three superfluous equations can be explained
exactly in the same way as in the case of linear polygons. ¤

Having found the system of equations for definition of ak, ck, p, q, r, s, we
have to define the intervals of variation of the parameters ck, k = 1, 2, . . . , m,
then to solve the system with respect to ak, ck, k = 1, 2, . . . , m, and finally
to specify p, q, r, s. Recall that pj , qj , rj , sj , j = 1, 2, . . . , m + 1, depend
implicitly on the parameters ak, ck, k = 1, 2, . . . , m.

Theorem 9.2. If the contoure of the domain s(w) of a circular polygon
contains a cut with the end w = bj α1j − α2j = 2, then the second linearly
independent solution v2j(ζ) of (3.1) at the point ζ = aj does not contain the
logarithmic term.

Proof. Suppose the contrary. Let v2j(ζ) contain a logarithmic term. For the
point ζ = aj , we construct first a local fundamental matrix θj(ζ) and then
the matrices χ+(t) = B0jθ

+
j (t), χ−(t) = B0jθj(t), where B0j , B0j are the

constants of the matrix constructed by (8.4)–(8.10). The matrices χ+(t),
χ−(t) must satisfy the boundary conditions

B0jθ
+
j (t) = GjB0jθ

−
j (t), θ+

j (t) = θ−j (t), t > aj , (9.35)

B0jϑ
+
j (t) = GjB0jϑ

−
j θ∗j (t), t < aj . (9.36)

The equalities (9.35) and (9.36) imply that

ϑ+
j = λϑj either λ = 1 or either λ = −1. (9.37)

When α1j = 3/2, α2j = −1/2, and λ = −1, the equality (2.37) yields

i

(
1 0
πi 1

)
= i

(
1 0
−πi 1

)
. (9.38)
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It follows from (9.38) that π = 0, which is not true. In case α1j = 2,
α2j = 0 and λ = 1, the equality (9.37) implies

(
1 0
πi 1

)
=

(
1 0
−πi 1

)
. (9.39)

It again follows from (9.39) that π = 0, which is not true. Hence our
supposition is invalid and the theorem is complete. ¤

Theorem 9.2 has been proved in somewhat different way by P.Ya. Polu-
barinova-Kochina.

10. Representation of the Solutions vkj(ζ), j = 1,m + 1, by
Means of Functional Series

It is known that the series vkj(ζ), k = 1, 2, j = 1, 2, . . . , m, m+1 converge
near the points ζ = aj , j = 1, 2, . . . , m + 1, while the series ϕkj(ζ) converge
near the points ζ = ej = (aj + aj+1)/2. The radii of convergence of these
series are bounded by the distance from the given point t = aj (or from the
point ζ = ej) to the nearest points ζ = aj−1, ζ = aj+1.

The constructed series vkj(ζ), ϕkj(ζ) converge slowly thereby making
numerical calculations more complicated. As n increases, the coefficients
γk

nj sometimes increase strongly, although their factor (ζ − aj)n, on the
contrary, strongly decrease as n increases. Electronic computers are unable
to multiply γk

nj by (t− aj)n despite the fact that these series converge. To
remove this deficiency we suggest to represent these series as rapidly and
uniformly convergent functional series.

Theorem 10.1. If one considers the Fuchs class equation (1.8), with p(ζ),
q(ζ) defined by (1.9) (or by (1.12)), and represent it near the points ζ = aj

and ζ = ∞ in terms of the series (3.2) and (3.4), respectively, then the
local solutions vkj(ζ), j = 1, 2, . . . ,m + 1, can be represented as rapidly and
uniformly convergent functional series, the formulas (3.9)–(3.11) remaining
valid.

Proof. Consider the structure of the recursion formulas (3.9)–(3.11). The
sum of the first subscripts for the expression γ(k−n)j · fnj(αj + k − n) is
always equal to k, that is, to the exponent (t − aj)k. Consider instead of
the series (3.5) the functional series

vj(t) = (t− aj)αj ṽj(t− aj), ṽj(t− aj) =
∞∑

n=0

γnj(t− aj), (10.1)
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where, owing to (3.9)–(3.11), γnj is defined in terms of γ1j , γ2j , . . . , γ(n−1)j ,
and the latters in terms of fkj(αj), where

fkj(t− aj , αj) = αjpkj(t− aj) + qkj(t− aj), (10.2)

pnj(t− aj) =
m∑

k=1,k=j

(−1)n−1(1− νk)
( t− aj

aj − ak

)n
,

p0j = 1− νj , (10.3)

qnj(t− aj) =
m∑

k=1,k 6=j

(−1)n−2×

×{σk(n− 1) + ck(aj − ak)}( t− aj

aj − ak

)n (10.4)

n = 2, 3, . . . ,

q0j = σj , q1j = cj (10.5)
∣∣∣ t− aj

aj − ak

∣∣∣ < 1 k 6= j, (10.6)

|t− aj | < Min{|aj − aj−1|, |aj − aj+1|}. (10.7)

It is seen from (10.6) that the functional series (10.1) converges uniformly
near the point ζ = aj and rapidly in comparison with the series (3.5).

The functional series for the point ζ = am+1 = ∞ can be constructed
analogously.

In all subsequent formulas instead of the solution vkj(ζ) we will represent
the functional series (10.1).

Obviously, the functional series for regular points t = ej , ej = (aj +
aj+1)/2, j = 1, 2, . . . , m− 1, converge likewise uniformly and rapidly. ¤

11. Determination of Intervals of Variation of Accessory
Parameters

It was proved in [26] that vkj(ζ), k = 1, 2, j = 1, 2, . . . ,m+1, were entire
functions of the accessory parameters, ck, k = 1, 2, . . . , m, and in [23] we
determined possible intervals of variation of these parameters.

Consider two cases: 1. There is a circular polygon with the angles νj = 1,
j = 1, 2, . . . ,m + 1. We pass to that consisting of one circle. In this case,
the equation (1.1) takes the form

w(ζ) = (Aζ + B)/(Cζ + D), (11.1)

where A, B, C, D are unknown integration constants of (1.1).
Substitution of (11.1) in (1.1) results in the identity

R(ζ) =
m∑

k=1

Ck

ζ − aj
= 0. (11.2)
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From (11.2) follows

Ck = 0, k = 1, 2, . . . , m.

2. On the plane w, there is a linear polygon. The accessory parameters
vanish for this case and the solution of (1.1) is given by the Christofel–
Schwarz’s formula

w(ζ) = M

ζ∫

0

m∏

j=1

(ζ − aj)νj−1dζ + N. (11.3)

Substituting (11.3) in (1.1), we get

C∗j = −(νj − 1)
∑ m∑

k=1,k 6=j

(νk − 1)/(aj − ak) (11.4)

It follows from this reasoning that

either c∗j ≤ cj ≤ 0 or c∗j ≥ cj ≥ 0. (11.5)

To the equation (1.8), there corresponds the following Schwarz’s equa-
tion:

w′′(ζ)
w′(ζ)

− 3
2

(w′′(ζ)
w′(ζ)

)2

= 2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2, (11.6)

where p(ζ) and q(ζ) are defined by (1.9) or (1.14).
For the equation (11.6) we consider the same two cases as above.
1. For this case, we have

α′′ = 0, ck = 0. (11.7)

Thus with respect to δk, k = 1, 2, . . . , m − 3, we have obtained the fol-
lowing homogeneous system:

δ1a
m−2
k + · · ·+ δm−3a

m−3
k + δm−2 = 0, k = 1, 2, . . . , m. (11.8)

The equation (11.8) implies

δk = 0, k = 1, 2, . . . ,m− 3. (11.9)

2. In this case, we arrive at

α′ 6= 0, α′′ 6= 0, ck = 0. (11.10)

It follows from (11.10) that we get

α′α′′am−2
k + δ1a

m−3
k + · · ·+ δm−3ak + δm−2 = 0 (11.11)

The system which this time is inhomogeneous with respect to δk, k =
1, 2, . . . ,m − 2 (11.11) is solved with respect to δk, k = 1, 2, . . . , m − 3,
hence in this case too one can determine possible intervals of variation of
the accessory parameters.
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12. Conclusion

Having known w(ζ) along the whole real axis t of the plane ζ, one can
find w = w(ζ) for all =(ζ) > 0 by the well-known formula [10, p. 152,
formula (12.5.10)]

w(ζ) =
1
π

∞∫

−∞
w+(x)

τdx

(x− t)2 + τ2
. (12.1)

Along the whole real axis, w = w+(t) is defined by (8.1):

w+(t) = u+
1 (t)/u+

2 (t), −∞ < t < +∞, (12.2)

where u+
1 (t), and u+

2 (t), as linearly independent solutions of (1.8), are de-
fined uniquely by (8.4)–(8.10).

As is seen from the above-said, an algorithm for constructing the single-
valued analytic functions w = w(ζ) is given in a general form. These func-
tions represent general solutions of (1.1) and map conformally the half-plane
ζ = t + iτ onto circular polygons with a finite number of vertices and any
angles at those vertices. At those vertices the system of equations is com-
posed which connects geometrical characteristics of circular polygons with
unknown parameters of the Schwarz’s equation. Rapidly and uniformly
convergent functional series are also constructed.

Possible intervals of variation of the accessory parameters are defined.
Consequently, the solution of (1.1) and the construction of w = w(ζ) are
reduced, with regard for the boundary conditions (1.4), to the solution of
a system of higher transcendental equations with respect to the parameters
ak, ck, k = 1, 2, . . . , m.
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Chapter II

Solution of Some Plane Filtration Problems
with Partially Unknown Boundaries

Abstract. Plane problems of the stationary filtration theory with par-
tially unknown boundaries are considered. The porous medium is assumed
to be homogeneous, isotropic and non-deformable. The motion of the fluid
obeys the Darcy law. The simply connected domain occupied by the mov-
ing fluid is bounded by a simple sectionally analytic contour consisting of
unknown depression curves, line segments, half-lines and straight lines. The
paper describes mathematical methods allowing one to find unknown parts
of the boundary of the fluid motion domain and determine geometric, kine-
matic and physical characteristics of a moving fluid. In solving the corre-
sponding mathematical problem, the use is made of a general solution of the
non-linear Schwarz differential equation. The general solution is constructed
in the paper.

1. Introduction

In this chapter we consider some plane problems of the theory of filtra-
tion theory for stationary motion of an incompressible fluid in a porous
medium obeying the Darcy law. The porous medium is assumed to be non-
deformable, isotropic and homogeneous. The formulation and fundamental
investigation of these problems belongs to P. Ya. Polubarinova-Kochina [1–
5].

The plane of motion of the fluid coincides with that of the complex vari-
able z = x + iy. We introduce the complex potential ω(z) = ϕ(x, y) +
iψ(x, y), where ϕ(x, y) and ψ(x, y) are the velocity potential and the flow
function, respectively. The functions ϕ(x, y), ψ(x, y) are connected by the
Cauchy–Riemann conditions.

If the analytic function ω(z) is known, then by virtue of the equalities

ϕ(x, y)=−k(p/γ + y) + c, ω′(z)=u− iv, u=
∂ϕ

∂x
=

∂ψ

∂y
, v=

∂ϕ

∂y
=−∂ψ

∂x

we can find all characteristics of the filtration flow, i.e., filtration velocity,
pressure, stress, discharge of the fluid upon filtration, etc. Here k is the
filtration coefficient, c is an arbitrary constant, p is the hydrodynamic pres-
sure, γ is the specific weight of the fluid, u, v are the components of the
vector of filtration velocity, ω′(z) is the complex velocity.

34
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The boundary of the domain of the flow involves unknown parts, and de-
pression curves with equations to be found. We denote the simply connected
domains of fluid, of complex potential and of complex velocity respectively
by S(z), S(ω) and S(w), and their boundaries respectively by l(z), l(ω) and
l(w). Here w = ω′(z). Below the boundary l(z) of the domain S(z) will
be assumed to be a simple, sectionally analytic, closed contour consisting
of a finite number of unknown depression curves, line segments, half-lines
and straight lines. The domain S(z) may be bounded or unbounded. In the
particular case where all parts of the boundary l(z) are known, the domain
S(z) is a linear polygon.

In the domain S(z), we seek for an analytic function ω(z) = ϕ(x, y) +
iψ(x, y) satisfying two linearly independent boundary conditions of the
type [2]

a11ϕ(x, y) + a12ψ(x, y) + a13x + a14y = f1, (x, y) ∈ l(z), (1.1)

a21ϕ(x, y) + a22ψ(x, y) + a23x + a24y = f2, (x, y) ∈ l(z), (1.2)

where aik, fi, i = 1, 2, k = 1, 2, 3, 4, are the known piecewise-constant real
functions, which are constant on every part of the boundary, and the rank
of the matrix

a =
(

a11 a12 a13 a14

a21 a22 a23 a24

)

is equal to two.
If a part of the boundary l(z) of S(z) is known, then in one of the

conditions (1.1) or (1.2) the coefficients at the functions ϕ(x, y), ψ(x, y) for
the known part of the boundary l(z) turn out to be equal to zero.

There is a theory [1–6] which allows one to determine the boundary
l(w) of S(w) and a part of the boundary l(ω) of S(ω) without solving
the basic problem. Moreover, one can determine the coordinates of those
vertices of the domain S(w) to which there correspond angular points on
the boundary l(z) of S(z). As for the vertices of the domain S(w) (the cut
ends with the angles 2π) to which there correspond ordinary (non-angular)
points on the boundary l(z) of S(z), the coordinates of these vertices remain
undetermined until the problem is solved completely.

When determining the boundary l(w) of the domain S(w), we have used
some known results from the complex analysis [2, 21, 30, 31, 32].

Under the conditions imposed on the domains S(z) and on the corre-
sponding boundaries l(z), one can claim that the function ω(z) is analytic
in S(z), continuous in the closed domain S(z), satisfies ω′(z) 6= 0 everywhere
including the boundary l(z) except its angular points, and is analytically
continuable across any part of the boundary l(z) not containing angular
points.

As far as the functions ω(z) and ω′(z) map conformally the domain S(z)
and its boundary l(z) (the conformity is violated at the angular points of
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l(z)) respectively onto the domains S(ω) and S(w) with the boundaries l(ω)
and l(w); these functions are analytically continuable across the parts of the
boundaries not containing angular points [30, Ch. II, §28–29].

In the sequel, for the complex-conjugate functions we will use the nota-
tion f(z) = f1(x, y) + if2(x, y), f(z) = f1(x, y) − if2(x, y), while for the
derivatives of functions and matrices, the notation f ′(z) = d

dz f(z).

Theorem. If an analytic function ω(z) satisfies in the domain S(z)
two linearly independent boundary conditions (1.1)–(1.2), then the function
w(z) = ω′(z) maps the boundary l(z) of S(z) into the boundary of the
domain S(w) consisting of a finite number of circular arcs, line segments,
half-lines and straight lines, that is, to the domain S(z) with the boundary
l(z) there corresponds a circular polygon on the plane w(z).

Proof. If we take arbitrarily a part of the boundary l(z) of S(z) and
differentiate the conditions (1.1)-(1.2) along that part with respect to the
real parameter s, then we obtain

(a11u− a12v + a13) cos(x, s) + (a11v + a12u + a14) cos(y, s) = 0, (1.3)

(a21u− a22v + a23) cos(x, s) + (a21v + a22u + a24) cos(y, s) = 0, (1.4)

where s is the arc length of the arbitrarily taken part of the boundary of
S(z), cos(x, s) = dx/ds, cos(y, s) = dy/ds.

In order for the system of equations (1.3), (1.4) to have a nonzero solution
with respect to cos(x, s) and cos(y, s), it is necessary and sufficient that the
determinant of this system be equal to zero,

∆0 = (a11u− a12v + a13)(a21v + a22u + a24)−
−(a21u− a22v + a23)(a11v + a12u + a14). (1.5)

From (1.5) we obtain

A0(u2 + v2) + B∗
1u + B∗

2v + D0 = 0, (1.6)

where

A0 =
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ , D0 =
∣∣∣∣
a13 a14

a23 a24

∣∣∣∣ , (1.7)

B∗
1 =

∣∣∣∣
a11 a14

a21 a24

∣∣∣∣ +
∣∣∣∣
a13 a12

a23 a22

∣∣∣∣ , (1.8)

B∗
2 =

∣∣∣∣
a14 a12

a24 a22

∣∣∣∣ +
∣∣∣∣
a13 a11

a23 a21

∣∣∣∣ . (1.9)

The second order curve decomposes into two straight (real or imaginary)
lines if and only if A∗0 = −A0∆/4 = 0, where ∆ = (B∗

1)2 + (B∗
2)2 − 4A0D0.

If A∗0 6= 0, A2
0 > 0, and A∗0 and A0 are of the same sign, then we have

an imaginary circle; if A2
0 > 0, A∗0 and A0 are of different signs, we have a

circle [7, 8].
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The center coordinates (u0, v0) of the circle (1.6) and its radius R are
defined by

u0 = −B∗
1/[2a0], v0 = −B∗

2/[2A0], R =
√

∆/[2A0].

The circle (1.6) will be tangent to the axis of abscissas ou if (B∗
1)2 =

4A0D0 and tangent to the axis of ordinates ov if (B∗
2)2 = 4A0D0.

In deducing (1.6), a part of the boundary of S(z) has been taken arbi-
trarily. To some other parts of the boundary of S(z), on w there correspond
arcs of the circles, i.e., the domain S(w) is a circular polygon. In the case
where A0 = 0 along the whole contour l(z), we have a linear polygon.

The equation (1.6) can be written as follows:

i2A0ww −B0w + B0w + i2D0 = 0, (1.10)

where

w = u− iv, w = u + iv, B0 = B∗
2 − iB∗

1 , (1.11)

From (1.10) we find that w = −B0w−i2D0
i2A0w−B0

, where ∆ = B0B0 − 4A0D0 =
(B∗

1)2 + (B∗
1)2 − 4A0D0 6= 0.

Note that in the general case the equality

∆ = 4A2
0R

2 = 1 (1.12)

is not valid.
We will get back to the equality (1.12) later on.
Here we make the following remark. Using a linear-fractional transfor-

mation, one can always transform the domain S(w) in such way that a part
of the boundary l(w) on the plane w will coincide with the abscissae axis
along which w = w, i.e., v = 0. This remark will be used later on.

Below we will come across the class of matrices Gj , j = 1, 2, . . . , n, . . .,
satisfying the following conditions: GjGj = GjGj = E, det Gj = 1, GjGk 6=
GkGj , k 6= j, (GjGk)(GjGk) 6= E, k 6= j where Gj is a matrix which
is complex conjugate to the matrix Gj , and E is the unit matrix. The
properties of the matrices Gj , j = 1, 2, . . . are very close to those of the
complex-orthogonal ones [32].

The matrices Gj can be represented as

Gj =
(

Bj −iDj

iAj Bj

)
, j = 1, 2, . . . ,

where Aj , Dj are real and Bj , Bj are complex-conjugate numbers.
Denoting characteristic numbers of the matrix Gj by λkj , k = 1, 2, we

obtain λ1j + λ2j = Bj + Bj , λ1jλ2j = 1.
It follows from the property of the matrix Gj that λ2j = λ1j . Therefore

λ1jλ1j = 1, |λ1j | = 1 and hence λkj = exp[i2παkj ], where αkj are real
numbers.
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If we take two arbitrary matrices Gj and Gk from the above-mentioned
class and consider the matrix gjk = GjGk, then we can see that the char-
acteristic numbers µkj of the matrices gjk satisfy the conditions µkj =
exp[i2πβkj ], where βkj are real numbers.

2. Statement of the Boundary Value Problem

Let a moving fluid occupy a simply connected domain S(z) with the
boundary l(z) consisting of a finite number of known and unknown simple
analytic Jordan arcs.

An analytic function ω(z) maps conformally the domain S(z) onto a do-
main S(ω), and its boundary l(z) into the boundary l(ω) of S(ω). Note that
a part of angular points of the boundary l(z) are mapped by the function
ω(z) into angular points of l(ω), while the remaining angular points are
mapped into non-angular points of the boundary l(ω) [1–6].

Analogously, the analytic function w(z) = ω′(z) = u(x, y)−iv(x, y) maps
conformally the domain S(z) onto a domain S(w), and its boundary l(z)
into the boundary l(w) of S(w). Moreover, the function w(z) maps a part
of angular points of the boundary l(z) into those of l(w), and the remaining
angular points are mapped into ordinary non-angular points of the boundary
l(w). The function w(z) can map some non-angular points of the boundary
l(z) into angular points of the boundary l(w) with interior (with respect to
the domain S(w)) angles 2π [1–6].

Below, the points of the boundaries l(z), l(ω), l(w) will be assumed to be
singular if to these points on either of the boundaries l(z), l(ω), l(w) there
correspond angular points.

Let us take arbitrarily a singular point on the boundary l(z) of the do-
main S(z), for example, l(z,E1). Let to a point l(z, E1) on the boundaries
l(ω), l(w) there correspond the points l(ω,E′

1), l(w,E′′
1 ). When the domain

S(z) goes around in the positive direction starting from the point l(z, E1),
then the boundaries l(ω), l(w) go around in the positive direction starting
from the points l(ω,E′

1), l(w, E′′
1 ). We enumerate all the singular points

on the boundaries l(z), l(ω), l(w) as follows: l(z, Ek), l(ω, E′
k), l(w, E′′

k ),
k = 1, 2, . . . , n, n + 1.

Of all singular points l(z.Ek), l(ω, E′
k), k = 1, 2, . . . , n, n + 1, we select

such ones to which on the boundary l(w) of the domain S(w) there cor-
respond ordinary non-angular points. Such singular points are commonly
called removable singularities. Let the number of such points be equal to
m1. When the boundary l(z) goes around in the positive direction, we enu-
merate the removable singular points as ε∗1, ε

∗
2, . . . , ε

∗
m1

, ε∗m1
. The interior

angles on l(z) and l(ω) at the removable singular points are equal to π/2
[1–6].
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In tracing l(ω) we enumerate all angular points: l(ω, ωk), k = 1, 2, . . . ,
m2 + 1, while in tracing l(w) we enumerate them as follows: l(w,wk) = bk,
k = 1, 2, . . . ,m, m + 1, where bk, k = 1, 2, . . . , m,m + 1, are the complex
coordinates of the vertices of the domain S(w).

The equation (1.6) determines completely the circle. Two circles pass
through every vertex of the domain S(w) (two straight lines upon degener-
ation), and each of them forms four angles. We have to choose one of them.
To this end we, first of all, use the equation (1.6) and then the value of the
corresponding angles of the domains S(z), S(ω). By means of these angles
we can determine the angles at the vertices of the domains S(w), S(ω) [1–6].
Despite the fact that some of the interior angles of S(ω) are unknown, we
have at hand the angle values for the corresponding vertices of the domain
S(w). By means of the latter we can determine the unknown interior angle
at the vertex of the domain S(ω) [2]. This henceforth allows us to take for
granted that all the interior angles and the coordinates of the vertices of
S(w), excluding the cut ends with interior angles 2π, are determined.

Denote the interior angles at the vertices bj , j = 1, 2, . . . , m, m + 1, of
the domain S(w) by πνj , j = 1, 2, . . . , m,m + 1, respectively.

Note that the two neighboring circles passing through the point bk inter-
sect at the point b′k which in the general case is beyond the boundary l(w).
If these circles are tangent, then bk = b′k.

In general it is quite difficult to find an analytic function ω(z) = ϕ(x, y)+
iψ(x, y) by the boundary conditions (1.1)–(1.2). Therefore one introduces
an auxiliary complex plane ζ = t + iτ . The half-plane Im(ζ) > 0 of this
plane is mapped conformally onto the domains S(z), S(ω), S(w). Denote
the domain Im(ζ) > 0 and its boundary respectively by S(ζ) and l(ζ).

In what follows, we will need the following result from the papers [21,
30, 32].

If D and D∗ are simply connected domains whose boundaries consist of a
finite number of analytic Jordan arcs, then there exists a unique conformal
mapping w = f(z) of the domain D onto the domain D∗, transferring
three boundary points zk, k = 1, 2, 3, of D into three boundary points Wk,
k = 1, 2, 3 of D∗. The points zk and wk are given arbitrarily, their order in
tracing the boundaries of the domains being preserved.

Let the analytic functions z(ζ), ω(ζ), w(ζ) = ω′(ζ)/z′(ζ) map confor-
mally the domain S(ζ) (Im(ζ) > 0) onto the domains S(z), S(ω), S(w),
respectively. Moreover, let the points of the boundary l(ζ) of S(ζ), that is
the points of the real axis t of the plane ζ, t = ek, k = 1, 2, . . . , n, n + 1
(−∞ < e1 < e2 < · · · < en+1 = ∞), be respectively mapped into the points
l(z, Ek), l(ω, E′

k), l(w, E′′
k ), k = 1, 2, . . . , n, n + 1, of the boundaries l(z),

l(ω), l(w) of the domains S(z), S(ω), S(w).
The boundary values of the functions z(ζ), ω(ζ), w(ζ), as ζ → t, are

denoted by z(t) = x(t) + iy(t), ω(t) = ϕ(t) + iψ(t), w(t) = u(t) − iv(t),
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and by z(t), ω(t), w(t) we denote the complex functions, conjugate to the
functions z(t), ω(t), w(t).

The boundary conditions (1.1)–(1.2) with respect to the analytic func-
tions ω(ζ) and z(ζ) can be written in the form [2]

Im[m11(t)ω(t) + m12(t)z(t)] = f1(t), −∞ < t < +∞, (2.1)

Im[m21(t)ω(t) + m22(t)z(t)] = f2(t), −∞ < t < +∞, (2.2)

where mk1(t) = ak2(t) + iak1(t), mk2(t) = ak4(t) + iak3(t), fk(t), k = 1, 2,
are piecewise constant functions with the discontinuity points t = ek, k =
1, 2, . . . , n, n + 1.

In the domain S(ζ) we have to find analytic functions z(ζ), ω(ζ) satisfying
the boundary conditions (2.1)–(2.2). By means of these functions, the points
z(ζ), ω(ζ) are mapped respectively into the points t = ek, k = 1, 2, . . . , n, n+
1. Moreover, each part of the boundary must necessarily be mapped into the
corresponding parts of the boundaries l(z,Ek), l(ω,E′

k), k = 1, 2, . . . , n+1.
The unknown parts of the boundaries l(ζ), −∞ < t < e1, ek < t < ek+1, k =
1, 2, . . . , n and the parameters t = ek, k = 1, 2, . . . , n, are to be determined.

If we succeed in constructing analytic functions z(ζ), ω(ζ), which map
conformally the domain S(ζ) respectively onto the domains S(z), S(ω), then
the boundary values z(t), ω(t) of these functions will satisfy the conditions
(2.1)–(2.2). Moreover, if the functions z(ζ), ω(ζ) are known, then we are
able to construct the function w(ζ) = ω′(ζ)/z′(ζ).

If one or several coefficients mkj , k = 1, 2; j = 1, 2, are equal to zero,
and m11(t)m22(t) − m12(t)m21(t) 6= 0, then by the conditions (2.1)–(2.2)
the functions ω(ζ), z(ζ) can be constructed by means of the Cauchy type
integrals. There are particular cases where all mkj(t) 6= 0, k = 1, 2, j = 1, 2,
but, nevertheless, one manages to construct the functions ω(ζ), z(ζ) in an
elementary way [12].

As we will see below, in a general case we have succeeded in constructing
first the analytic function w(ζ), then, by means of this function, we have
constructed analytic functions ω′(ζ), z′(ζ) and, finally, we have found the
functions ω(ζ) and z(ζ).

The notion of singular and removable singular points of the boundary
l(z) has been introduced above. As is said, to singular points of the bound-
ary l(z) there correspond singular points t = ek, k = 1, 2, . . . , n, n + 1,
of the boundary l(ζ). They can be divided into two groups: removable
and unremovable. We have enumerated the removable points by t = εk,
n = 1, 2, . . . , m1, and the unremovable ones by t = ak, k = 1, 2, . . . , m,m+1.
To the points t = ak, k = 1, 2, . . . ,m+1, on the boundary l(w) there corre-
spond the points l(w,wk) = bk while to the points t = εk, k = 1, 2, . . . , m,
there correspond the points l(z, zk) = ε∗k, k = 1, 2, . . . , m1. By our choice,
the point t = en+1 = am+1 = ∞ is an unremovable singular point. Among
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the points t = ak, k = 1, 2, . . . ,m, we select and fix arbitrarily two points,
because one point t = am+1 = ∞ is already fixed.

An investigation of the problem (2.1)–(2.2) from the point of view of the
Riemann-Hilbert problem can be found in [17, 18].

Introduce an analytic vector Φ(ζ) and a vector f(t) as follows:

Φ(ζ) = [ω(ζ), z(ζ)], Im(ζ) > 0; Φ(ζ) = [ω(ζ), z(ζ)], Im(ζ) < 0,

f(t) = [f1(t), f2(t)], −∞ < t < +∞.

The conditions (2.1)–(2.2) with respect to the vector Φ(ζ) can be writ-
ten as

Φ(t) = A−1
∗ (t)A∗(t)Φ(t) + 2iA−1

∗ (t)f(t), −∞ < t < +∞, (2.3)

where

A∗(t) =
(

m11(t) m12(t)
m21(t) m22(t)

)
, −∞ < t < +∞,

is a non-singular piecewise-constant matrix, A−1
∗ is the inverse to A∗

A−1
∗ (t) =

1
detA∗(t)

(
m22(t) m12(t)
m21(t) m11(t)

)
, −∞ < t < +∞,

and A∗(t) is the complex conjugate to A∗(t).
It can be easily verified that

A−1
∗ (t)A∗(t) =

1
det A∗(t)

(
−B0(t) −i2D0(t)
i2A0(t) −B0(t)

)
, −∞ < t < +∞,

where A0(t), B0(t), D0(t) are defined by (1.7)–(1.9) and (1.11).
We can directly verify that the equalities

∆(t) = B0(t)B0(t)− 4A0(t)D0(t) = det A∗(t) · detA∗(t),

det[A−1
∗ (t) ·A∗(t)] = [detA∗(t)]/[det A∗(t)]

are also valid.
Differentiating the equality (2.3) along the t, u-axis and writing it in

terms of projections, we obtain

ω′(t) = [−B0(t)ω′(t)− i2D0(t)z′(t)]/ detA∗(t), −∞ < t < +∞, (2.4)

z′(t) = [i2a0(t)ω′(t)−B0(t)z′(t)]/ det A∗(t), −∞ < t < +∞. (2.5)

After division, from (2.4) and (2.5) we get

ω′(t)
z′(t)

=
−B0(t)ω′(t)− i2D0(t)z′(t)
i2A0(t)ω′(t)−B0(t)z′(t)

, −∞ < t < +∞. (2.6)
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The equality (2.6) can also be written as

w(t) =
−B0(t)w(t)− i2D0(t)

i2A0w(t)−B0(t)
, −∞ < t < +∞, (2.7)

where w(t) = ω′(t)/z′(t).
As we will see below, by means of the solution of the well-known Schwarz

differential equation we can find an analytic function satisfying (2.7) on the
t-axis, provided the condition

∆(t) = B0(t)B0(t)− 4A0(t)D0(t) = 1, −∞ < t < +∞, (2.8)

is fulfilled.
However, the condition (2.8) may not be fulfilled. If we divide the nu-

merator and the denominator in (2.7) by
√

∆(t) and introduce the notation

B(t) = −B0(t)/
√

∆(t), B(t) = −B0(t)/
√

∆(t), −∞ < t < +∞, (2.9)

A(t) = 2A0(t)/
√

∆(t), D(t) = 2D0(t)/
√

∆(t), −∞ < t < +∞, (2.10)

then the condition

∆1(t) = B(t)B(t)−A(t)D(t) = 1, −∞ < t < +∞, (2.11)

will be fulfilled.
With regard for (2.9) and (2.10), we can rewrite (2.7) as

w(t) =
B(t) w(t)− iD(t)
iA(t)w(t) + B(t)

, −∞ < t < +∞, (2.12)

and (2.4) and (2.5) as

ω′(t)=
√

detA∗(t)/det A∗(t)
[
B(t) ω′(t)−iD(t)z′(t)

]
, −∞<t<+∞, (2.13)

z′(t)=
√

detA∗(t)/det A∗(t)
[
iA(t)ω′(t)+B(t)z′(t)

]
, −∞<t<+∞. (2.14)

A solution of the system (2.13)-(2.14) will be sought in the form

ω′(t) = γ(t)ω1(t), z′(t) = γ(t)z1(t), −∞ < t < +∞, (2.15)

where ω1(t), z1(t) and γ(t) must satisfy the boundary conditions

ω1(t) = B(t) ω1(t)− iD(t)z1(t), −∞ < t < +∞, (2.16)

z1(t) = iA(t)ω1(t) + B(t)z1(t), −∞ < t < +∞, (2.17)

γ(t) =
√

det A∗(t)/ detA∗(t) γ(t), −∞ < t < +∞. (2.18)

Note that the value of the function w(t) = ω′(t)/z′(t) does not change
after the representation (2.15), and hence so does (2.12). A little later we
will prove that (2.12) implies (2.16)–(2.17) [13–16].
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If we denote the values of the matrix A∗(t) for the intervals −∞ < t < e1,
ej < t < ej+1, j = 1, 2, . . . , n, respectively by A∗(n+1), A∗j , j = 1, 2, . . . , n,
then we can write

detA∗j = |det A∗j | exp[iϕj ], detA∗j = | detA∗j | exp[−iϕj ],

| detA∗j |/| detA∗j | = 1, j = 1, 2, . . . , n, n + 1,
√

detA∗j/ detA∗j =
√

exp[−i2ϕj ]=exp[−iϕj ], j = 1, 2, . . . , n + 1. (2.19)

Taking into account (2.19), we rewrite (2.18) as

γ(t) = exp[iϕ0(t)]γ(t), −∞ < t < +∞, (2.20)

where ϕ0(t) is a piecewise constant function defined by
√

detA∗(t)/ detA∗(t) = exp[−iϕ0(t)], −∞ < t < +∞.

After taking the logarithm of (2.20), we get

ln γ(t)− ln γ(t) = −iϕ0(t), −∞ < t < +∞. (2.21)

We will not introduce here the notion of index but will act formally and
will find from (2.21) a particular solution belonging to some class, and then
we will define more exactly which solution out of all possible solutions of
(2.21) is just needed.

The particular solution of the boundary value problem (2.21) can be
obtained by the formula [17]

ln γ(ζ) =
(−1)
2π

+∞∫

−∞

ζ + i

t + i

ϕ0(t)dt

t− ζ
. (2.22)

From (2.22) we find that

γ(ζ) = const(ζ − e1)β1(ζ − e2)β2 · · · (ζ − en)βn , (2.23)

where β1 = (ϕn+1 − ϕ1)/2π, βj = (ϕj−1 − ϕj)/2π, j = 2, 3, . . . , n, and
ϕj , j = 1, 2, . . . , n + 1 are the values of the function ϕ0(t) on the intervals
ej < t < ej+1, j = 1, 2, . . . , n, −∞ < t < e1, respectively.

The numbers ϕj , j = 1, 2, . . . , n+1, in (2.23) will be chosen appropriately
after finding the functions ω′(ζ) and z′(ζ).

It follows from the above-said that to construct in the domain S(ζ) the
analytic functions ω(ζ) and z(ζ) satisfying the boundary conditions (2.1)–
(2.2), it is necessary first to construct in the domain S(ζ) the functions
ω1(ζ), z1(ζ) satisfying the conditions (2.16)–(2.17). And, as we will see
below, to construct the functions ω1(ζ) and z1(ζ), it is necessary first to
construct in the domain S(ζ) the function w(ζ) = ω′(ζ)/z′(ζ) = ω1(ζ)/z1(ζ)
satisfying the boundary condition (2.12).
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3. Investigation of the Value Problem (2.16)–(2.17)

We write the boundary value problem (2.16)–(2.17) in the vector form:

Φ1(t) = g(t)Φ1(t), −∞ < t < +∞, (3.1)

where

Φ1(ζ) = [ω1(ζ), z1(ζ)], Im(ζ) > 0; Φ1(ζ) = [ω1(ζ), z1(ζ)], Im(ζ) < 0,

g(t) =
(

B(t) −i2D(t)
iA(t) B(t)

)
, −∞ < t < +∞.

For the intervals aj < t < aj+1, j = 1, 2, . . . , n, −∞ < t < a1, denote
the values of the matrix g(t) respectively by gj , j = 1, 2, . . . , n, n+1. There
is a close connection between the characteristic numbers of the matrices
g−1

j gj−1, j = 1, 2, . . . , n + 1, and the interior angles at the vertices of the
circular polygon S(ω). Indeed, consider the characteristic equation for the
point t = ej [2, 17, 18]:

det(g−1
j (t)gj−1(t)− λjE) = 0, (3.2)

where λj is a parameter and E is the unit matrix.
The equation (3.2) can be also written as det(gj−1(t) − λjgj(t)) = 0.

Hence, taking into account the fact that det gj = 1, j = 1, 2, . . . , n + 1, we
obtain λ2

j − a0λj + 1 = 0, a0j = Bj−1Bj + BjBj−1 − Aj−1Dj − AjDj−1,
which implies that λ1jλ2j = 1, λ1j + λ2j = a0j , where λ1j and λ2j are the
characteristic roots of (3.2).

Consider the numbers αkj = 1
2πi ln λkj , which are defined to within inte-

ger summands.
It has been proved in [2] that αkj are real numbers satisfying α1j−α2j =

νj .
Let us get back to the removable singular points ε1, ε2, . . . , εm1 For these

points the neighboring matrices gj−1 and gj are diagonal, and t = ej = εj ,
λkj = −1, k = 1, 2, α1j = −1/2, α2j = −1/2 [1–5]. Moreover, A0(t) = 0,
B1(t) = 0, B2(t) 6= 0, D0(t) = 0, v(t) = 0, u(t) 6= 0 or A0(t) = 0, B2(t) = 0,
B1(t) 6= 0, D0(t) = 0, u(t) = 0, v(t) 6= 0, where t ∈ (aj−1, aj+1).

Introduce a new sought for vector Φ2(ζ) = [ω2(ζ), z2(ζ)] by

Φ1(ζ) = χ1(ζ)Φ2(ζ), (3.3)

where

χ1(t) = [(t− ε1)(t− ε2) · · · (t− εm1)]
−1/2, χ1(t) > 0, t > εm1 . (3.4)

The boundary condition (3.1) for Φ2(ζ) takes the form

Φ2(t) = G(t)Φ2(t), −∞ < t < +∞, (3.5)

where G(t) = [χ1(t)]−1g(t)χ1(t), −∞ < t < +∞, also is a piecewise con-
stant matrix with the discontinuity points a1, a2, a3, . . . , am, am+1 = ∞.
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The matrix G(t) differs from the matrix g(t) only by the fact that some
matrices gj are multiplied by −1 and the others remain unchanged.

If some elements of the matrix G(t) are equal to zero and det G(t) 6= 0,
then the problem (3.5) is solved completely by the Cauchy type integrals,
and the equations for the determination of the unknown parameters are
derived [17]. Besides these cases, there are the ones where all elements of
the matrix G(t) differ from zero and the problem (3.5) is solved simply.
Such cases involve circular polygons, when the boundary S1(w) consists of
a finite number of arcs of concentric circles with the center M(w0) and
straight cuts passing through M(w0) upon their extension. By means of
the logarithmic function such domains S1(w) can be transformed into linear
polygons. Moreover, there exist many domains S2(w) which by the linear-
fractional transformation reduce to a set of domains S1(w). Hence, using
the Christoffel–Schwarz formula [12], for the domains S1(w), S2(w), we
construct the functions w(ζ).

We will now proceed to the solution of (3.5). If a circular polygon is
bounded, then 0 ≤ νk ≤ 2. Below we will consider the case where one or
several vertices of the domain S(w) are at the point w = ∞. This may
happen if two neighboring circular arcs degenerate to half-lines or straight
lines. Moreover, if the sides of the corresponding angle are parallel, then the
vertex of the interior angle is assumed to be equal to zero. If, however, the
sides at the vertex bk = ∞ diverge and intersect at a finite point b∗k upon
their extention, forming the angle πν∗k turned to the vertex b∗k, then we will
assume that πνk = −πν∗k ; hence, νk may take the values −2 ≤ νk ≤ 2.

It is known that the construction of the sought for function w(ζ) is re-
duced to the solution of the nonlinear Schwarz equation which in its turn
reduces to a Fuchs class equation. Therefore for the domain S(w) we con-
struct the Fuchs class equation

V ′′(ζ) + P∗(ζ)V ′(ζ) + q∗(ζ)V (ζ) = 0, (3.6)

where

P∗(ζ) =
m∑

j=1

1− νj

ζ − aj
, q∗(ζ) =

m∑

j=1

cj

ζ − aj
,

cj , j = 1, 2, . . . , m, are the unknown accessory real parameters which for
the present satisfy the conditions

m∑

j=1

cj = 0,

m∑

j=1

cjaj = α1α2, (3.7)

m∑

j=1

νj + α1 + α2 = m− 1, α1 − α2 = νm+1.
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Denote by V1(ζ), V2(ζ) linearly independent solutions of the equation
(3.6) and construct the function w1(ζ) = V1(ζ)/V2(ζ). The function w1(ζ)
is a particular solution of the following Schwarz equation:

w′′′(ζ)
w′(ζ)

− 3
2

(w′′(ζ)
w′(ζ)

)2

= 2q∗(ζ)− P ′∗(ζ)− 1
2
[P∗(ζ)]2, (3.8)

which is constructed with regard for the equation (3.6).
The general solution of the equation (3.8) is given by w(ζ) = pw1(ζ)+q

rw1(ζ)+s ,
where p, q, r, s are the constants (complex in general) of integration of (3.8)
satisfying ps− rq = 1.

The equation (3.8) is invariant under linear-fractional transformations
both of the function w(ζ) and of ζ. Note that the coefficients of the trans-
formation of w(ζ) may be either complex or real, while those of the transfor-
mation of ζ may be only real. Moreover, the equation (3.6) is also invariant
under the transformations of ζ with real coefficients [19–22].

In constructing a general solution of the equation (3.8), we have already
used its invariance property with respect to w(ζ). Exploit now the invari-
ance of the equation (3.6) with respect to ζ. Using this property, we choose
arbitrarily and fix three of the parameters t = ak, k = 1, 2, . . . , m+1, while
the remaining (m− 2) ones are to be defined. Moreover, the coefficients of
the equation (3.6) involve the parameters cj , j = 1, 2, . . . ,m which for the
present satisfy only two conditions (3.7), so one can define only two of them.
The remaining (m−2) parameters are also to be defined. Consequently, the
coefficients of the equation (3.6) depend on 2(m− 2) unknown parameters.
The parameters p, q, r, s are to be defined. Thus, to construct w(ζ) we
must define only 2(m+1) parameters, while to construct the functions ω′(ζ),
z′(ζ) we must add the parameters connected with the removable singular
points. Their number is m1.

4. Solution of Equation (3.6)

Each of the Fuchs class equations (3.6) near every singular point t = ak,
k = 1, 2, . . . , m+1, and near any ordinary point, where p∗(ζ), q∗(ζ), are an-
alytic, have two linearly independent local solutions. They are constructed
by means of infinite series whose coefficients are defined in the well-known
manner. The series converge in the circles with centers at the points for
which they have been constructed. Radii of these circles are determined by
the distances to the singular points nearest from the centers.

Denote by Vkj(ζ), k = 1, 2, j = 1, 2, 3, . . . ,m + 1, linearly independent
local solutions of the equation (3.6) for the singular points ζ = ak, k =
1, 2, . . . ,m + 1, and by ϕkj(ζ), k = 1, 2, j = 1, 2, . . . , m− 1, the ones for the
points t = a∗j = (aj + aj+1)/2, j = 1, 2, . . . , m− 1.
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Assume u1j(ζ) = pv1j(ζ) + qv2j(ζ), u2j(ζ) = rv1j(ζ) + sv2j(ζ), where
p, q, r, s are the integration constants of (3.8).

The differential equation (3.6) can be written in the form of a system

χ′(ζ) = χ(ζ)P(ζ), (4.1)

where

χ(ζ) =
(

u1(ζ) u′1(ζ)
u2(ζ) u′2(ζ)

)
, P(ζ) =

(
0 −q∗(ζ)
1 −p∗(ζ)

)
, (4.2)

u1(ζ) and u2(ζ) are linearly independent solutions of (3.6).
First we find the solution of (4.1), that is, we construct the matrix χ(ζ).

Then by means of this matrix χ(ζ) we seek for a solution of the boundary
value problem (3.5).

It is known that if the matrix χ∗(ζ) is a solution of (4.1), then the matrix
Tχ∗(ζ) is also a solution of (4.1), where

T =
(

p q
r s

)
, detT = 1. (4.3)

If we construct the local linearly independent solutions vkj(ζ) and ϕkj(ζ)
of the equation (3.6) for the points ζ = aj , j = 1, 2, . . . , m + 1, and ζ =
a∗j = (aj + aj+1)/2, respectively, then the local fundamental matrices for
(4.1) will take the form

Θj(ζ) =
(

v1j(ζ) v′1j(ζ)
v2j(ζ) v′2j(ζ)

)
, j = 1, 2, . . . ,m + 1,

Hj(ζ) =
(

ϕ1j(ζ) ϕ′1j(ζ)
ϕ2j(ζ) ϕ′2j(ζ)

)
, j = 1, 2, . . . , m− 1.

(4.4)

Assume that the inequality |am| > |a1| holds. Then at the point a∗m = −|am|
we construct the local series ϕ∗k(ζ), k = 1, 2, and the corresponding local
matrix H∗(ζ). Radii of convergence of these series will be determined by the
distance from the point t = a∗m to the singular point t = a1. Analogously,
if |a1| > |am|, then at the point a∗1 = |a1| we construct local series ϕ∗k(ζ),
k = 1, 2, and the matrix H. Radii of convergence of these series will be
determined by the distance from the point a∗1 to the point t = am.

After this we can see that there exists a finite number of circles with the
centers ζ = aj , j = 1, 2, . . . , m + 1, ζ = a∗j = (aj + aj+1)/2, j = 1, 2, . . . , m,
covering completely the abscissae axis. Note that by the circle with the
center ζ = ∞ will be meant the exterior of the circle |ζ| < r, where r will
be assumed to be equal to the greatest of the numbers |a1|, |am|.

The equation (3.6) near the point ζ = aj can be written as

(ζ − aj)2v′′(ζ) + (ζ − aj)pj(ζ)v′(ζ) + qj(ζ)v(ζ) = 0, (4.5)
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where

pj(ζ) =
∞∑

k=0

pkj(ζ − aj)k, qj(ζ) =
∞∑

k=1

qkj(ζ − aj)k. (4.6)

The solutions of the equations (4.5) and (4.6) for the point ζ = am+1 = ∞
can be written by means of the transformation ζ = 1/ζ1, as follows [29, 27]

ζ2
1v′′(ζ1) + ζ1[2−

∞∑

k=0

pk∞ζk
1 ]v′(ζ1) +

[ ∞∑

k=0

qk∞ζk

]
v(ζ1) = 0, (4.7)

where

p∗(1/ζ1) = ζ1

∞∑

k=0

pk∞ζk
1 , q∗(1/ζ1) = ζ2

1

∞∑

k=0

qk∞ζk
1 . (4.8)

The solutions of the equations (4.5) and (4.7) for the points ζ = aj ,
j = 1, 2, . . . ,m, ζ = ∞ are sought respectively in the form [22, 27]

vj(t) = (t− aj)αj ṽj(t), ṽj(t) =
∞∑

n=0

γnj(t− aj)n, (4.9)

v∞(t) = t−α∞ ṽ∞(t), ṽ∞(t) =
∞∑

n=0

γnjt
−n. (4.10)

Substituting (4.9) in (4.5), we obtain

(ζ − aj)αj

[ ∞∑

k=0

Mkj(ζ − aj)k

]
= 0,

whence there follows an infinite recursion system of equations to define γnj ,
n = 1, 2, . . .,

M0j(αj)=γ0jf0j(αj) = 0; f0j(αj)=αj(αj − 1)+αjp0j +q0j =0, (4.11)

M1j(αj) = γ1j(αj)f0j(αj + 1) + γ0jf1j(αj) = 0, (4.12)

M2j(αj)=γ2j(αj)f0j(αj + 2)+γ1j(αj)f1j(αj + 1)+γ0jf2j(αj)=0, (4.13)
.....................................................

Mnj(αj) = γnj(αj)f0j(αj + n) + γ(n−1)j(αj)f1j(αj + n− 1) + · · ·+
+γ[n−(k−2)]j(αj)f(k−2)j(αj + n− k + 2) + · · ·+

+γ1j(αj)f(n−1)j(αj + 1) + γ0jfnj(αj) = 0, (4.14)
.....................................................

fkj(αj) = αjpkj + qkj , q0j = 0. (4.15)

If the determining equation (4.11) has the roots α1j , α2j (α1j > α2j)
such that α1j − α2j 6= n, n = 0, 1, 2, then by the formulas (4.12)–(4.14) we
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construct for the equation (4.5) two local linearly independent solutions of
the form

vkj(t) = (t− aj)αkj γ0j ṽkj(t), ṽkj(t) = 1 +
∞∑

n=1

γk
nj(t− aj)n, (4.16)

k = 1, 2, j = 1, 2, . . . ,m.

The proof for the convergence of the series (4.16) can be found in [19,22].
The convergence radii of the series ṽkj(ζ) are determined by the distance
from the point t = aj to the nearest of the points t = aj−1, t = aj+1.

In the case where the equation (4.11) has the roots such that α1j =
α2j , we differentiate it with respect to αj , calculate and obtain the second
solution,

v2j(ζ) = v1j(ζ) ln(ζ − aj) + v∗2j(ζ),

v∗2j(ζ) = (ζ − aj)α2j γ0j

∞∑

k=1

d

dαj
[γkj(αj)]αj=α2j (ζ − aj)k.

The first one v1j(ζ) is of the form (4.16).
Finally, if the equation (4.11) has the roots such that α1j − α2j = s,

s = 1, 2, then the first solution in these cases can again be determined by
(4.16), and the second one is sought in the form [23]

vj(t) = γ0j(t− aj)αj [αj − α2j +
∞∑

n=1

γnj(αj)(t− aj)n]. (4.17)

To calculate γnj(αj), in (4.11)–(4.14) we substitute instead of γ0j the
product γ0j(αj − α2j) and then define successively γnj(αj), n = 1, 2, . . ..
The defined in such a manner γnj(αj) we substitute in (4.17), differentiate
with respect to αj and then calculate the limit as αj → α2j . We obtain

v2j(t)= lim
αj→α2j

γ0j

{
(t−aj)αj

[
αj−α2j +

∞∑
n=1

γnj(αj)(t−aj)n

]
ln(t−aj)+

+(t− aj)αj

[
1 +

∞∑
n=1

d

dαj
[γnj(αj)](t− aj)n

]

αj→α2j

}
.

To define vk∞(t), k = 1, 2, we act as in defining vkj(ζ) but in this case
the use is made of the equation (4.7) and the representation (4.10).

Consider the case where the contour of the circular polygon contains a cut
with the vertex bj , where α1j −α2j = 2. For this case, P.Ya. Polubarinova–
Kochina has proved that the solution v2j(ζ) must contain no logarithmic
term. She has also obtained an equation connecting the parameters aj , cj [2].
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The necessary and sufficient conditions for the absense of the logarithmic
term in the solution v2j(ζ) is of the form [9, 11]

γ1
1j(α2j)f1j(α2j + 1) + f2j(α2j) = 0, (4.18)

where γ1
1j(α2j) is defined by (4.12), and f1j(α2j + 1), f2j(α2j) by (4.15).

After some transformations, (4.18) takes the form q2j + q2
1j + q1jp1j = 0.

To construct v2j(ζ) for the cut end, it suffices to calculate γ2
2j(α2j). The

other coefficients γ2
nj(α2j), n = 1, 3, 4, 5, . . . are calculated by the formulas

(4.14). The equation (4.13) is fulfilled under the condition (4.18), since
f0j(α2j + 2) = f0j(α1j) = 0. To define γ2

nj(α2j) uniquely, we have to solve
(4.13) for any αj 6= α2j with respect to γ2j(αj):

γ2j(αj) =
−[γ1j(αj)f1j(αj + 1) + γ0jf2j(αj)]

f0j(αj + 2)
. (4.19)

In (4.19), the numerator and the denominator vanish as αj → α2j . Hence
there is an indeterminacy. Uncovering the indeterminacy by the L’Hospital
rule, we get γ2

2j = −0, 5[p1j(p1j + 2q1j) + p2j ].

5. Local Matrices

From the set of branches of the functions exp[αkj ln(t−aj)] appearing in
the local solutions vkj(ζ) we choose as follows:

exp[αkj ln(t− aj)] > 0, t > aj ,

[exp[αkj ln(t− aj)]]± = exp[±iπαkj ] exp[αkj ln(aj − t)], t < aj ;

exp[−αk∞ ln(−t)]± > 0, −∞ < t < a1;

[exp[−αk∞ ln(t− aj)]]±=exp[±iπ(−αk∞)] exp[−αk∞ ln t], am <t<+∞.

Besides the matrices (4.4), let us introduce the matrices

Θ∗j (t) =
(

v1j∗(t) v′1j
∗(t)

v2j∗(t) v′2j
∗(t)

)
, aj−1 < t < aj ,

where

v∗kj(t) = (aj − t)αkj γ0j ṽkj(t), v′kj
∗(t) = −(aj − t)αkj γ0j ṽ

′
kj
∗(t),

v′kj(t) =
d

dt
[vkj(t)], ṽ′kj

∗(t) = αkj +
∞∑

n=1

γk
nj(αkj + n)(t− aj)n.

Between the matrices Θj(t) and Θ∗j (t) there is a connection

Θ±j (t)=θ±j Θ∗j (t), aj−1 <t<aj , Θ±∞(t)=θ±∞Θ∗∞(t), am <t<+∞.
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Here the matrices θ±j for α1j − α2j 6= s, s = 0, 1, 2, are defined by

θ±j =
(

exp(±iπα1j) 0
0 exp(±iπα2j)

)
,

while for α1j − α2j = s, s = 0, 1, 2, by

θ±j = e±iπα2j

(
1 0
±πi 1

)
.

For the cut end w = bj , the matrices θ±j are defined as follows. If
the characteristic numbers are of the form α1j = 3/2, α2j = −1/2, then
θ±j = ∓iE, where E is the unit matrix, and if α1j = 2, α2j = 0 then
θ±j = E.

The elements of the matrix θ∗j (t) containing the logarithmic terms are
defined by

v∗2j(t) = γ0j

{
(aj − t)α2j [(t− aj)sṽ1j(t) ln(aj − t) + ṽ2

2j(t)],

v′2j
∗(t) = −γ0j(aj − t)α2j−1 [(aj − t)seiπsṽ′2j(t) ln(aj − t) + ṽ1j(t)] + ṽ2

2j(t)
}

.

In the local solutions vkj(ζ), ϕkj(ζ) there appear the constants γ0j , ϕ0j

which are defined by means of the Liouville formula

γ0j =
{ m∏

k=1,k 6=j

|νj | |aj − ak|1−ν−k

}−1/2

, ϕ0j =
{ m∏

k=1

|a∗j − ak|1−νk

}−1/2

.

If νj = 0, then we take |νj | = 1.

6. Construction of the Fundamental Matrix

Construct the matrix

χ(ζ) =
(

u1(ζ) u′1(ζ)
u2(ζ) u′2(ζ)

)
, (6.1)

where u1(ζ) and u2(ζ) are linearly independent solutions of (3.6).
The convergence domains of the matrices Θj(t) and Hj(t) have always a

common part in which we can write the equalities

Θ∗j (t) = T ∗j Hj(t), Hj(t) = T0jΘj−1(t), aj−1 < t < aj , (6.2)

Θ∗1(t) = T−mH−m(t), H−m(t) = T−∞Θ∞(t), −∞ < t < a1, (6.3)

Θ∗∞(t) = T∞Θm(t), am < t < +∞,

where T ∗j , T0j , T−m, T−∞, T∞ are the constant real matrices defined from
the equalities (6.2) and (6.3). Note that in these equalities t may be fixed
arbitrarily in the domains where both local matrices occurring in the above-
mentioned equalities converge.
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Define the matrix (6.1) along the t-axis of the plane ζ as follows:

χ±(t) = TΘ±m(t), Θ+
m(t) = Θ−m(t), am < t < +∞;

χ±(t) = Tθ+
mΘ∗m(t), am−1 < t < am;

χ±(t) = Tθ±mTmΘm−1(t), Tm = T ∗mT0m, am−1 < t < am;
...........................................................

χ±(t) = Tθ±mTm · · ·T1θ
±
1 Θ∗1(t), −∞ < t < a1;

χ±(t) = Tθ±mTm · · · θ±1 Θ−mT−∞Θ∞(t), −∞ < t < a1;

χ±(t) = Tθ±mTm · · · θ±∞T∞Θ±∞(t), am < t < ∞.

(6.4)

The signs (±) in the matrices (6.4) denote the limiting values of the
matrix χ(ζ) in the upper and in the lower half-planes, respectively. The
matrix T is defined by (4.3).

7. Solution of the Boundary Value Problem

Direct checking shows that the matrices (6.4) satisfy the equation (4.1).
Therefore, the parameters aj , cj , j = 1, 2, . . . , m, p, q, r, s being chosen
appropriately, the same matrices must satisfy the boundary condition (3.5).
Indeed, we begin our proof with the interval (am, +∞). We have

TΘ+
m(t) = GmTΘ−m(t), Θ+

m(t) = Θ−m(t), Gm = E, T = T ,

am < t < +∞.
(7.1)

For the interval (am−1, am) we obtain

Tθ+
mΘ∗m(t) = Gm−1Tθ−mΘ∗m(t), am−1 < t < am. (7.2)

The equations (7.1) and (7.2) result in

(θ+
m)2 = T−1G−1

m Gm−1T (7.3)

from which we can see that the matrices (θ+
m)2, G−1

m Gm−1 are similar.
In a similar way we find the matrix equations for the remaining points

ζ = aj , j = m− 1,m− 2, . . . , 2, 1, ζ = ∞. We have

Tθ+
mTmθ+

m−1 = Gm−2Tθ−mTmθ−m−1, (7.4)

Tθ+
mTmθm−1Tm−1θ

+
m−2 = Gm−3Tθ−mTmθ−m−1Tm−1θ

−
m−2, (7.5)

.............................................

T θ+
mTmθ+

m−1Tm−1θ
+
m−2Tm−2 . . . T1θ

+
1 =

= Gm+1Tθ−mTmθ−m−1Tm−1θ
−
m−2Tm−2 . . . T1θ

−
1 , (7.6)

Tθ+
mTmθ+

m−1Tm−1 . . . T−∞θ+
m =GmTθ−mTmθ−m−1Tm−1 . . . T−∞θ−∞. (7.7)
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The matrix equations (7.4)–(7.7) can be written as

(θ+
m−1)

2 = T−1
m (θ+

m)−1T−1G−1
m−1Gm−2Tθ−mTm. (7.8)

Here we make the following remark. In composing the matrix equations,
we have to into account that two neighboring circular arcs forming a cut
with the end w = bj belong to one circle.

We rewrite (7.3) as Tθ+
m = Gm−1Tθ−m, whence

p exp(iπα1m) = Bm−1p exp(−iπα1m)− iDm−1r exp(−iπα1m), (7.9)

r exp(iπα1m) = iAm−1p exp(−iπα1m) + Bm−1r exp(−iπα1m), (7.10)

q exp(iπα2m) = Bm−1q exp(−iπα2m)− iDm−1s exp(−iπα2m), (7.11)

s exp(iπα2m) = iAm−1q exp(−iπα2m) + Bm−1s exp(−iπα2m). (7.12)

If we divide the corresponding parts of the equalities (7.9), (7.10) and
(7.11), (7.12), we can see that the ratios p/r and q/s in the interval (am−1, am)
satisfy the boundary condition (3.5),

p

r
=

Bm−1p/r − iDm−1

iAm−1p/r + Bm−1
,

q

s
=

Bm−1q/s− iDm−1

iAm−1q/s + Bm−1
.

The coordinates of the points w = bm and w = b′m also satisfy this condition;
hence

p/r = bm, q/s = b′m, (7.13)

where b′m is the second intersection point of the two neighboring circles.
Take advantage of the remark made at the beginning of Section 1. The

origin on the plane w coincides with the point w = bm. Therefore bm = 0
and b′m = ∞. Hence p = 0, s = 0.

Remind that by bk, b′k, k = 1, 2, . . . , m + 1 we have denoted the complex
coordinates of the angular points of the circular polygon at which two neigh-
boring circles may intersect, and b′k is more often exterior to the contour
l(w).

Note that if (am−1, am), then for the interval νm 6= 0 we can always
suppose that

Gm−1 =
(

Bm−1 0
0 Bm−1

)
.

Consider the matrix equation (7.4),

T+
∗mθm−1

= Gm−2T ∗mθ−m−1, T∗m = Tθ+
mTm. (7.14)

From (7.14) there follows the following system of equations:

p∗m/r∗m = bm−1, q∗m/s∗m = b′m−1, (7.15)

where p∗m, q∗m, r∗m, s∗m are the elements of the matrix T∗m.
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Taking into account (7.14), we rewrite the equalities (7.15) as
p∗pm + q∗rm

r∗pm + s∗rm
= bm−1,

p∗qm + q∗sm

r∗qm + s∗sm
= b′m−1, (7.16)

where p∗, q∗, r∗, s∗ are the elements of the matrix T∗ = Tθ+
m.

Bearing in mind (7.13), the equalities (7.16) can be written as

r∗pmbm + s∗rmb′m
r∗pm + s∗rm

= bm−1,
r∗qmbm + s∗smb′m

r∗qm + s∗sm
= b′m−1. (7.17)

After simplification, the equalities (7.17) take the form

r∗pm(bm − bm−1) + s∗rm(b′m − bm−1) = 0, (7.18)

r∗qm(bm − b′m−1) + s∗sm(b′m − b′m−1) = 0. (7.19)

The condition of the compatibility of (7.18) and (7.19) with respect to
r∗, s∗ is of the form

pmsm

rmqm
=

b′m − bm−1

bm − bm−1

bm − b′m−1

b′m − b′m−1

. (7.20)

From the matrix equation (7.5) we get the system of equations:
p∗(m−1)pm−1 + q∗(m−1)rm−1

r∗(m−1)pm−1 + s∗(m−1)rm−1
= bm−2,

p∗(m−1)qm−1 + q∗(m−1)sm−1

r∗(m−1)qm−1 + s∗(m−1)sm−1
= b′m−2,

(7.21)

where p∗(m−1), q∗(m−1), r∗(m−1), s∗(m−1) are the elements of the matrix
T∗(m−1) = Tθ+

mTmθmθ+
m−1.

After some transformations, (7.21) can be rewritten in the form

r∗(m−1)pm−1(bm−1 − bm−2) + s∗(m−1)rm−1(b′m−1 − bm−2) = 0,

.r∗(m−1)qm−1(bm−1 − b′m−2) + s′∗(m−1)sm−1(b′m−1 − b′m−2) = 0.

The above equalities imply

pm−1sm−1

rm−1qm−1
=

b′m−1 − bm−2

bm−1 − bm−2

bm−1 − b′m−2

b′m−1 − b′m−2

. (7.22)

All the matrix equations can be considered analogously.
The equations (7.20) and (7.22) are exactly the invariant anharmonic

ratios of the four points of the circle at which it intersects two neighboring
circles.

From the matrix equations one can obtain all the required equations with
respect to ak, ck and to the integration constants p, q, r, s. For every point
ζ = aj we obtain a system of two equations which are homogeneous with
respect to the elements of the matrix Tk. Their conditions of compatibility,
for example, for the points ζ = am, ζ = am−1, are of the form (7.20) and
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(7.22). These conditions have been obtained under the assumption that
α1j − α2j 6= s, s 6= 0, 1, 2.

Consider now the case where α1j − α2j = s, s = 0, 1, 2.
According to the representation (6.4), the unknown matrices χ+(t), χ−(t)

for the interval (aj−1, aj) must satisfy the boundary condition
(

p∗j q∗j
r∗j s∗j

)
eiπα2j

(
1 0
πi 1

)
=

=
(

Bj−1 −iDj−1

iAj−1 Bj−1

)(
p∗j q∗j
r∗j s∗j

)
e−iπα2j

(
1 0
−πi 1

)
,

where p∗j , q∗j , r∗j , s∗j are defined by (6.4).
Reasoning as when deducing (7.1)–(7.8), we see that the ratios p∗j+πiq∗j

r∗j+πis∗j
,

q∗j

s∗j
satisfy the boundary condition (3.5). But the coordinates of the point

w = bj and the coordinates bj−1 and b′j−1 will also satisfy (3.5). Hence we
obtain the system of equations

p∗j + πiq∗j
r∗j + πis∗j

= bj ,
q∗j
s∗j

= b∗j , (7.23)

where b∗j is equal either to bj−1 or to b′j−1.
The system (7.23) is also homogeneous with respect to the elements of

the corresponding matrices T∗j , but the compatibility condition this time
fails to provide us with the ratios like (7.20) and (7.22).

As is mentioned above, the matrix equations similar to (7.1)–(7.7) can be
obtained for all points ζ = ak, with the exclusion of those ζ = an to which
there correspond the cut ends w = bj with νj = 2. For such points there are
the conditions for the absence of logarithmic terms in the solutions v2j(ζ),
for example, the equation (4.18). This gives us one condition for one point;
the second equation will be given below.

From the matrix representations χ+(t) we define first u+
1 (t), u+

2 (t) and
then construct the relation w+(t) = u+

1 (t)/u+
2 (t).

According to the representation (6.4), let the function (aj , aj+1) for the

interval w+(t) be defined by w+(t) =
A∗j v+

1j(t)+B∗j v+
2j(t)

C∗j v+
1j(t)+D∗

j v2j(t)
. If, using this, we

calculate the limit as ζ → aj , then we will the equation

bj = B∗
j /D∗

j . (7.24)

The corresponding equations for the other points ζ = ak, k = 1, 2, 3, . . . ,
m,m + 1, can be obtained in a similar way.

Consequently, for every point t = aj we obtain two real equations,
homogeneous with respect to pj , qj , rjsj , for example, (7.3)–(7.7). For
νj 6= 0, 1, 2, from the condition of compatibility of homogeneous equa-
tions there follow invariant anharmonic ratios for four points of a circle,
for example, (7.20), (7.22). In the case where νj = 0, 1, 2, the condition of
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compatibility of the two equations provides us with well-defined, but not
anharmonic, ratios.

Finally, we can take from every system of two equations one equation and
add one more equation of compatibility , i.e., we will have two equations
for every point ζ = aj . The number of equations will be 2(m + 1) and the
number of unknown parameters ak, ck, p, q, r, s, ps− rq = 1, will be equal
to 2m−1. Hence the number of equations will be greater by three than that
of the unknown parameters. This is connected with the fact that the going
around the singular points ζ = ak, k = 1, 2, . . . , n in the positive direction
is equivalent to that of the point ζ = ∞ in the negative direction. This
provides us with one matrix equation. Therefore any three equations from
the obtained system of equations are consequences of the remaining ones.

The appearance of the three additional equations can be explained as in
the case of linear polygons.

Having found the system of equations to determine ak, ck, p, q, r, s, it is
necessary to define the intervals of variation of the parameters ck, to solve
the system with respect to ak, ck and finally to determine p, q, r, s. Remind
that pj , qj , rj , sj , j = 1, 2, . . . ,m + 1, depend implicitly on the parameters
ak, ck, k = 1, 2, . . . , m via the coefficients of the generalized hypergeometric
series . The variation intervals of the parameters ck, k = 1, 2, . . . , m, can
be defined according to [16].

It is known that the series vkj(ζ) and j = 1, 2, . . . , m,m+1, converge near
the points ζ = aj , and j = 1, 2, . . . ,m, m+1, respectively. The convergence
radii ϕkj(ζ) of these series are determined by the distance a∗j = (aj+aj+1)/2
from the point t = aj (or from the point a∗j ) to the nearest points ζ = aj−1,
ζ = aj+1.

The series vkj are the entire functions of the parameters cj , j = 1, 2, . . . , m,
and converge slowly with respect to ζ. This makes numerical calculations
very difficult. As n grows, the coefficients sometimes strongly increase,
though their multipliers (ζ − aj)n, on the contrary, decrease. Computers
are unable to multiply γk

nj by (t − aj)n despite the fact that these series
converge. To eliminate this defect, we suggest to write these series in the
form of rapidly and uniformly converging functional series.

Consider the structure of recursive formulas (4.12)–(4.14). The sum of
the first lower indices in the expressions γ(k−n)jfnj(α + k − n) is always
equal to k, i.e., to the exponent (t− aj)k. Instead of the series (4.9), let us
consider the functional series of the form

vj(t) = (t− aj)αj ṽj(t− aj),

ṽj(t) =
∞∑

n=0

=
∞∑

n=0

γnj(t− aj),
(7.25)
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where according to (4.12)–(4.14) γnj is defined via γ1j , γ2j , . . . , γ(n−1)j while
the latters are defined via fkj(αj), where

fkj(t− aj , αj) = αjpkj(t− aj) + qkj(t− aj),

pnj(t− aj) =
∑

k=1,k 6=j

(−1)n(1− νk)
( t− aj

aj − ak

)n

, poj = 1− νk,

qnj(t− aj) =
∑

k=1,k 6=j

(−1)n−1ck

( t− aj

aj − ak

)n

, qoj = 0, q1j = cj ,

|t− aj | < min{|aj − aj−1|, |aj − aj+1|}, (7.26)
∣∣∣ t− aj

aj − ak

∣∣∣ < 1, k 6= j. (7.27)

We can see from (7.27) that the functional series (7.25) converges in the
domain (7.26) more rapidly in comparison with the series (4.8).

The functional series for the point ζ = am+1 = ∞ is constructed analo-
gously. In all the above formulas instead of vkj(ζ) we will have to substitute
the functional series (7.25). It is obvious that the functional series for the
ordinary points t = a∗j , a∗j = (aj + aj+1)/2, j = 1, 2, . . . ,m − 1, will also
converge uniformly and rapidly.

8. On a Connection Between the Conditions (2.12) and
(2.16)–(2.18)

We write the matrix χ(ζ) defined by (4.2) as

χ(ζ) = Tχ2(ζ), (8.1)

where the constant matrix T is defined by (4.3), and the matrix χ2(ζ) by

χ2(ζ) =
(

v1(ζ) v′1(ζ)
v2(ζ) v′2(ζ)

)
,

v1(ζ) and v2(ζ) being the linearly independent solutions of (3.6) along the
t-axis are defined by (6.4).

The equality (8.1) implies

u1(ζ) = pv1(ζ) + qv2(ζ), u2(ζ) = rv1(ζ) + sv2(ζ). (8.2)

The functions u1(ζ), u2(ζ) are again linearly independent solutions of the
equation (3.6) provided ps− rq 6= 0, where p, q, r, s are arbitrary complex
numbers. Below we will assume that ps− rq = 1.

The functions w1(ζ) = v1(ζ)/v2(ζ) and w(ζ) = u1(ζ)/u2(ζ) satisfy
Schwarz’s equation (3.8), where w1(ζ) will be its partial and w(ζ) its general
solutions.

Remind also that w(ζ) = ω′(ζ)/z′(ζ) = ω1(ζ)/z1(ζ) = ω2(ζ)/z2(ζ),
where ωk(s), zk(ζ), k = 1, 2, are defined by (2.15) and (3.3).
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Now we present the proof of a theorem proven by us in [13–16]. It can be
formulated as follows: if the equality (2.12) holds, then so do the equalities
(2.16)–(2.17), and vice versa, (2.16)–(2.17) imply (2.12).

The second part of our theorem is evident, therefore we dwell on proving
the first part.

The equality (2.12) with regard for w(ζ)=u1(ζ)/u2(ζ) can be rewritten as

u1(t)
u2(t)

=
B(t) u1(t)− iD(t)u2(t)
iA(t)u1(t) + B(t)u2(t)

, −∞ < t < +∞.

Assume that

u1(t) = λ(t)u∗1(t), u2(t) = λ(t)u∗2(t), −∞ < t < +∞, (8.3)

where u∗1(t) = B(t)u1(t)−iD(t)u2(t), u∗2(t) = iA(t)u1(t)+B(t)u2(t), −∞ <
t < +∞.

If we substitute (8.3) in (3.6), we obtain

λ′′(t)u∗1(t) + λ′(t)[2[u∗1(t)]
′ + p∗(t)u∗1(t)] = 0, −∞ < t < +∞, (8.4)

λ′′(t)u∗2(t) + λ′(t)[2[u∗2(t)]
′ + p∗(t)u∗2(t)] = 0, −∞ < t < +∞. (8.5)

Multiplying (8.4) by u∗2(t) and (8.5) by u∗1(t) and then subtracting the
second equality from the first one, one gets

2λ′(t)[[u∗1(t)]
′u∗2(t)− [u∗2(t)]

′u∗1(t)] = 0. (8.6)

In the braces of (8.6) there is the Wronskian w∗[u∗1(t), u
∗
2(t)] 6= 0, there-

fore (8.6) implies λ′(t) = 0, −∞ < t < +∞, which yields λ(t) = const,
t ∈ (aj , aj+1).

Note that

w∗[u∗1(t), u
∗
2(t)] = w∗[u1(t), u2(t)] = w∗[u1(t), u2(t)], (8.7)

since the equality (2.11) holds.
If for (8.3) we calculate the Wronskian with regard for (8.7), then we

obtain λ2(t) = 1, t ∈ (aj , aj+1), which in its turn, implies λ(t) = ±1,
t ∈ (aj , aj+1).

But the functions A(t), B(t), D(t) are defined uniquely from the condi-
tions (1.1)–(1.2), hence λ(t) is also defined uniquely.

9. Definition of the Functions ω(ζ), z(ζ)

The function w+(t) along the real t-axis is defined by w+(t)=u+
1 (t)/u+

2 (t),
−∞ < t < +∞, where u+

1 (t), u+
2 (t) are defined by (6.4).

Given w+(t), we can find w(ζ) for all Im(ζ) > 0 by [24, 30]

w(ζ) =
1
π

+∞∫

−∞
w+(t)

ηdt

(t− ξ)2 + η2
, ζ = ξ + iη.
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Note that one can construct a canonical matrix for the problem (2.3) and
solve the inhomogeneous boundary value problem (2.3) by using the Cauchy
type integral. This has been done in our paper [13]. In the present work,
we seek for a solution of the inhomogeneous problem (2.3) in a somewhat
different way [2].

Multiply the functions u+
1 (t), u+

2 (t) by and χ+
1 (t), where γ+(t) is defined

by (2.23) and χ+
1 (t) by (3.4).

The matrix χ(ζ) defined by (6.1)–(6.10) satisfies the boundary condition
(3.5), since the equalities (7.1)–(7.2) are assumed to be fulfilled. This means
that the columns of the matrix χ(ζ) defined by (6.1)–(6.10) satisfy the
boundary condition (3.5).

In order to obtain a sought for solution Φ2(ζ) of the boundary value
problem (3.5), we have to take the first column elements of the matrix χ(ζ)
and construct the vector Φ2(ζ) = [u1(ζ), u2(ζ)], Im(ζ) ≥ 0.

We have taken the first column elements of the matrix χ(ζ) because the
ratio w(ζ) = u1(ζ)/u2(ζ) provides the general solution of the Schwarz differ-
ential equation (3.8), while the ratio u′1(ζ)/u′2(ζ) does not satisfy Schwarz’s
equation. This implies that ω2(ζ) = u1(ζ), z2(ζ) = u2(ζ).

The vector Φ1(ζ) = χ1(ζ)Φ2(ζ), where χ1(ζ) is defined by (3.4), satisfies
the boundary condition (3.1), and the components of the vector Φ1(ζ) are
defined as ω1(ζ) = χ1(ζ)ω2(ζ), z1(ζ) = χ1(ζ)z2(ζ), Im(ζ) ≥ 0.

The vector Φ′(ζ) = γ(ζ)Φ1(ζ), where Φ′(ζ) = dΦ(ζ)/dζ, satisfies the
boundary condition

Φ′(t) = A−1
∗ (t)A∗(t) Φ

′
(t), −∞ < t < +∞,

where γ(ζ) is defined by (2.23).
Hence, the components of the vector Φ′(ζ),

ω′(ζ) = γ(ζ)χ1(ζ)u1(ζ), z′(ζ) = γ(ζ)χ1(ζ)u2(ζ), Im(ζ) ≥ 0,

satisfy the boundary conditions (2.4)–(2.5).
According to [2], we are aware of the behavior of the functions ω′(ζ),

z′(ζ) at all singular points t = ek, k = 1, 2, . . . , n, n + 1. Therefore the
choice of the arguments ϕj , j = 1, 2, . . . , n + 1, of the complex numbers
detAj(t) should be performed with regard for the behavior of the functions
ω′(ζ), z′(ζ) at all singular points. In this way we construct uniquely the
functions ω′(ζ), z′(ζ). Thus we can write

dω+(t) = u+
1 (t)γ+(t)χ+

1 (t)dt, −∞ < t < +∞, (9.1)

dz+(t) = u+
2 (t)γ+(t)χ+

1 (t)dt, −∞ < t < +∞. (9.2)

Obviously, the functions (9.1) and (9.2) satisfy the boundary conditions
(2.4)–(2.5).
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Integrating the equalities (9.1)–(9.2) in the intervals (−∞, t), (ej , t), j =
1, 2, . . . , n, we obtain

ω+(t) =

t∫

−∞
u+

1 (t)γ+(t)χ+
1 (t)dt + ω+(−∞), −∞ < t < e1, (9.3)

z+(t) =

t∫

−∞
u+

2 (t)γ+(t)χ+
1 (t)dt + z+(−∞), −∞ < t < e1, (9.4)

ω+(t)=

t∫

ej

u+
1 (t)γ+(t)χ+

1 (t)dt+ω+
j (ej), j =1, 2, . . . , n, ej <t<ej+1; (9.5)

z+(t)=

t∫

ej

u+
2 (t)γ+(t)χ+

1 (t)dt+z+
j (ej), j =1, 2, . . . , n, ej <t<ej+1, (9.6)

where ω+(−∞), z+(−∞), ω+(ej), z+(ej) are the right limits of the corre-
sponding functions at the points −∞, ej , j = 1, 2, . . . , n.

It is also evident that the functions ω+(t), z+(t) defined by (9.3)–(9.6)
satisfy the boundary conditions (2.1)–(2.2).

In (9.3)–(9.6) we can separate the real and the imaginary parts and obtain
the expression for the functions ϕ(t), ψ(t), x(t), y(t).

Moreover, taking t = e1 in (9.3)–(9.4) and t = ej+1 in (9.5) and (9.6),
we get

ω+(e1) =

e1∫

−∞
u+

1 (t)γ+(t)χ+(t)dt + ω+(−∞), (9.7)

z+(e1) =

e1∫

−∞
u+

1 (t)γ+(t)χ+
1 (t)dt + z+(−∞), (9.8)

ω+(ej+1) =

ej+1∫

ej

u+
1 (t)γ+(t)χ+

1 (t)dt + ω+(ej), j = 1, 2, . . . , n, (9.9)

z+(ej+1) =

ej+1∫

ej

u+
2 (t)γ+(t)χ+

1 (t)dt + z+(ej), j = 1, 2, . . . , n, (9.10)

where ω+(ej+1), z+(ej+1) are the left limits of the functions ω+(t), z+(t)
at the point t = ej+1.
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In (9.3)–(9.6) the integrands are supposed to be integrable at the left
ends of the intervals. If it is not the case, then we can take as the lower
limits either the right end or an interior point of the corresponding interval.

For the unknown parameters aj , cj appearing in (3.6), we have obtained
a system of higher transcendental equations, e.g., the equation (7.24). As
to the parameters t = ej not coinciding with the parameters t = aj and
which functions γ(ζ) and χ1(ζ) depend on, and the parameter Q connected
with the discharge of the fluid, we have obtained the system (9.7)–(9.10) for
their determination.

Having found all the unknown parameters which the functions u+
1 (t),

u+
2 (t), γ+(t), χ+

1 (t) depend on, by (9.3)–(9.6) we can determine the equa-
tions of the unknown parts of the boundary of the domains s(z), s(ω), s(w)
as well as other geometric and mechanical parameters of the fluid flow.
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Chapter III

Connection Between the Solutions of the

Schwarz Nonlinear Differential Equation And
Those of the Plane Problems of Filtration

Abstract. Using linearly independent solutions of the Fuchs class linear
differential equation which contains a term with the first order derivative
of the unknown function, we propose effective methods for solving both the
Schwarz nonlinear equation, whose right-hand side is a doubled invariant
of the Fuchs class linear differential equation, and the plane problems of
filtration with partially unknown boundaries. The modulus of the difference
of the characteristic numbers of the Fuchs class linear differential equation
for every singular point is equal to the corresponding (divided by π) angle
at the vertex of a circular polygon. For the first time it is shown that
the coefficients at the poles of second order of the doubled invariant of the
Fuchs class linear differential equation and those on the right-hand side of
the Schwarz equation coincide completely.

Relying on the property mentioned above, we suggest simpler methods
of solving the problems of the theory of stationary motion of incompressible
liquid in a porous medium with partially unknown boundaries than those
described by us earlier for the solution of the same problems.

1. On the Connection Between Solutions of the Fuchs Class
Linear Differential Equation of General Type and the

Nonlinear Schwarz Differential Equation

The filtration theory uses analytic function w(z) = u − iv, z = x + iy,
where w(z) the is complex velocity, and u and (−v) are its components
satisfying the Cauchy-Riemann conditions [1–6].

Let on the plane w = u−iv be given a simply connected domain s(w) with
the boundary l(w) consisting, in a general case, of circular arcs of different
radii. Such a domain is called a circular polygon. By Ak, k = 1,m, we
denote the angular points of the boundary l(w) and by πνk, k = 1, m, the
interior angles, respectively. In the general case it can be assumed that
−2 ≤ νi ≤ 2, [1–31].

We seek for an analytic function w(ζ) which maps conformally the half-
plane Im(ζ) ≥ 0 of the plane ζ = t + iτ onto the domain s(w) with the

63
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boundary l(w). Denote by t = ak, k = 1,m, the points of the axes t = ak,
k = 1,m, of the plane ζ = t + iτ which are mapped respectively into the
points Ak, k = 1,m, where −∞ < a1 < a2 < · · · < am < +∞. The point
t = ∞ is assumed to be mapped into a nonangular point of the boundary
l(w) of s(w), which may lie between the points Am and A1, although one
can consider the case in which t = ∞ is mapped into an angular point Ak.

Using the linear-fractional transformation, we can map AmA1, the arc of
the circumference of the boundary l(w) of s(w), onto a straight line or onto
a part of a straight line, parallel to or coinciding with the real axis v = 0.

For the sake of brevity, without restriction of generality, from the very
beginning we assume that the side AmA1 of l(w) is parallel to or coincides
with the axis v = 0. Therefore the function w(ζ) can always be extended
analytically through the intervals −∞ < t < a1, am < t < +∞ to the lower
half-plane Im(ζ) < 0. Throughout the paper, it will be assumed that if
ζ ∈ Re ζ, then ζ = t.

The unknown function w(ζ) must satisfy the well-known Schwarz equa-
tion [12–17]

{w, ζ} ≡ w′′′(ζ)/w′(ζ)− 1, 5[w′′(ζ)/w′(ζ)]2 = R(ζ), (1.1)

R(ζ) =
m∑

k=1

{0, 5(1− ν2
k)(ζ − ak)−2 + ck(ζ − ak)−1}, (1.2)

where ak and ck, k = 1,m, are unknown real parameters to be defined later
on.

The extension of the function R(ζ) in the neighborhood of the point
t = ∞ in terms of the powers of 1/ζ yields

R(ζ) =
∞∑

n=1

Nnζ−n.

The coefficients Nk, k = 1, 2, 3, must satisfy the conditions

N1 =
m∑

k=1

ck = 0, N2 =
m∑

k=1

[akck + 0, 5(1− ν2
k)] = 0,

N3 =
m∑

k=1

[a2
kck + ak(1− ν2

k)] = 0,

(1.3)

because the point ζ = ∞ is the image of a nonangular point of the boundary
l(w) [12–16].

According to the Riemann theorem, three of the parameters t = ak,
k = 1,m, can be chosen arbitrarily and fixed. From the system of equations
(1.3), the parameters c1, c2 and c3 in the system of equations (1.3) can be
expressed in terms of the remaining ak and ck. Consequently, the number
of unknown parameters ak and ck is equal to 2(m− 3).
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By substitution w′(ζ) = 1/[u(ζ)]2, the equation (1.1) can be reduced to
the linear Fuchs class equation

u′′(ζ) + 0, 5R(ζ)u(ζ) = 0. (1.4)

By means of linearly independent particular solutions of (1.4), u1(ζ) and
u2(ζ) with the Wronskian u1(ζ)u′2(ζ) − u2(ζ)u′1(ζ) = 1, we can construct
the general solution of (1.1) as follows:

w(ζ) = [Au1(ζ) + Bu2(ζ)]/[Cu1(ζ) + Du2(ζ)], (1.5)

where A, B, C, D with AD − BC = 1 are the integration constants of the
equation (1.1).

The general solution (1.5) of the equation (1.1), along with the 2(m− 3)
essential parameters ak, ck, k = 1,m, depends in the general case on three
unknown complex parameters A, B, C, D with AD − BC = 1, i.e. on six
real parameters. Thus the number of unknown parameters is equal to 2m.

The equation of the boundary l(w) of s(w) can be written as

w(ζ) = [w(ζ)B0 + iD0]/[−iA0w(ζ) + B0], ζ ∈ l(w), (1.6)

where w = u − iv, w = u + iv, B0 = (C∗0 + iB∗
0)/2, B0 = (C∗0 − iB∗

0)/2,
A0, B∗

0 , C∗0 , and D0 are the given real piecewise constant functions which,
without restriction of generality, satisfy the condition B0B0 −A0D0 = 1.

The coordinates of the centers (u0, v0) and the radii of the circumferences
(1.6) can be determined as follows:

u0 = −B∗
0/[2A0], V0 = −C∗0/[2A0],

R0 =
√

[(B∗
0)2 + (C∗0 )2 − 4A0D0]/A2

0.
(1.7)

Suppose that we have constructed linearly independent solutions u∗1 and
u∗2(ζ) with the Wronskian u∗1(ζ)(u∗2(ζ))′ − (u∗1(ζ))′u∗2(ζ) = 1. Then w(ζ) =
u∗1(ζ)/u∗2(ζ),

u∗1(ζ)/u∗2(ζ) = [B0u∗1(ζ) + iD0u∗2(ζ)]/[−iA0u∗1(ζ) + B0u∗2(ζ)]. (1.8)

The methods of constructing w(ζ) in the general case were described in
our works [25–31].

The differentiation of (1.8) yields

1/[u∗2(ζ)]2 = 1/[−iA0u∗1(ζ) + B0u∗2(ζ)]2. (1.9)

The equalities (1.6)–(1.9) imply that

u∗1(ζ) = ±[B0u∗1(ζ)+ iD0u∗2(ζ)], u∗2(ζ) = ±[−iA0u∗1(ζ)+B0u∗2(ζ)]. (1.10)

In [24], we have proved the equality (1.10) in somewhat different way.
The signs + and − are fixed uniquely by means of the boundary conditions.

Let us consider the Fuchs class second order differential equation [14–16]

v′′(ζ) + p(ζ)v′(ζ) + q(ζ)v(ζ) = 0, (1.11)
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where

p(ζ) =
m∑

j=1

[1− (α1j + α2i)](ζ − ai)−1,

q(ζ) =
m∑

j=1

[α1jα2i(ζ − aj)−2 + c∗j (ζ − aj)−1].

(1.12)

For the points t = aj , j = 1,m, t = ∞ to be regular singular points, it
is necessary and sufficient that p(ζ) and q(ζ) have the form (1.12) and the
parameters c∗j , j = 1, m, satisfy the condition [11–20]

M1 =
m∑

k=1

c∗k = 0. (1.13)

Suppose that the parameters aj , αkj , c∗j , k = 1, 2, j = 1,m, are real and
t = aj , j = 1,m, are the same as in (1.2). Using the linearly independent
particular solutions (1.1) v1(ζ) and v2(ζ), we construct the general solution
of the Schwarz equation

w(ζ) = [A1w1(ζ) + B1]/[C1w1(ζ) + D1], (1.14)

where w1(ζ) = v1(ζ)/v2(ζ) is a particular solution of the Schwarz equation
with the right-hand side equal to

{w, ζ} = 2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2, (1.15)

and A1, B1, C1, D1, A1D1 − B1C1 6= 0 are the integration constants of
(1.14).

The Wronskian for (1.11) has the form

v1j(ζ)v′2j(ζ)− v′1j(ζ)v2j(ζ) = c∗j
m∏

j=1

(ζ − aj)α1j+α2j−1. (1.16)

In [14, p. 300] it is stated that to reduce the right-hand side of (1.15)
to the function R(ζ) appearing in (1.2), we have to choose two functions
p(ζ) and q(ζ) which make the problem indeterminate. In [14], the author
considers the linear second order equation of general type. But if one takes
(1.11), where α1j , α2j , j = 1, (m + 1), satisfy the conditions

α1j − α2j =νi, j =1,m, α1(m+1) − α2(m+1) =1, t=am+1 =∞,

α1(m+1) = 3, α2(m+1) = 2,

m∑

k=1

[1− (α1j + α2i)] = 6,
(1.17)

then the right-hand side of (1.15) is, as it can be directly verified, represented
in the form

{w, ζ} = 2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2 =
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=
m∑

j=1

{0, 5[1− (α1i − α2i)2](ζ − aj)−2 + c∗∗j (ζ − aj)−1}, (1.18)

where

c∗∗j =2c∗j −βj

m∑

k=1,k 6=j

βk(aj−ak)−1, βk =1− (α1k +α2k), k=1,m. (1.19)

Since α1j −α2j = νi, j = 1,m, the coefficients at (ζ − aj)−2 in (1.2) and
(1.18) coincide.

The expansion of the function 2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2 in the neighbor-
hood of the point ζ = ∞ into the series with respect to the powers 1/ζ
results in

2q(ζ)− p′(ζ)− 0, 5[p(ζ)]2 =
m∑

k=1

M∗
k ζ−k. (1.20)

The point ζ = ∞ is not a branching point of (1.11), therefore the condi-
tions

M∗
1 ≡

m∑

j=1

c∗∗j = 0, M∗
2 =

m∑

k=1

[akc∗∗k + 0, 5(1− ν2
k)] = 0,

M∗
3 =

m∑

k=1

[a2
kc∗∗k + ak(1− ν2

k)] = 0

(1.21)

must be fulfilled.
The condition M∗

1 = 0 coincides with (1.13). Below we will see that the
last two equations of (1.21) can be obtained in somewhat different, natural
way.

As is known, an equation of the type (1.11) can be reduced to that of
the type (1.4). The expression q(ζ) − 0, 5p(ζ) − 0, 25[p(ζ)]2 is, in a certain
sense, an invariant of (1.4) [23, p. 243]. Indeed, using the substitution
v(ζ) = exp[−0, 5

∫
p(ζ)dζ]v0(ζ) [23], we reduce the equation (1.11) to the

type

v′′0 (ζ) + (q(ζ)− 0, 25p2(ζ)− 0, 5p′(ζ))v0(ζ) = 0. (1.22)

If the characteristics α1j , α2j , j = 1,m, of the equation (1.11) satisfy
the conditions α1j + α2j = 1, j = 1,m, then p′(ζ) = 0, p(ζ) = 0 and hence
R(ζ) = 2q(ζ), 2c∗j = cj , j = 1,m.

The parameters α1j and α2j in the case of the equation (1.1) are defined
by the equalities α1j = 0, 5(1 + νj), α2j = 0, 5(1 − νj), α1j + α2j = 1,
α1j − α2j = νj , j = 1,m.

In (1.6) there take place indeterminate constants c∗j , j = 1,m, which
can be defined by the equality (1.16).



68 A. Tsitskishvili

Indeed, if we divide both sides of the equality (1.16), by (ζ−aj)α1j+α2j−1

and then pass to the limit ζ → aj , we will get a system of equations for
determination of c∗j , j = 1,m.

Note here that the equalities (1.10) can be generalized even in the case
where α1j + α2j 6= 1.

2. Solution of Plane with Partially Unknown Boundaries
Problems of Filtration

Consider some plane problems of the theory of stationary motion of in-
compressible liquid in a porous medium subjected to the Darcy law. The
porous medium is assumed to be undeformable, isotropic and homogeneous
[1–7].

The plane of the liquid motion coincides with the plane of the complex
variable z = x+ iy. In the domain s(z) with the boundary l(z) we seek for a
complex potential w(z) = ϕ(x, y) + iψ(x, y), where ϕ(x, y) and ψ(x, y) are,
respectively, the velocity potential and the stream function which satisfies
the boundary conditions given below. The functions ϕ(x, y) and ψ(x, y)
are connected by means of the Cauchy-Riemann conditions. If the analytic
function ω(z) is found, then due to the dependencies [1–7]

ϕ(x, y) = −k(p/γ + y) + c, w(z) = u− iv,

u =
∂ϕ

∂x
=

∂ψ

∂y
, v =

∂ϕ

∂y
= −∂ψ

∂x
,

(2.1)

where p is the hydrodynamic pressure, γ is the specific weight of the liquid,
u and v are the vector components of filtration velocity, ω′(z) ≡ w(z) is the
complex velocity, k is the coefficient of filtration, and c is an arbitrary con-
stant, all the characteristics of the filtration stream can be found, namely:
filtration velocity, pressure head, pressure, liquid discharge for filtration and
unknown parts of the boundary l(z) of s(z) [1–7; 24–31]. Below we shall
consider the reduced complex potential ω(z), the complex potential divided
by the coefficient of filtration. Next we assume that the boundary l(z)
of s(z) is a simple, piecewise analytic contour consisting of a finite num-
ber of unknown depression curves, segments of straight lines, half-lines and
straight lines. The domains s(z), ω(z) and w(z) = ω′(z) may be bounded
or unbounded. In particular, if the boundary l(z) has no depression curves,
then the domain s(z) turns into a linear polygon.

In the domain s(z) we have to find an analytic function ω(z) = ϕ(x, y)+
iψ(x, y) which must satisfy the boundary conditions [1–7]

ak1ϕ(x, y)+ ak2ψ(x, y)+ ak3x+ ak4y = fk, k = 1, 2, (x, y) ∈ l(z), (2.2)

where akj , fk, j = 1, 4, are the given piecewise constant real functions.
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Before we proceed to the solution of the basic problem of filtration, we
can determine the boundary l(w) of the domains s(w) and also a part of
the boundary l(ω) of s(ω) [1–7].

Using the functions ω(z) and ω′(z) = dω(z)/dz, the domain s(z) with
the boundary l(z) is mapped conformally respectively onto the domain s(ω)
and s(w) with the boundaries l(ω) and l(w), where the domain s(w) is a
circular polygon with the boundary l(w) consisting of a finite number of
circular arcs, segments of straight lines, half-lines and straight lines.

If we take arbitrarily any part of the boundary l(z) of s(z) and differenti-
ate (2.2) along that part of the boundary l(z) with respect to the parameter
s, where s is the arc length of the curve, we get

(a11u− a12v + a13) cos(x, s) + (a11v + a12u + a14) cos(y, s) = 0, (2.3)

(a21u− a22v + a23) cos(x, s) + (a21v + a22u + a24) cos(y, s) = 0, (2.4)

where dx/ds = cos(x, s) and dy/ds = cos(y, s).
For the system (2.3) and (2.4) to have a nontrivial solution with respect

to dx/ds and dy/ds, it is necessary and sufficient that the determinant of
the system at the given part of the boundary be equal to zero,

A11(u2 + v2) + A12u + A13v + A14 = 0. (2.5)

The coefficients akj , k = 1, 2, j = 1, 4, are given by (2.2), and therefore
the coefficients A11, A12, A13, and A14 are fixed.

The equation (2.5) can be written in a complex form

w =
[
Bw + i2A14

][− 2iA11w + B
]−1

, (2.6)

where w = u− iv, w = u + iv, B = A13 + iA12, B = A13 − iA12,

A11 = a11a22 − a21a12, A12 = a11a24 − a21a14 + a13a22 − a23a12,

A13 = a14a22 − a24a12 + a13a21 − a23a11, A14 = a13a24 − a23a14. (2.7)

The coordinates (u∗, v∗) of the center and the radius R∗ of the circum-
ference (2.5) for the chosen by us part of the boundary l(w) are defined as
follows:

u∗ = −A12/[2A11], v∗ = −A13/[2A11],

R∗ =
1
2

√
[A12/A11]2 + [A13/A11]2 − 4A14/A11.

(2.8)

We can require the condition BB − 4A11A14 6= 0, and not the condition
BB − 4A11A14 = 1 because the parameters akj , k = 1, 2, j = 1, 4, are fixed
by the condition (2.2).

To solve the problems of filtration, one usually introduces the plane
ζ = t + iτ and maps conformally the half-plane Im(ζ) > 0 onto the do-
mains s(z), s(ω) and s(w). We denote the conformally mapping functions
respectively by z(ζ), ω(ζ) and w(ζ) = ω′(ζ)/z′(ζ), where dω(ζ)/dζ = ω′(ζ)
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and dz(ζ)/dζ = z′(ζ). Bk, k = 1, n, denote angular points of the boundary
l(z), l(ω) and l(w) of the domains s(z), s(ω) and s(w) which will be met
at least on one of the above-mentioned boundaries l(z), l(ω) and l(w), as a
result of a circuit in the positive direction. By t = ek, k = 1, n, we denote
the points of the t-axis of the plane ζ which are mapped, respectively, into
the points Bk, k = 1, n, where −∞ < e1 < e2 < · · · < en < +∞. The point
t = en+1 = ∞ is mapped into the nonangular point which lies on some part
of the boundary BnB1.

The boundary values of the functions z(ζ), ω(ζ) and w(ζ), as ζ → t,
ζ ∈ Im(ζ) > 0 will be denoted by z(t) = x(t) + iy(t), ω(t) = ϕ(t) + iψ(t),
w(t) = u(t)− iv(t), while the complex conjugates to the functions z(t), ω(t)
and w(t) will be denoted by z(t), ω(t), and w(t).

Introduce the vectors Φ(ζ) = [ω(ζ), z(ζ)], Φ(ζ) = [ω(t), z(t)], Φ′(ζ) =
[ω′(ζ), z′(ζ)], Φ′(ζ) = [ω′(ζ), z′(ζ)], f(t) = [f1(t), f2(t)]. Then the boundary
conditions (2.2) can be written as follows:

(ak2 + iak1)ω(t) + (ak4 + iak3)z(t) = (ak2 − iak1)ω(t)+

+(ak4 − iak3)z(t) + 2ifk(t), −∞ < t < +∞, k = 1, 2. (2.9)

The condition (2.9) can by means of the vector Φ(z) be rewritten as

Φ(t) = g(t)Φ(t) + 2iG−1f(t), −∞ < t < +∞, (2.10)

where g(t) = G−1(t)G(t) is a piecewise constant nonsingular second order
matrix with the discontinuity points t = ek, k = 1, n. G−1(t) is the inverse
to G(t) matrix and G(t) is the complex-conjugate to G(t) matrix.

Below, instead of akj(t), k = 1, 2, j = 1, 4 we will write akj , k = 1, 2,
j = 1, 4.

The matrices G(t) and G−1(t) are defined by the formulas

G(t) =
(

a12 + ia11, a14 + ia13

a22 + ia21, a24 + ia23

)
(2.11)

and

G−1(t) =
1

detG(t)

(
a24 + ia23, −(a14 + ia13)

−(a22 + ia21), a12 + ia11

)
. (2.12)

The matrix g(t) in the interval (aj , aj+1) is defined as

gj(t) = G−1
j Gj =

1
detGj(t)

(
A∗j11, iA∗j12

iA∗j21, A
∗j
11

)
, aj < t < aj+1, (2.13)
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but for j = n− 1 we have

A
∗(n−1)
11 = (−1)(An−1

13 + iAn−1
12 ),

A
∗(n−1)
12 = (−2)A(n−1)

14 , A
∗(n−1)
21 =2A

(n−1)
11 ,

A
∗(n−1)
11 = a24a12 + a23a11 − a14a22 − a13a21+

+ i(a23a12 − a24a11 + a21a14 − a13a22).

(2.14)

The function A
∗(n−1)

11 is the complex-conjugate to A
∗(n−1)
11 .

Differentiation of (2.10) yields

Φ′(t) = g(t)Φ
′
(t), −∞ < t < +∞. (2.15)

It can be easily verified that the equality g(t) = [g(t)]−1 = G
−1

G holds,
where [g(t)]−1 is the matrix, inverse to g(t), and g(t) is the matrix, complex-
conjugate to g(t).

For the point t = ej we compose the characteristic equation

det(g−1
j+1(ei + 0)gj(ej − 0)− λE) = 0, (2.16)

where g−1
j+1(ej + 0)gj(ej − 0) is a matrix, E is the unit matrix, λ is the pa-

rameter, and gj(ej +0), gj−1(ej−0) are the limiting values of matrices gj(t),
gj−1(y) at the point t = ej from the right and from the left, respectively;
g−1

j (ej + 0) is the inverse to gj(ej + 0) matrix.
If we denote by λkn the characteristic numbers of the matrix g(n−1)(t),

then the equalities

λ1n + λ2n =[A∗(n−1)
11 + A

∗(n−1)

11 ]/[2 det Gn−1],

λ1n · λ2n =det Gn−1/ detGn−1,

|λ1n||λ2n| = 1, | det g(t)| = 1, λ1n · λ2n = 1/[λ1n · λ2n],

1/λ1n + 1/λ2n = λ1n + λ2n, λ1n + λ2n = λ1nλ2n(λ1n + λ2n)

hold [1-31].
Let us introduce the characteristic numbers αkn = 1

2πi ln λkn, k = 1, 2.
Then α1n + α2n = α0j , where α0j = 1

2πi arg det(Gj/Gj),

α1n − α2n =
1

2πi
ln(λ1n/λ2n) = νn, (2.17)

where πνn is the interior angle of the contour l(w) of s(w) at the point An.
The roots λkn, k = 1, 2, for the point t = en are calculated by the formula

[1–7]

λkn = [A∗(n−1)
11 + A

∗n
11±

±i

√
4 det Gn detGn − (A∗n11 + A

∗n
11 )2]/[2 det Gn], k = 1, 2. (2.18)
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For the points t = ej , j = 1, 2, . . . , n− 1, we have

g−1
j+1(aj + 0)gj(ej − 0) = G

−1

j+1Gj+1G
−1
j Gj ,

g−1
j+1(aj + 0)gj(ej − 0) =

=
1

det Gj+1

· 1
det Gj

(
A
∗(j+1)

11 , −iA
∗(j+1)
12

−iA
∗(j+1)
21 , A

∗(j+1)
11

)(
A
∗j)
11 , iA

∗j)
12

iA∗j21, A
∗j
11

)
, (2.19)

λ1j + λ2j = [A
∗(j+1)

11 A∗j11 + A
∗(j+1)
12 A∗j21+

+ A
∗(j+1)
21 A∗j12 + A

∗(j+1)
11 A

∗j
11]/[det Gj+1 det Gj ], (2.20)

λ1jλ2j = det Gj+1 detGj/[det Gj+1 detGj ]. (2.21)

Using (2.19), (2.20) and (2.21), we can calculate

λ1j/λ2j , α1j , α2j , α1j + α2j = α∗0j , α1j − α2j = νj , (2.22)

α∗0j =
1
π

[α0(j+1) − α0j ], detGj = R0exp(iα0j).

The characteristic numbers αkj , k = 1, 2, j = 1, (n + 1), must satisfy the
Fuchs condition [1–31]

n+1∑

j=1

[1− (α1j + α2j)] = 2,

α1(n+1) = 3, α2(n+1) = 2, t∞ = an+1 = ∞.

(2.23)

The equality α1j +α2j = 1, j = 1, n, under the condition (2.5) may fail to
be fulfilled, and hence we are unable to apply the equation (1.4) and solve
the equation (2.15). As it will be seen below, to solve (2.15) completely it
suffices to use the linearly independent solutions (1.11).

Of all singular angular points of the boundaries l(z) and l(ω), we select
such angular points to which on the boundary l(w) of s(w) there correspond
regular nonangular points. Such angular points on the boundaries l(z) and
l(ω) are usually called removable singular points [1–7]. For the sake of sim-
plicity, we assume that the number of removable singular points is equal to
two. Denote these points by t = ek and t = ek+j . The angles corresponding
to such points on the contours l(z) and l(ω) are equal to π/2. To remove
those singular points from the boundary conditions (2.15), we introduce the
new unknown vector Φ1(ζ) by the formula

Φ′(ζ) = Φ1(ζ)

√
(ζ − ek−1)(ζ − ek+j−1)

(ζ − ek)(ζ − ek+j)
,

√
(ζ − ek−1)(ζ − ek+i−1)

(ζ − ek)(ζ − ek+j)
> 0, ζ > ek+j .

(2.24)
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When passing from the vector Φ(ζ) to Φ1(ζ), the matrix g(t) in the
interval (ek−1, ek), (ek+j−1, ek+j) is multiplied by (−1).

We enumerate the remaining singular points along the t-axis as t = ak,
k = 1,m. To these points there correspond the points Ak, k = 1,m, on the
contour l(w). In what follows, the notation for the matrices g(t) = G−1G
will remain unchanged, but all the changes occurring while introducing
Φ1(ζ), will be taken into account.

If one or several elements in the matrix g(t) are equal to zero, and more-
over, det g(t) 6= 0, then the problem (2.10) is solved completely by means
of the Cauchy type integral [1–31]. Besides the above-mentioned one, we
come across the cases where all the elements in the matrix g(t) are different
from zero and then the problem (2.10) is solved by elementary means [16,
26].

The boundary condition with respect to Φ1(ζ) can be written as

Φ1(t) = g(t)Φ1(t), −∞ < t < +∞. (2.25)

To solve the problem (2.25), we first find all the roots λkj , k = 1, 2,
j = 1,m + 1, from (2.16) and then, taking into account (2.23), we find αki,
k = 1, 2, j = 1,m + 1 [1,7]. Having found the above-mentioned quantities,
we substitute αkj , k = 1, 2, j = 1,m into (1.11).

All the equations and formulas (1.11)–(1.16) remain valid and will be
used later on for solving (2.10), (2.15) and (2.25).

3. The Fuchs Class Equation in the Form of a System

The equation (1.11) in the neighborhood of every singular point t = ak,
k = 1,m + 1, and in the neighborhood of any regular point, where p(ζ) and
q(ζ) are analytic, has two linearly independent local solutions which are
constructed by means of infinite series whose coefficients are defined in the
well-known manner. These series converge respectively in the circles with
centers at the points for which these series have been constructed, and the
convergence radii of the series are bounded by the distance from the centers
of the given circles to the nearest to the centers singular points.

We denote the local linearly independent solutions of the equation (1.11)
for singular points ζ = ak, k = 1, 2, . . . , m + 1, by vkj(ζ), j = 1, (m + 1),
and for t = a∗j = (aj + aj+1)/2, j = 1, 2, . . . ,m − 1, by σkj(ζ), k = 1, 2,
j = 1, 2, . . . ,m− 1.

Suppose

u1(ζ) = pu1j(ζ) + qu2j(ζ), u2(ζ) = ru1j(ζ) + su2j(ζ), (3.1)

where p, q, r, s are the integration constants of (1.15).
The equation (1.11) can be written in the form of the system

χ′1(ζ) = χ1(ζ)P(ζ), (3.2)
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χ1(ζ) =
(

u1(ζ), u′1(ζ)
u2(ζ), u′2(ζ)

)
,P(ζ) =

(
0, −q(ζ)
1, −p(ζ)

)
, (3.3)

where u1(ζ) and u2(ζ) are linearly independent solutions of (1.11).
A solution of the boundary value problem (2.25) will be sought by means

of the matrix χ1(ζ). It is known that if the matrix χ1(ζ) is a solution of
(3.2), then the matrix Tχ1(ζ) is also the solution of (3.2), where

T =
(

p, q
r, s

)
, detT 6= 0. (3.4)

If we construct the local linearly independent solutions ukj(ζ) and σkj(ζ)
of (1.11), for the points ζ = aj , j = 1,m + 1, ζ = a∗j = (aj + aj+1)/2,
j = 1,m− 1, respectively, then the local fundamental matrices for (3.2)
will have the form

Θj(ζ) =
(

u1j(ζ), u′1j(ζ)
u2j(ζ), u′2j(ζ)

)
, j = 1,m + 1, (3.5)

σj(ζ) =
(

σ1j(ζ), σ′1j(ζ)
σ2j(ζ), σ′2j(ζ)

)
, j = 1,m− 1. (3.6)

Suppose that the inequality |am| > |a1| holds. Then at the point a∗m =
−|am| we construct the local series σ∗k(ζ), k = 1, 2, and the corresponding
local matrix σ∗j(ζ). The convergence radii of these series are bounded by
the distance from the point t = am to the singular point t = a1, and if
|a1| > |am|, then we construct at the point a∗1 = |a1| the local series σ∗k(ζ),
k = 1, 2, and the matrix σ∗(ζ). The convergence radius of these series will
be bounded by the distance from the point a∗1 to the point t = am.

It becomes evident that there exists a finite number of circles with centers
ζ = aj , j = 1,m + 1, ζ = a∗j = (aj + aj+1)/2, j = 1,m− 1, ζ = a∗m (or
ζ = a∗1) which cover completely the x-axis, −∞ < t < +∞. Note that
the circle with the center ζ = ∞ is assumed to be the exterior of the circle
|ζ| < r0, where r0 is equal to the largest (in absolute value) of the numbers
a1 and am .

The equation (1.11) in the neighborhood of ζ = aj can be written as

(ζ − aj)2v′′(ζ) + (ζ − aj)pj(ζ)v′(ζ) + qj(ζ)v(ζ) = 0, (3.7)

where

pj(ζ) = p0j +
∞∑

n=1

pnj(ζ − aj)n,

pnj = (−1)n−1
m∑

k=1,k 6=j

[1− α1k − α2k](aj − ak)n,

(3.8)
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p0j = 1− α1j − α2j ,

qj(ζ) = α1jα2j + c∗j (ζ − aj) +
∞∑

n=2

qnj(ζ − aj)n,
(3.9)

qnj = (−1)n−2
m∑

k=1,k 6=j

[α1kα2k(n− 1) + c∗k(aj − ak)](aj − ak)−n, (3.10)

n = 2, 3, . . .

q0j = α1jα2j , q1j = c∗j , j = 1,m. (3.11)

The local solutions of (3.7) for the point t = aj , j = 1,m, will be sought
in the form

uj(ζ) = (ζ − aj)αj ũj(ζ), ũj(ζ) = 1 +
∞∑

n=1

γnj(ζ − aj)n. (3.12)

For definition of the coefficients γnj , n = 1,∞, j = 1,m, we have the
following recursion formulas:

f0j(αj) = αj(αj − 1) + p0jαj + q0j = 0, (3.13)

γ1jf0(αj + 1) + f1(γj) = 0, (3.14)

γ2jf0(αj+2) + γ1jf1(αj + 1) + f2(αj) = 0, (3.15)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γnjf0(αj + n) + γ(n−1)jf1(αj + n− 1)+

+ γ(n−2)jf2(αj + n− 2) + · · ·+ γ1jf(n−1)(αj + 1) + fn(αj) = 0, (3.16)

where
fn(αj) = αjpnj + qnj . (3.17)

The defining equation (3.13) for every point t = aj , j = 1,m, has two
roots, α1j and α2j . If the difference α1j − α2j is not an integer, then using
the formulas (3.14)–(3.16), we can construct for every point t = aj two
linearly independent solutions

ukj(ζ) = (ζ − aj)αkj ũkj(ζ), ũkj = 1 +
∞∑

n=1

γk
nj(ζ − aj)n, k = 1, 2. (3.18)

But if the difference α1j − α2j is an integer, then u1j(ζ), j = 1,m,
can be constructed by the formulas (3.14)–(3.16), while if u2j(ζ) involves a
logarithmic term, u2j(ζ) can be constructed with the help of the Frobenius
method [15, 27-31].

Let us pass now to the construction of u2j(ζ) when the difference α1j −
α2j = 2 and u2j(ζ) does not involve a logarithmic term. For such a point
t = aj , on the contour l(w) there is a cut (circular or linear) with the
angle 2π. P. Ya. Polubarinova-Kochina has proved [2] that u2j(ζ) does not
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contain a logarithmic term. She also obtained the equation connecting the
parameters aj , c∗j [1-7, 25-31]. To construct u2j(ζ), we will act as follows
[25-31].

For the point t = ak, the equality (3.15) fails to be fulfilled because

f0j(αj + 2) = 0 (3.19)

as αj → α2j .
In order for the equality (3.15) to take place as αj → α2j , it is necessary

and sufficient that the condition

γ1jfj(αj + 1) + f2(αj) = 0, αj → α2j (3.20)

be fulfilled.
After certain transformations, the equation (3.20) takes the form

q2j + q2
1j + q1jp1j = 0. (3.21)

Note that for the cut end t=aj with the angle 2π the equality dw(ζ)/dζ =
0 holds for t = aj , where w(ζ) is the general solution of (1.1) or (1.18).

To construct u2j(ζ) for the cut end, it suffices to calculate γ2
2j(α2j)

uniquely; the remaining coefficients γ2
nj(α2j), n = 1, 3, 4, 5, . . . , can be cal-

culated by the formula (3.16). Under the conditions (3.19) and (3.20) the
equation (3.15) is fulfilled.

To define γ2
2j(α2j) and, consequently, u2j(ζ) uniquely, we suppose that

αj 6= α2j . Then (1.5) implies that

γ2j(αj) = −[γ1j(αj)f1j(αj + 1) + f2j(αj)]/f0j(αj + 2). (3.22)

The numerator and denominator on the right-hand side of (3.22) van-
ish as αj → α2j , and hence there is an indeterminacy. Developing this
indeterminacy by the L’Hospital rule, we obtain

γ2
2j = −0, 5[p1j(p1j + 2q1j) + p2j ]. (3.23)

Thus γ2
2j , and hence u2j(ζ), are defined uniquely.

Let us proceed now to the determination of local solutions in the neigh-
borhood of the point ζ = am+1 = ∞.

We Represent p(ζ) and q(ζ) in the neighborhood of ζ = ∞ as follows:

p(ζ) = ζ−1
∞∑

n=0

pn∞ζ−n, q(ζ) = ζ−2
∞∑

n=0

qn∞ζ−n, (3.24)

where

pn∞ =
m∑

k=1

[1− (α1k + α2k)]an
k , p0∞ = 6, (3.25)

qn∞ =
m∑

k=1

[α1kα2k(n + 1) + c∗kak]an
k , (3.26)
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q0∞ =
m∑

k=1

[α1kα2k + c∗kak], (3.27)

q1∞ =
m∑

k=1

[2α1kα2kak + c∗ka2
k]. (3.28)

The local solutions in the neighborhood of the point t = ∞ will be sought
in the form

u∞(ζ) = ζ−α∞ +
∞∑

n=1

γn∞ζ−α∞−n. (3.29)

For definition of γn∞, n = 1,∞, we have the formulas

f0∞(α∞) = α∞(α∞ + 1)− p0∞α∞ + q0∞ = 0, (3.30)

γ1∞f0∞(α∞ + 1)− p1∞ + q1∞ = 0, (3.31)

γ2∞f0∞(α∞ + 2) + γ1∞f1∞(α∞ + 1)− p2∞α∞ + q2∞ = 0, (3.32)
. . . . . . . . . . . . . . . . . . . . . . . .

γn∞f0∞(α∞ + n) + γ(n−1)∞f1∞(α∞ + n− 1)+

+ γ(n−2)∞f2∞(α∞ + n− 2) + · · ·+ γ1∞f(n−1)(α∞ + 1)−
− pn∞α∞ + qn∞ = 0, (3.33)

where
fk∞ = qk∞ − (α∞ + k)pk∞. (3.34)

Owing to the fact that t = ∞ is the image of the nonangular point, the
equation (3.30) must have the roots α1∞ = 3 and α2∞ = 2, and hence the
free term q0∞ must satisfy the condition

q0∞ =
m∑

k=1

[α1kα2k + akc∗k] = 6. (3.35)

Since α1∞ − α2∞ = 1, the equality (3.31) fails to be fulfilled, therefore
the formulas (3.31)–(3.33) allow one to determine only γ′n∞, n = 1,∞,
and hence the solution u1∞(ζ). For the equality (3.31) to take place for
α∞ = α2∞, it is necessary and sufficient that the condition

q1∞ − p1∞α2∞ = 0 (3.36)

be fulfilled.
To define γ2

1∞, we act as follows: from (3.31) for α∞ 6= α2∞ we define
γ1∞ and obtain

γ1∞ = [p1∞ − q1∞]/f0∞(α∞ + 1). (3.37)
Since the numerator and the denominator in (3.37) vanish as α∞ → α2∞,

we can develop the indeterminacy in the well-known manner and get

γ2
1∞ = p1∞. (3.38)
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Next we define γ2
n∞, n = 2,∞, by the formulas (3.32)–(3.33). Thus we

have obtained the solution u2∞(ζ).
Finally, we have

uk∞(ζ) = ζ−αk∞ +
∞∑

n=1

γn
n∞ζ−α2∞−n, k = 1, 2. (3.39)

The equations (1.21) coincide respectively with the equations (1.13),
(3.35) and (3.36).

4. Local Representations of the Matrices χj(ζ), j = 1,m + 1

Of each set of branches of the functions exp[αkj ln(t− aj)] appearing in
the local solutions ukj(ζ), we choose one as follows:

exp[αkj ln(t− aj)] > 0, t > aj ,

[exp[αkj ln(t− aj)]]± = exp[±iαkj ] exp[αkj ln(aj − t)], t < aj ,

[exp[−αk∞ ln(−t)]]± > 0, −∞ < t < aj ;

[exp[−αk∞ ln t]]± = exp[±iπ(−αk∞)] exp[−αk∞ ln t], am < t < ∞.

Along with (3.5) and (3.6), we introduce the matrices

Θ∗j (t) =
(

u∗1j(t), u′∗1j(t)
u∗2j(t), u′∗2j(t)

)
, aj−1 < t < aj , (4.1)

where
u∗kj(t) = (aj − t)αkj ũkj(t),

u′kj(t) = −(aj − t)αkj−1ũ′∗kj(t), u′kj(t) = dukj(t)/dt,

ũ′∗kj(t) ≡ αkj +
∞∑

n=1

γk
nj(αkj + n)(t− aj)n.

(4.2)

Between the matrices Θj(t) and Θ∗j (t) there is the connection

Θ±j (t) = θ±j Θ∗j (t), aj−1 < t < aj , (4.3)

Θ±∞(t) = θ±∞(t)Θ∗∞(t), am < t < +∞, (4.4)

where the matrices θ±j are defined by the formula

θ± =
(

exp(±iπα1j), 0
0, exp(±iπα2j)

)
(4.5)

for α1j − α2j 6= n, while for n = 0, 1, 2 they are defined by the equality

θ±j =e±πα2j

(
1, 0
∓πi, 1

)
, n=0, 2; θ±j =e±iπα2i

(−1, 0
±πi, −1

)
, n=1. (4.6)
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For the cut end w = Aj , the matrices θ±j are defined in the following
manner. If the eigenvalues are of the type α1j = 3/2, α2j = −1/2, then
θ±j = ∓iE, where E is the unit matrix, but if α1i = 2, α2j = 0, then
θ±j = E.

The elements of the matrix Θ∗j (t) involving logarithmic terms are defined
by the formulas

u∗2j(t) = (aj − t)α2i [(t− aj)nũ1j(t) ln(aj − t) + ũ2
2i(t)], (4.7)

u′∗2i(t) = −(aj − t)α2j−1{[(aj − t)neiπnũ1
2j ln(aj − t) + ũ1j(t)]+

+ũ2
2j(t)}, n = 0, 1, 2. (4.8)

5. The Fundamental Matrix

Let us construct the matrix χ(ζ). The domains of convergence of the
matrices Θi(t) and σj(t) have always a part in common in which one can
write the equalities

Θ∗j (t)=T ∗j σj(t), σj(t)=T0jΘj−1(t), Tj−1 =T ∗j T0j , aj−1 <t<aj , (5.1)

Θ∗1(t) = T−mσ−m(t), σ−m(t) = T−∞Θ∞(t), −∞ < t < a1 (5.2)

Θ∗∞(t) = T∞Θm(t), am < t < +∞. (5.3)

Here T ∗j , T0j , T−m, Tj−1, T−∞, T∞ are constant real matrices defined by
the equalities (5.1)–(5.3). In these equalities we can fix t arbitrarily in the
domain where the two local matrices, appearing in the above-mentioned
equalities, converge.

Define the matrix χ1(ζ) along the t-axis of the plane ζ as

χ±1 (t) = TΘ±m(t), Θ+
m(t) = Θ−m(t), am < t < +∞, (5.4)

χ±1 (t) = Tθ±mΘ∗m(t), am−1 < t < am; (5.5)

χ±1 (t) = Tθ±mTm−1Θ±m−1(t), Tm−1 = T ∗mT0m, am−1 < t < am; (5.6)

χ±1 (t) = Tθ±mTm−1θ
±
m−1Θ

∗
m−1(t), am−2 < t < am−1; (5.7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ±1 (t) = Tθ±mTm−1 . . . T1θ
±
1 Θ∗1(t), −∞ < t < a1, (5.8)

χ±1 (t) = Tθ±mTm−1 . . . θ±1 T−∞Θ∞(t), −∞ < t < a1, (5.9)

χ±1 (t) = TT∞Θ±∞(t), am < t < +∞, (5.10)

where the matrix T is defined by the formula (3.4).
The upper signs (±) in the matrices (5.4)–(5.10) denote the limiting

values of the matrix χ(ζ) respectively in the upper (when ζ ∈ Im(ζ) > 0,
ζ → t) and in the lower (when ζ ∈ Im(ζ) < 0, ζ → t) half-planes. The
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limiting values of χ+(t) and of χ−(t) are connected as follows: χ−(t) =
χ+(t), where χ+(t) is the complex conjugate of the matrix χ+(t).

6. Solution of the Boundary Value Problem (2.25)

A straightforward checking shows that the matrices (5.4)–(5.10) satisfy
the equation (3.2). Therefore, by appropriate choice of the parameters aj ,
cj , j = 1,m, p, q, r, s, the same matrices must satisfy the condition (2.25).
Indeed, we start our proof with the interval (am, +∞). We have

TΘ+
m(t) = gm(t)TΘ−m(t), gm(t) = E,

Θ+
m(t) = Θ−m(t), T = T , am < t < +∞.

(6.1)

For the interval (am−1, am) in the neighborhood of A = am we obtain
the equality

Tθ+
mΘ∗m(t) = gm−1Tθ−mΘ∗m(t), am−1 < t < am. (6.2)

The expressions (6.1) and (6.2) result in the matrix equations

(θ+
m)2 = T−1G−1

m−1Gm−1T, (6.3)

from which one can see that the matrices (θ+
m)2 and G−1

m−1Gm−1 are similar.
The matrix equation (6.2) can be rewritten in the form

T

(
λ̃1(m), 0

0, λ̃2(m)

)
=

(
A
∗(m−1)
11 , iA

∗(m−1)
12

iA
∗(m−1)
21 , A

∗(m−1)

11

)
T, (6.4)

λkm = λ̃km/ detGm−1, k = 1, 2, (6.5)

which in its turn results in the system consisting of two equations

r/p=
{√

detGm−1 det Gm−1−(Re A
∗(m−1)
11 )2−ImA

∗(m−1)
11

}/
A
∗(m−1)
12 , (6.6)

and

s/q=
{
ImA

∗(m−1)
11 −

√
detGm−1 det Gm−1−(Re A

∗(m−1)
11 )2

}/
A
∗(m−1)
21 . (6.7)

Analogously to the matrix equation (6.3), we find the matrix equations
successively for the points ζ = aj , j = m− 1, m− 2, . . . , 2, 1. We have

Tθ+
mTm−1θ

+
m−1 = gm−2(t)Tθ−mTm−1θ

−
m−1, (6.8)

Tθ+
mTm−1θ

+
m−1Tm−2θ

+
m−2 = gm−3Tθ−mTm−1θ

−
m−1Tm−2θ

−
m−2, (6.9)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T θ+
mTm−1θ

+
m−1Tm−2θ

+
m−2 . . . T1θ

+
1 =

= Tθ−mTm−1θ
−
m−1Tm−2θ

−
m−2 . . . T1θ

−
1 . (6.10)
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Similarly to the system of equations (6.6) and (6.7), from the matrix
equations (6.8)–(6.10) we get two equations for every singular point.

The matrix equation (6.3) can be written as

p · exp(iπα1m) =

= A
∗(m−1)
11 p · exp(−iπα1m) + iA

∗(m−1)
12 r · exp(−iπα1m), (6.11)

r· exp(iπα1m) =

= iA
∗(m−1)
21 p · exp(−iπα1m) + A

∗(m−1)

11 r · exp(−iπα1m), (6.12)

q · exp(iπα2m) =

= A
∗(m−1)
11 q · exp(−iπα2m)+iA12∗(m−1)s · exp(−iπα2m), (6.13)

s · exp(iπα2m) =

= iA
∗(m−1)
21 q · exp(−iπα2m) + A

∗(m−1)

11 s · exp(−iπα2m). (6.14)

Dividing the corresponding parts of the equations (6.11) and (6.12),
(6.13) and (6.14), one can see that the ratios p/r, q/s in the interval
(am−1, am) satisfy the boundary condition (2.25),

p

r
=

iA
∗(m−1)
11 p/r + A

∗(m−1)
12

iA
∗(m−1)
21 p/r + iA

∗(m−1)

11

,
q

s
=

A
∗(m−1)
11 q/s + iA

∗(m−1)
12

iA
∗(m−1)
21 q/s + A

∗(m−1)

11

. (6.15)

The coordinates of the points w = Am, w = A′m also satisfy the same
condition and, consequently,

p/r = Am, q/s = A′m, (6.16)

where A′m is the second point of intersection of the two neighboring circum-
ferences.

Remind that by Ak, A′k, k = 1, 2, . . . , m, we have denoted the complex
coordinates of the angular points of the circular polygon s(w) at which two
neighboring circumferences may intersect; note that the point A′k lies more
often outside of the contour l(w).

On the plane w, if the origin coincides with the point w = Am, then
Am = 0 and A′m = ∞. Consequently, p = 0 and s = 0. It should be noted
that for the interval (am−1, am), if νm 6= 0, one can always suppose that

Gm−1 =

(
A
∗(m−1)
11 , 0

0, A
∗(m−1)

11

)
. (6.17)

Consider the matrix equation (6.8),

T∗(m−1)θ
+
m−1 = gm−2T ∗(m−1)θ

−
m−1, T∗(m−1) = Tθ+

mTm−1. (6.18)

From (6.18) we get the system of equations

p∗(m−1)/r∗(m−1) = Am−1, q∗(m−1)/s∗(m−1) = A′m−1, (6.19)
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where p∗(m−1), q∗(m−1), r∗(m−1) and s∗(m−1) are the elements of the matrix
T∗(m−1). Taking into account (6.18), the equalities (6.19) can be rewritten
as follows:

p∗pm−1 + q∗rm−1

r∗pm−1 + s∗rm−1
= Am−1,

p∗qm−1 + q∗sm−1

r∗pm−1 + s∗sm−1
= A′m−1, (6.20)

where p∗, q∗, r∗ and s∗ are the elements of the matrix T∗ = Tθ+
m.

The equalities (6.20) with regard for (6.19) can in their turn be rewritten
as

r∗pm−1Am+s∗rm−1A
′
m

r∗pm−1+s∗rm−1
=Am−1,

r∗qm−1Am+s∗sm−1A
′
m

r∗qm−1+s∗sm−1
=A′m−1.

(6.21)

After simplification, the equations (6.21) take the form

r∗pm−1(Am −Am−1) + s∗rm−1(A′m −Am−1) = 0, (6.22)

r∗qm−1(Am −A′m−1) + s∗sm−1(A′m −A′m−1) = 0. (6.23)

The condition of compatibility of (6.22) and (6.23) with respect to r∗ and
s∗ has the form

pm−1sm−1

rm−1qm−1
=

A′m −Am−1

Am −Am−1
· Am −A′m−1

A′m −A′m−1

. (6.24)

From the matrix equation (6.9) we obtain the system of equations
p∗(m−1)pm−2 + q∗(m−1)rm−2

r∗(m−1)pm−2 + s∗(m−1)rm−2
= Am−2,

p∗(m−1)qm−2 + q∗∗(m−1)sm−2

r∗(m−1)qm−2 + s∗(m−1)sm−2
= A′m−2,

(6.25)

where p∗(m−1), q∗(m−1), r∗(m−1), S∗(m−1) are the elements of the matrix

T∗(m−1) = Tθ+
mTm−1θ

+
m−1. (6.26)

After certain transformations the above system takes the form

r∗(m−1)pm−2(Am−1 −Am−2) + s∗(m−1)rm−2(A′m−1 −Am−2) = 0, (6.27)

r∗(m−1)qm−2(Am−1 −A′m−2) + s∗(m−1)sm−2(A′m−1 −A′m−2) = 0. (6.28)

The equations (6.27) and (6.28) imply

pm−2sm−2

rm−2qm−2
=

A′m−1 −Am−2

Am−1 −Am−2
· Am−1 −A′m−2

A′m−1 −A′m−2

, (6.29)

The remaining matrix equations can be investigated analogously [25-31].
The equations (6.24) and (6.29) are nothing but the invariant cross-ratios

of four points of the same circumference at which the given circumference
intersects with the two neighboring ones.
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From (6.3)–(6.10) we can get all the needed equations with respect to ak,
ck, k = 1,m, and to the integrations constants p, q, r and s.

For every point t = aj we have obtained a system of two equations which
are homogeneous with respect to the elements of the matrices Tk, k = 1, m;
their conditions of compatibility, for e.g., the points t = am and am−1, have
the form (6.24) and (6.29). The above-mentioned systems of equations have
been obtained under the assumption that α1j − α2j 6= n, n = 0, 1, 2.

Consider briefly the case where α1j − α2j = n, n = 0, 1, 2. According to
the representations (5.4)–(5.10), the unknown matrices χ+(t) and χ−(t) in
the interval (aj−1, aj) must satisfy the boundary condition

Tθ+
mTm−1θ

+
m−1Tm−2θ

+
m−2 . . . Tjθ

+
j =

= gj−1Tθ−mTm1θ
−
m−1Tm−2θ

−
m−2 . . . Tjθ

−
j , (6.30)

where

θ+
j = eiπα2j

(
1, 0
±πi, 1

)
, θ−j = θ

+

j , n = 0, 2;

θ+
j = eiπα2j

(−1, 0
−πi, 1

)
, n = 1, θ−j = θ

+

j .

It can immediately be verified that (6.30) leads to a usual system of
two equations with respect to pj , qj , rj , sj , but the condition of their
compatibility does not provide now the relations analogous to (6.24) and
(6.29).

As is mentioned above, matrix equations similar to (6.1)–(6.10) can be
obtained for all points ζ = ak, with the exclusion of the points ζ = aj to
which there correspond the cut ends of the boundary l(w) of the circular
polygon w = Aj for which νj = 2. For such points we have either the
condition (3.20) or (3.21). This allows one to obtain one equation for each
point, the second equation being obtained after determination of l(z), l(ω)
and l(w).

From the matrix representations we first define u+
1 (t) and u+

2 (t) and
then compose the ratio w+(t) = u+

1 (t)/u+
2 (t). According to (5.4)–(5.10),

the function w+(t) for the interval (aj , aj+1) can be represented as

w+(t) = [A∗ju
+
1j(t) + B∗

j u∗2j(t)]/[C∗j u+
1j + D∗

j u+
2j(t)], (6.31)

where A∗j , B∗
j , C∗j , D∗

j are defined by (5.4)–(5.10).
Calculating the limit as ζ → aj by means of (6.31), we obtain the equa-

tion
Aj = B∗

j /D∗
j . (6.32)

The corresponding equations for the other points t = ak, k = 1,m + 1,
can be obtained analogously.

Finally, for every point t = aj we obtain two real, homogeneous with
respect to pj , qj , rj and sj equations, for example, (6.6) and (6.7). From



84 A. Tsitskishvili

the condition of compatibility of homogeneous equations for νj 6= 0, 1, 2,
we obtain invariant cross-ratios for four points of one circumference, for
example, (6.24) and (6.29). In the case where νj = 0, 1, 2, the conditions
of compatibility of two equations provide certain equations which, however
are not anharmonic.

From each system of two equations we can take one equation and, in
addition, one more equation of compatibility, i.e. we take two equations for
each point ζ = aj . The number of equations is equal to 2m and the number
of unknown parameters ak, c∗k k = 1,m, p, q, r, s with ps−rq 6= 0 is 2m−3.
Consequently, the number of equations will be greater by three than that
number of unknown parameters. It should be noted here that from the
very beginning we have supposed that the linear fractional transformation
over the domain s(w) was performed with a view to have the equation
Gm = E (E is the unit matrix) on one part of the boundary l(w). Thus
the parameters p, q, r, and s turned out to be real and their number equals
to three, since ps − rq 6= 0. The above-described method of constructing
the functions w(ζ), ω(ζ) and z(ζ) and the system of equations with respect
to aj , c∗j , j = 1,m, is assumed to be much more convenient than some
other methods. One can give up transformation of the domain s(w). In
this case the parameters p, q, r and s will be complex and the number
of the unknown parameters will be equal to 2m. The appearance of three
additional equations can be explained just as in the case of linear polygons.

Having constructed the system of equations for determining ak, c∗k, p, q,
r and s, k = 1,m, we have first to establish the intervals of variation of the
parameters c∗k, k = 1,m, then to solve the system with respect to ak, c∗k,
k = 1,m and finally, to define p, q, r and s.

Remind that pj , qj , rj and sj , j = 1,m, depend implicitly, through the
coefficients of the generalized hypergeometric series, on the parameters ak,
c∗k, k = 1,m. The intervals of variation of the parameters can be established
according to [27].

As is known, the series ukj(ζ), j = 1,m + 1, k = 1, 2, converge, re-
spectively, in the neighborhood of the points ζ = aj , j = 1,m + 1, t =
am+1 = ∞ and the series σkj(ζ) in the neighborhood of the points a∗j =
(aj + aj+1)/2. The convergence radii of these series are bounded by the
distance from the given point t = aj (or from the point a∗j ) to the nearest
points ζ = aj−1, aj+1.

The series ukj(ζ), k = 1, 2, j = 1, m, are whole functions of the parame-
ters c∗j , j = 1,m, but with respect to ζ these series converge slowly, which
makes numerical calculations difficult. As n increases, the coefficients γk

nj

sometimes rapidly increase, although their multipliers (ζ−aj)n on the con-
trary rapidly decrease. Electronic computers fail to multiply γk

nj by (t−aj)n

despite the fact that the series converge. To eliminate this drawback, we
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have suggested to write the same series in the form of rapidly and uniformly
convergent functional series [28-31].

Let us consider the structure of the recurrence formulas (3.15)–(3.16),
(3.31)–(3.33). The sum of the first lower indices in the expressions γ(k−n)j ·
fnj(αj +k−n) is always equal to k, i.e., to the exponent of (t−aj)k. Instead
of the series (3.18) let us consider the function series of the type

ukj(t) = (t−aj)αkj ũkj(t−aj), ũkj(t) =
∞∑

n=0

γk
nj(t−aj), γk

0j = 1, (6.33)

where γk
nj is defined according to (3.15)–(3.16), in terms of γ1j , γ2j , . . . ,

γ(n−1)j , and the latter in their turn are defined in terms of fkj(αj), where

fkj(t− aj , αj) = αjpkj(t− aj) + qkj(t− aj) (6.34)

pnj(t− aj) = (−1)n−1
k∑

k=1,j 6=k

[1− α1k − α2k]
( t− aj

aj − ak

)n

, (6.35)

n = 1, 2, . . . ,

qnj(t−aj)=(−1)n−2
∑

k=1,k 6=j

[α1kα2k(n− 1)+c∗k(aj−ak)]
( t− aj

aj − ak

)n

, (6.36)

n = 2, 3, . . . ,
∣∣∣ t− aj

aj − ak

∣∣∣ < 1, k 6= j (6.37)

pn∞(t) =
m∑

k=1

[1− α1kα2k](ak/t)n, (6.38)

qn∞(t) =
∞∑

k=1

[α1kα2k(n + 1) + c∗kak](ak/t)n, (6.39)

n = 0, 1, 2, . . . ,

|ak/t| < 1. (6.40)

The formulas (6.34)–(6.40) show that the fundamental series (6.33) and
the series

uk∞(t) = ζ−αk∞
[
1 +

∞∑
n=1

γk
n∞(t)

]
(6.41)

converge in the domain |ζ − aj | more rapidly than the series (3.18).
The matrices χ±(t) defined by the formulas (5.1)–(5.10) satisfy the boun-

dary condition (2.25).



86 A. Tsitskishvili

7. Definition of the Functions ω(ζ) and z(ζ)

Along the real t-axis, the function w+(t) is defined by the equality

w+(t) = u+
1 (t)/u+

2 (t), −∞ < t < +∞, (7.1)

where u+
1 (t) and u+

2 (t), being the linear independent solutions of (1.11), are
defined by the formulas (5.1)–(5.10).

Knowing w(ζ) along the entire real t-axis of the plane, we can find w(ζ)
for Im(ζ) > 0 for all t = ek, k = 1, n + 1, with the help of the well-known
formula given in [16].

Note that using the matrix χ(ζ) defined by the formulas (5.4)–(5.10),
we can construct a canonical matrix for the corresponding homogeneous
problem (2.10) with regard for all singular points t = ek, k = 1, n + 1, after
which it becomes possible to solve the nonhomogeneous boundary value
problem (2.10) by means of the Cauchy type integral. This has been done
by us in [27]. In the present paper we find the solution of (2.10) in a more
simple way than that described in [27] and [29]. We rely here on the linear
independent solutions (1.11) and on the general solution of (1.18).

Let us multiply the functions u+
1 (t) and u+

2 (t) by

χ0(ζ) =

√
(ζ − ek−1)(ζ − ek+j−1)

(ζ − ek)(ζ − ek+j)
.

The matrix χ1(ζ) defined by the formulas (5.4)–(5.10) satisfies the boundary
condition (2.25), as far as we take for granted that the equalities (6.1)–(6.32)
are fulfilled. This means that the columns of the matrix χ1(ζ) defined by
the formulas (5.4)–(5.10) satisfy the boundary condition (2.25). To obtain
the solution Φ1(ζ), we have to take the elements of the first column of the
matrix χ1(ζ) which are defined by the formulas (6.1)–(6.32) and then to
compose the vector Φ1(ζ) = [u1(ζ), u2(ζ)], Im(ζ) ≥ 0.

We have taken the elements of the first column of the matrix χ1(ζ) be-
cause the relation w(ζ) = u1(ζ)/u2(ζ) gives the general solution of the
Schwarz equation with the right-hand side (1.18), while the ratio u′1(ζ)/u′2(ζ)
does not satisfy the equation (1.18).

The vector Φ′(ζ) = Φ1(ζ)χ0(ζ), where χ0(ζ) =
√

(ζ−ek−1)(ζ−ek+j−1)
(ζ−ek)(ζ−ek+j)

, will
be a solution of the problem (2.15). Consequently, the elements of the
vector Φ′(ζ), ω′(ζ) = u+

1 (ζ)χ0(ζ) and z′(ζ) = u+
2 (ζ)χ0(ζ), satisfy both the

boundary conditions (2.15) and the conditions at the singular points t = ek,
k = 1, n + 1.

Now we can write the following equalities:

dω(t) = u+
1 (t)χ+

0 (t)dt, −∞ < t < +∞, (7.2)

dz(t) = u+
2 (t)χ+

0 (t)dt, −∞ < t < +∞. (7.3)
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Integrating the equalities (7.2) and (7.3) in the intervals (−∞, t), (ej , t),
j = 1, 2, . . . , n, we obtain

ω+(t) =

t∫

−∞
u+

1 (t)χ+
0 (t)dt + ω+(−∞), −∞ < t < e1, (7.4)

z+(t) =

t∫

−∞
u+

2 (t)χ+
0 (t)dt + z+(−∞), −∞ < t < e1, (7.5)

ω+(t) =

t∫

ej

u+
1 (t)χ+

0 (t)dt + ω+
j (ej), j = 1, n + 1, ej < t < ej+1, (7.6)

z+(t) =

t∫

ej

u+
2 (t)χ+

0 (t)dt + z+
j (ej), j = 1, n + 1, ej < t < ej+1, (7.7)

where ω+(−∞), z+(−∞), ω+(ej), z+(ej) are the limiting values of the
corresponding functions ω+(t), z+(t) from the right at the points −∞, ej ,
j = 1, n + 1.

Obviously, the functions ω+(t), z+(t) defined by the formulas (7.4)–(7.7)
satisfy the boundary conditions (2.10).

In the formulas (7.4)–(7.7) we can separate the real and imaginary parts
and get expressions for the functions ϕ(t), ψ(t), χ(t) and y(t).

Passing in the formulas (7.4) and (7.5) to the limit as t → ej from the
left, we arrive at

ω+(e1) =

e1∫

−∞
u+

1 (t)χ+
0 (t)dt + ω+(−∞), (7.8)

z+(e1) =

e1∫

−∞
u+

2 (t)χ+
0 (t)dt + z+(−∞), (7.9)

ω+(ej+1) =

ej+1∫

ej

u+
1 (t)χ+

0 (t)dt + ω+(ej), j = 1, n + 1, (7.10)

z + (ej+1) =

ej+1∫

ej

u+
2 (t)χ+

0 (t)dt + z+(ej), j = 1, n + 1, (7.11)

where ω+(ej+1), z+(ej+1), are the limiting values of the functions ω+(t),
z+(t) from the left at the point t = ej+1.
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In the formulas (7.4)–(7.11) it is assumed that the integrands at the
points t = −∞, t = ej , j = 1, n are integrable. In case the integrands
are nonintegrable at some point t = ej of e1, e2, e2, . . . , en+1, we take the
integrals from the other end of the interval, where they are integrable. But
if the above-mentioned functions are nonintegrable at both ends of the in-
terval, then we take any interior point of the interval and from that point
(as the lower limit) from which the integral is taken.

For determination of the parameters aj and cj , j = 1,m, we have ob-
tained a system of higher transcendent equations, e.g., the equations (6.6)–
(6.32); as for the parameters t = ej , j = 1, n, which do not coincide with
the parameters t = aj and the function χ0(ζ) depends on, and also as for
the parameter Q which is connected with the liquid discharge, for their
determination we have obtained the system of equations (7.8)–(7.11).

Having found all the unknown parameters on which the functions ω(ζ),
z(ζ), and w(ζ) depend, by the formulas (7.6)–(7.7) we can find the equations
for the unknown parts of the boundaries of the domains s(z), s(ω) and s(w),
as well as for the other geometric and mechanical parameters of the liquid
flow [30, 31].

8. Another Method of Solving the System (6.3)–(6.10) with
Respect to pj/rj, sj/qj

Of the system (6.3)–(6.10), we consider the matrix equations for two
neighboring points t = aj and t = aj−1. We have

A+
j+1 = gjA

−
j+1, A+

j+1Tjθ
+
j = gj−1A

−
j+1Tjθ

−
j , (8.1)

where

A±j+1 = Tθ±mTm−1θ
±
m−1 . . . Tj+1θ

±
j+1. (8.2)

Excluding A+
j+1 from the system (8.1), we obtain the equation with re-

spect to Tj :

Tj(θ+
j )2 = BjTj , Bj =

(
Bj

11, Bj
12

Bj
21, BJ

22

)
= (A−j+1)

−1g−1
j gj−1A

−
j+1. (8.3)

When solving (8.3), we consider the following cases: (1) the difference
α1j − α2j is not an integer; (2) the difference α1j − α2j is an integer.

1. The solution of (8.3) with respect to the elements of the matrix Tj

has the form

pj/rj = Bj
12[λ1j −Bj

11]
−1, pj/rj = (Bj

21)
−1[λ1j −Bj

22] (8.4)

sj/qj = (Bj
12)

−1[λ2j −Bj
11]
−1, sj/qj = Bj

21[λ2j −Bj
22]
−1. (8.5)
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We take one equation from each of (8.4) and (8.5) because the second
equations coincide with the first ones owing to the fact that

detBj = λ1jλ2j , Bj
11 + Bj

22 = λ1j + λ2j . (8.6)

Consequently, the solution of (8.3) for one point is given in the form of
two scalar equations with respect to the parameters aj , cj , j = 1,m. Recall
(5.1) and (5.2) in which it is seen that the parameters pj , qj , rj , sj depend
implicitly on aj , cj , j = 1,m.

The solution of the matrix equation

Tθ+
m = gm−1Tθ−m, gm−1 =

(
gm−1
11 , gm−1

12

gm−1
21 , gm−1

22

)
(8.7)

have the form

p/r = gm−1
12 [λ1m − gm−1

11 ]−1, s/q = Bm−1
12 [λ2m − gm−1

11 ], (8.8)

where p/r and s/q are the integration constants of the Schwarz differential
equation (1.15).

We can immediately verify that the solutions (8.4) and (8.5) are real,
hence the equation

pjsj/(rjqj) = [λ2j −Bj
11][λ1j −Bj

11]
−1, (8.9)

is real as well. This equation is connected with the invariant cross-ratio of
four intersection points of one circumference with two neighboring circum-
ferences (see, e.g., (6.29) or (6.24)).

2(a). The difference λ1j − λ2j = n, n = 0, 2. In this case the equation
(8.3) takes the form

λ2jTj

(
1, 0

2πi, 1

)
= BjTj . (8.10)

The solution (8.10) has the form

λ2j(pj +2πiqj)=Bj
11pj +Bj

12rj , λ2j [rj +2πisj)=Bj
21pj +Bj

22rj , (8.11)

sj/qj = [λ2j −Bj
11](B

j
12)

−1, sj/qj = Bj
2j [λ2j −Bj

22]
−1. (8.12)

We take one equation from each of (8.11) and (8.12) because the second
equations coincide with the first ones. Indeed, this is obvious for (8.12),
while for (8.11) it is necessary to indicate the way of proving. First we
define qj/sj from (8.12) and substitute the obtained value into the first of
the equations (8.11), then we divide by sj the left and right sides of both
equations (8.11) and obtain

pj

sj
(λ2j −Bj

11)−
rj

sj
Bj

12 = −2πiλ1jB
j
12[λ1j −Bj

11], (8.13)

pj

sj
(−Bj

21) + (λ2j −Bj
22)

rj

sj
= 2πiλ2j . (8.14)
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These equations coincide because the coefficients (including free terms) are
proportional.

2(b). If α1j − α2j = 1, then the equation (8.3) takes the form

λ2jTj

(
1, 0

−2πi, 1

)
= BjTj . (8.15)

In this case (8.12) remains invariable, and proportionality of the coef-
ficients (including free terms) is not violated if in the systems (8.13) and
(8.14) we replace 2πi by −2πi.

Defining the elements pj , qj , rj and sj from (5.1) as depending on aj , cj ,
j = 1,m, and substituting them in (8.4), (8.5), (8.9), (8.11) and (8.12), we
obtain equations with respect to aj , cj , j = 1,m.
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Chapter IV

Exact Solution of Spatial with Partially
Unknown Boundaries Axisymmetric
Problems of The Filtration Theory

Abstract. We suggest a general method of solution of spatial axisym-
metric problems of steady liquid motion in a porous medium with par-
tially unknown boundaries. The liquid motion of ground waters in a porous
medium is subjected to the Darcy law. The porous medium is undeformable,
isotropic and homogeneous. The velocity potential ϕ(z, ρ) and the flow func-
tion ψ(z, ρ) are mutually connected and separately satisfy different equa-
tions of elliptic type, where z is the coordinate of the axis of symmetry, and
ρ is the distance to that axis.

To the domain S(σ) of the liquid motion on the plane of complex velocity
there corresponds a circular polygon. The mapping ω = ϕ + iψ belongs
to the class of quasi-conformal mappings. Using the functions ω0(ζ) =
ϕ0(ξ, η) + iψ0(ξ, η) and σ(ζ) = z(ξ, η) + iρ(ξ, η) we map conformally the
half-plane Im (ζ) > 0 onto the domains S(σ), S(ω0) and S(ω′0(ζ)/σ′(ζ)).
These functions satisfy all the boundary conditions, while the functions
ϕ1(ξ, η) = ϕ(ξ, η)−ϕ0(ξ, η), ψ1(ξ, η) = ψ(ξ, η)−ψ0(ξ, η) satisfy the system
of differential equations and also the zero boundary conditions. The solution
of these equations is reduced to a system of Fredholm integral equations of
second kind which are solved uniquely by rapidly converging series.

1. Liquid Motion with Axial Symmetry

In this paper we suggest an effective algorithm allowing one to construct
solutions of spatial with partially unknown boundaries axisymmetric prob-
lems of filtration.

Let us consider some spatial axisymmetric problems (with partially un-
known boundaries) of the theory of steady motion of incompressible liquid
in a porous medium obeying the Darcy law. The porous medium is assumed
to be undeformable, isotropic and homogeneous ([1]–[39]).

The liquid motion is said to be axisymmetric if all velocity vectors lie
in half-planes passing through some line which is called the symmetry axis.
The picture of the liquid flow is the same for all such planes. The field
of velocities of an axisymmetric liquid motion is completely described by
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the plane field taken from any of such half-planes. The symmetry axis
is assumed to be the z-axis which is directed vertically downwards. The
distance to the oz-axis is denoted by ρ =

√
x2 + y2, vz and vρ denote the

coordinates of the vector of velocity ~v(vz, vρ) which is connected with the
velocity potential as follows: ~v(vz, vρ) = grad ϕ(z, ρ) ([1]–[39]).

Of an infinite set of half-planes we select arbitrarily the one passing
through the symmetry axis on which the moving liquid occupies a certain
simply connected domain S(σ), where σ = z+iρ. Some part of its boundary
is unknown and should be defined.

The lines of intersection of the surface and the planes passing through
the oz-axis of rotation are called meridians, and the lines of intersection
with the planes perpendicular to the oz-axis are called parallels.

1. The Notion of a Stream Function for an Axisymmetric Flow.
Let us cite once again the definition of axisymmetric flow, analogous to that
we presented above. The flow is called axisymmetric if the stream planes
passing through the given axis, and every such plane have the same picture
of distribution of flow lines ([1]–[6]). oz is assumed to be the symmetry axis
of the cylindrical system of coordinates ρ, θ, z. Then it follows from the
definition that the component of velocity, when the liquid flow is potential,
has the form vθ = 0. Then the equation of continuity takes the form

∂(ρvz)
∂z

+
∂(ρvρ)

∂ρ
= 0. (1.1)

The differential equation of any stream line for axisymmetric flow, vρ dz−
vz dρ = 0, multiplied by ρ, is a full differential of some stream function
ψ(ρ, z), dψ = ρvρ dz − ρvz dρ. Thus vz = 1

ρ
∂ψ
∂ρ , vρ = − 1

ρ
∂ψ
∂z . On the other

hand, vz = ∂ϕ
∂z , vρ = ∂ϕ

∂ρ , and hence

vz =
∂ϕ

∂z
= +

1
ρ

∂ψ

∂ρ
, vρ =

∂ϕ

∂ρ
= −1

ρ

∂ψ

∂z
. (1.2)

If the liquid flow is irrotational, i.e. potential, ∂vz

∂ρ = ∂vρ

∂z , then the stream
function should satisfy the equation

∂

∂z

(1
ρ

∂ψ

∂z

)
+

∂

∂ρ

(1
ρ

∂ψ

∂ρ

)
= 0. (1.3)

Recall that ϕ(z, ρ) is a harmonic function of the cylindrical system of co-
ordinates. Unlike the plane case, the stream function ψ(z, ρ) is not harmonic
and it follows from (1.2) that

∂ϕ

∂z

∂ψ

∂z
+

∂ϕ

∂ρ

∂ψ

∂ρ
= 0. (1.4)
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The system (1.1), (1.3) can be rewritten as

∆ϕ(z, ρ) +
1
ρ

∂ϕ

∂ρ
= 0, (1.5)

∆ψ(z, ρ)− 1
ρ

∂ψ

∂ρ
= 0, (1.6)

where ∆ is the Laplace operator. We rewrite the system (1.5), (1.6) as
follows:

∂2ϕ

∂z2
+ 4α

∂2ϕ

∂α2
+ 4

∂ϕ

∂α
= 0, (1.7)

∂2ψ

∂z2
+ 4α

∂2ψ

∂α2
= 0, (1.8)

where α = ρ2.
It can be seen from (1.7) and (1.8) that for α = ρ2 6= 0 the system is

elliptic. Hence ϕ(z, ρ) = const and ψ(z, ρ) = const are orthogonal. How-
ever, the mapping f(z + iρ) = ϕ(z, ρ) + iψ(z, ρ) is not conformal. The
mappings under consideration constitute a class of quasi-conformal map-
pings. The system (1.2) is elliptic only in the domains not adjoining the
axis of rotation. The system degenerates on that axis and quasi-conformity
violates.

When the point z + iρ approaches the axis of rotation, the ratio of half-
axes of these ellipses infinitely increases. Such violation of quasi-conformity
is a geometric criterion of degeneration of a system on the axis of rotation.
In the domains whose closure does not intersect the axis of rotation, the
mappings f = ϕ+ iψ, satisfying the system (1.2), are quasi-conformal, pos-
sessing, owing to the system (1.2) the principal properties of quasi-conformal
mappings ([1]–[39]).

A linear elliptic equation is said to be degenerated if in some part of its
domain of definition the quadratic form is defined nonpositively.

It can be seen from (1.7) and (1.8) that the given system for α = ρ2 6= 0
is elliptic.

Along the oz-axis, as α → 0, we have

∂2ϕ

∂z2
+ 4

∂ϕ

∂α
= 0, (1.9)

∂2ψ

∂z2
= 0. (1.10)

Along the oz-axis of symmetry we have

lim
ρ→0

∂ϕ

∂ρ
= 0, lim

ρ→0

∂ψ

∂ρ
= 0, lim

ρ→0

∂ψ

∂z
= 0,

lim
ρ→0

1
ρ

∂ϕ

∂ρ
=

∂2ϕ

∂ρ2
, lim

ρ→0

1
ρ

∂ψ

∂ρ
=

∂2ψ

∂ρ2
.

(1.11)
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We map the half-plane Im(ζ) > 0 (or Im(ζ) < 0) of the complex plane
ζ = ξ + iη conformally onto the domains S(σ),

σ(ζ) = z(ξ, η) + iρ(ξ, η). (1.12)

The system (1.2) takes on the plane ξ + iη the form
∂ϕ

∂ξ
=

1
ρ(ξ, η)

∂ψ

∂η
, (1.13)

∂ϕ

∂η
= − 1

ρ(ξ, η)
∂ψ

∂ξ
, (1.14)

that is,
∂

∂ξ

[
ρ(ξ, η)

∂ϕ(ξ, η)
∂ξ

]
+

∂

∂η

[
ρ(ξ, η)

∂ϕ(ξ, η)
∂η

]
= 0, (1.15)

∂

∂ξ

[ 1
ρ(ξ, η)

∂ψ(ξ, η)
∂ξ

]
+

∂

∂η

[ 1
ρ(ξ, η)

∂ψ(ξ, η)
∂η

]
= 0. (1.16)

From (1.13) and (1.14) follows the condition (1.4).
The boundary conditions have the following forms.
(1) On the free (depression) surface:

ϕ(z, ρ)− kz = const, (1.17)

ψ(z, ρ) = const, (1.18)

where k = const is the filtration coefficient;
(2) along the boundary of water basins:

ϕ(z, ρ) = const, (1.19)

a1z + b1ρ + c1 = 0, a1, b1, c1 = const; (1.20)

(3) along the leaking intervals:

ϕ(z, ρ)− kz = const, (1.21)

a2z + b2ρ + c2 = 0, a2, b2, c2 = const; (1.22)

(4) along the symmetry axis, when a segment of the oz-axis of symmetry
coincides with a segment of the boundary of S(σ):

ρ = 0, (1.23)

ψ(z, ρ) = 0, (1.24)

but if the symmetry axis does not coincide with some part of the boundary
of the flow domain S(σ), then

ρ 6= 0, ρ = const, const 6= 0, (1.25)

ψ(z, ρ) = const, const 6= 0; (1.26)

(5) along impermeable boundaries:

ψ(z, ρ) = const, (1.27)
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a3z + b3ρ + c3 = 0, a3, b3, c3 = const; (1.28)

(6) along the impermeable boundary, the velocity vector is directed along
that boundary.

(7) the velocity vector is perpendicular to the boundary of water basins.
(8) along the free surface (depression curve) we have

v2
z + v2

ρ − kvz = 0. (1.29)

As is stated in our work [31] on the plane of complex velocity we have
circular polygons of particular types. But this class of problems is much
more wider. There are axisymmetric spatial problems with partially un-
known boundaries when the boundary of the domain does not involve the
symmetry axis, but as is mentioned above, there are problems when the
boundary of the domain involves the axis of symmetry or its parts.

For circular polygons, in particular, for linear polygons, we are able to
solve plane problems of filtration with partially unknown boundaries. The
statement and solution of the corresponding plane problems with partially
unknown boundaries of filtration can be found in [26]–[39].

Suppose we have solved the plane problem, i.e. constructed analytic
functions by which the half-plane Im(ζ) > 0 (or Im(ζ) < 0) of the plane
ζ = ξ + iη is mapped conformally onto a circular polygon.

For general discussion we assume that there is a circular polygon with
number of vertices m. To find such an analytic function, we have to solve
a nonlinear third order Schwarz differential equation whose solution is re-
duced to that of a differential Fuchs class equation. The Schwarz equation,
and hence the corresponding Fuchs class equation, involves 2(m − 3) es-
sential unknown parameters. After integration of the Schwarz equation
there appear six additional parameters of integration. To find these param-
eters, we write a system of 2(m − 3) higher transcendent equations and a
system consisting of six equations. The boundary conditions for the prob-
lem of filtration contain additional unknown parameters. Further, using
the solutions of the plane problems, we construct the solutions ϕ(ξ, η) and
ψ(ξ, η) for the systems (1.13)–(1.16) of differential equations of spatial axi-
symmetric problems. They allow one to construct the functions which map
quasi-conformally the half-plane Im(ζ) ≥ 0 onto the domain of the complex
potential and onto the domains of the complex velocity, i.e., onto S(ω0) and
S(ω′0(ζ)/σ′(ζ)).

For three analytic functions

σ(ζ) = z(ξ, η) + iρ(ξ, η), ω0(ζ) = ϕ0(ξ, η) + iψ0(ξ, η),

w0(ζ) = ω′0(ζ)/σ′(ζ)
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we introduce the notation
∆z(ζ, η) = 0, ∆ρ(ζ, η) = 0, ∆ϕ0(ζ, η) = 0,

∆ψ0(ζ, η) = 0, Im(ζ) ≥ 0,
(1.30)

which map conformally the half-plane Im(ζ) ≥ 0 onto the domain S(σ) of
liquid motion, the domains of the complex potential S(ω0) and the domains
of the complex velocity S(ω′0(ζ)/σ′(ζ)).

Below, for the half-plane we will need the Dirichlet problem. Suppose
that on the real axis there is a function u(ξ) bounded by a finite number of
points of discontinuity. To find a value at the point ζ = ξ+iη of the harmonic
in the upper half-plane function, we have to use the Poisson integral

u(ξ) =
1
π

+∞∫

−∞
u(t)

η

(t− ξ)2 + η2
dt, (1.31)

where ζ = ξ + iη.

2. Solution of the System (1.13), (1.14)

We rewrite the system (1.13), (1.14) as follows:

∆ϕ(ξ, η) + a(ξ, η)
∂ϕ

∂ξ
+ b(ξ, η)

∂ϕ

∂η
= 0, (2.1)

∆ψ(ξ, η)− a(ξ, η)
∂ψ

∂ξ
− b(ξ, η)

∂ψ

∂η
= 0, (2.2)

where

a(ξ, η) =
1

ρ(ξ, η)
∂ρ

∂ξ
, b(ξ, η) =

1
ρ(ξ, η)

∂ρ

∂η
, ∆ =

∂2

∂ξ2
+

∂2

∂η2
. (2.3)

Below we will pass to the consideration of the problem of solvability of
the system of differential equations (2.1), (2.2) with respect to the functions
ϕ(ξ, η) and ψ(ξ, η) which should satisfy both the compatibility conditions
(1.13) and (1.14) and the mixed boundary conditions (1.17)–(1.28) on the
known and unknown parts of the boundary. First of all, we replace ϕ(ξ, η)
and ψ(ξ, η) by ϕ0(ξ, η) + ϕ1(ξ, η) and ψ0(ξ, η) + ψ1(ξ, η), where ϕ0(ξ, η)
and ψ0(ξ, η) are conjugate, harmonic in the domain Im(ζ) > 0 functions
satisfying the boundary conditions. This transformation makes it possible
for the unknown functions ϕ1(ξ, η) and ψ1(ξ, η) to satisfy the zero boundary
conditions. Note that the system of equations (2.1) and (2.2) will alter
hereat.

As is said above, a solution of the system (2.1) and (2.2) will be sought
with regard for (1.13) and (1.14) in the form

ϕ(ξ, η) = ϕ0(ξ, η) + ϕ1(ξ, η), (2.4)
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ψ(ξ, η) = ψ0(ξ, η) + ψ1(ξ, η), (2.5)

where ϕ0(ξ, η), ψ0(ξ, η) are the conjugate harmonic functions,

∆ϕ0(ξ, η) = 0, ∆ψ0(ξ, η) = 0, (2.6)

which satisfy the Cauchy–Riemann conditions

∂ϕ0

∂ξ
=

∂ψ0

∂η
,

∂ϕ0

∂η
= −∂ψ0

∂ζ
(2.7)

and also all the boundary conditions.
By means of the functions ω0(ξ) = ϕ0(ξ, η) + iψ0(ξ, η), σ(ζ) = z(ξ, η) +

iρ(ξ, η), the half-plane Im(ζ) > 0 (or Im(ζ) < 0) of the plane ζ = ξ + iη is,
as is said above, mapped conformally onto the domains S(ω), S(σ), S(w),
where w(ζ) = ω′(ζ)/σ′(ζ). The functions z(ξ, η) and ρ(ξ, η) should satisfy
the conditions

∆z(ξ, η) = 0, ∆ρ(ξ, η) = 0, (2.8)
∂z

∂ξ
=

∂ρ

∂η
,

∂z

∂η
= −∂ρ

∂ξ
. (2.9)

The system (2.1), (2.2) can be written with respect to ϕ1(ξ, η), ψ1(ξ, η) as
follows:

∆ϕ1(ξ, η) + a(ξ, η)
∂ϕ1(ξ, η)

∂ξ
+ b(ξ, η)

∂ϕ1(ξ, η)
∂η

=

= −
[
∆ϕ0(ξ, η) + a(ξ, η)

∂ϕ0

∂ξ
+ b(ξ, η)

∂ϕ0

∂η

]
, (2.10)

∆ψ1(ξ, η)− a(ξ, η)
∂ψ1(ξ, η)

∂ξ
− b(ξ, η)

∂ψ1(ξ, η)
∂η

=

= −
[
∆ψ0(ξ, η)− a(ξ, η)

∂ψ0

∂ξ
− b(ξ, η)

∂ψ0

∂η

]
. (2.11)

To simplify our investigation and solution of the system (2.10), (2.11), we
have deliberately left in the right-hand sides of (2.10) and (2.11) the terms
∆ϕ0(ξ, η) and ∆ψ0(ξ, η) which are, according to (2.6), equal to zero.

Transforming the unknown functions ϕ1(ξ, η), ψ1(ξ, η), ϕ0(ξ, η), ψ0(ξ, η)
as

ϕ1(ξ, η) = ρ−1/2(ξ, η)ϕ2(ξ, η), ψ1(ξ, η) = ρ1/2(ξ, η)ψ2(ξ, η), (2.12)

ϕ0(ξ, η) = ρ−1/2(ξ, η)ϕ∗2(ξ, η), ψ0(ξ, η) = ρ1/2(ξ, η)ψ∗2(ξ, η), (2.13)

we obtain
∂ϕ1

∂ξ
= −1

2
ρ−3/2 ∂ρ

∂ξ
ϕ2(ξ, η) + ρ−1/2 ∂ϕ2

∂ξ
,

∂ϕ1

∂η
= −1

2
ρ−3/2 ∂ρ

∂η
ϕ2(ξ, η) + ρ−1/2 ∂ϕ2

∂η
,

(2.14)
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∂2ϕ1

∂ξ2
=

3
4

ρ−5/2
(∂ρ

∂ξ

)2

− 1
2

ρ−3/2 ∂2ρ

∂ξ2
ϕ2−

− 1
2

ρ−3/2 ∂ρ

∂ξ

∂ϕ2

∂ξ
− 1

2
ρ−3/2 ∂ρ

∂ξ

∂ϕ2

∂ξ
+ ρ−1/2 ∂ϕ

2

∂ξ2
, (2.15)

∂2ϕ1

∂η2
=

3
4

ρ−5/2
(∂ρ

∂η

)2

ϕ2 − 1
2

ρ−3/2 ∂2ρ

∂η2
ϕ2−

− 1
2

ρ−3/2 ∂ρ

∂η

∂ϕ2

∂η
− 1

2
ρ−3/2 ∂ρ

∂η

∂ϕ2

∂η
+ ρ−1/2 ∂ϕ

2

∂η2
, (2.16)

∆ϕ1 =
3
4

ρ−5/2
[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ϕ2−

− ρ−3/2
(∂ρ

∂ξ

∂ϕ2

∂ξ
+

∂ρ

∂η

∂ϕ2

∂η

)
+ ρ−1/2∆ϕ2, (2.17)

∆ϕ1 +
1
ρ

(∂ρ

∂ξ

∂ϕ2

∂ξ
+

∂ρ

∂η

∂ϕ2

∂η

)
=

3
4

ρ−5/2
[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ϕ2−

− ρ−3/2
(∂ρ

∂ξ

∂ϕ2

∂ξ
+

∂ρ

∂η

∂ϕ2

∂η

)
+ ρ−1/2∆ϕ2+

+
1
ρ

∂ρ

∂ξ

(
− 1

2
ρ−3/2 ∂ρ

∂ξ
ϕ2 + ρ−1/2 ∂ϕ2

∂ξ

)
+

+
1
ρ

∂ρ

∂η

(
− 1

2
ρ−3/2 ∂ρ

∂η
ϕ2 + ρ−1/2 ∂ϕ2

∂η

)
, (2.18)

∆ϕ1 +
1
ρ

(∂ρ

∂ξ

∂ϕ1

∂ξ
+

∂ρ

∂η

∂ϕ1

∂η

)
=

= ρ−1/2

{
∆ϕ2 +

1
4

[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ϕ2

}
, (2.19)

∆ψ1 − 1
ρ

(∂ρ

∂ξ

∂ψ1

∂ξ
+

∂ρ

∂η

∂ψ1

∂η

)
=−

[
∆ψ0− 1

ρ

(∂ρ

∂ξ

∂ψ0

∂η
+

∂ρ

∂η

∂ψ0

∂η

)]
, (2.20)

∂ψ1

∂ξ
=

1
2

ρ−1/2 ∂ρ

∂ξ
ψ2 + ρ1/2 ∂ψ2

∂ξ
,

∂ψ1

∂η
=

=
1
2

ρ−1/2 ∂ρ

∂η
ψ2 + ρ1/2 ∂ψ2

∂η
, (2.21)

∂2ψ1

∂ξ2
= −1

4
ρ−3/2

(∂ρ

∂ξ

)2

ψ2 +
1
2
ρ−1/2 ∂2ψ2

∂ξ2
+

1
2

ρ−1/2 ∂ρ

∂ξ

∂ψ2

∂ξ
+

+
1
2

ρ−1/2 ∂ρ

∂ξ

∂ψ2

∂ξ
+ ρ1/2 ∂2ψ2

∂ξ2
, (2.22)

∂2ψ1

∂η2
= −1

4
ρ−3/2

(∂ρ

∂η

)2

ψ2 +
1
2
ρ−1/2 ∂2ψ2

∂η2
ψ2 +

1
2

ρ−1/2 ∂ρ

∂η

∂ψ2

∂η
+

+
1
2

ρ−1/2 ∂ρ

∂η

∂ψ2

∂η
+ ρ1/2 ∂2ψ2

∂η2
, (2.23)
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∆ψ1 = −1
4

ρ−3/2
[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ψ2+

+ ρ−1/2
(∂ρ

∂ξ

∂ψ2

∂ξ
+

∂ρ

∂η

∂ψ2

∂η

)
+ ρ−1/2∆ψ2, (2.24)

∆ψ1 − 1
ρ

(∂ρ

∂ξ

∂ψ1

∂ξ
+

∂ρ

∂η

∂ψ1

∂η

)
= −1

4
ρ−3/2

[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ψ2+

+ ρ−1/2
(∂ρ

∂ξ

∂ψ2

∂ξ
+

∂ρ

∂η

∂ψ2

∂η

)
+ ρ1/2∆ψ2, (2.25)

∆ψ1 − 1
ρ

∂ρ

∂ξ

(1
2

ρ−1/2 ∂ρ

∂ξ
ψ2 + ρ1/2 ∂ψ2

∂ξ

)
−

− 1
ρ

∂ρ

∂η

(1
2

ρ−1/2 ∂ρ

∂η
ψ2 + ρ1/2 ∂ψ2

∂η

)
=

= −1
4

ρ−3/2
[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ψ2+

+ ρ−1/2
(∂ρ

∂ξ

∂ψ2

∂ξ
+

∂ρ

∂η

∂ψ2

∂η

)
+ ρ1/2∆ψ2, (2.251)

∆ψ1 = ρ1/2

{
∆ψ2 − 3

4
1
ρ2

[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ψ2

}
. (2.26)

Taking into account (2.13), we represent the functions ϕ0(ξ, η) and
ψ0(ξ, η) analogously to (2.19) and (2.26) with respect to ϕ∗2(ξ, η), ψ∗2(ξ, η)
and obtain

∆ϕ0 +
1
ρ

(∂ρ

∂ξ

∂ϕ0

∂ξ
+

∂ρ

∂η

∂ϕ0

∂η

)
=

= ρ−1/2

{
∆ϕ∗2 +

1
4

ρ−2
[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ϕ∗2

}
, (2.27)

∆ψ0 − 1
ρ

( ∂ρ

∂ψ

∂ψ0

∂ξ
+

∂ρ

∂η

∂ψ0

∂η

)
=

= ρ1/2

{
∆ψ∗2 −

3
4

ρ−2
[(∂ρ

∂ξ

)2

+
(∂ρ

∂η

)2]
ψ∗2

}
, (2.28)

where ∆ϕ0 = 0, ∆ψ0 = 0.
Bearing in mind (2.19), (2.27), (2.26) and (2.28), we represent the system

(2.10) and (2.11) as follows:

ρ−1/2
[
∆ϕ2 + λρ1ϕ2

]
= −ρ−1/2

[
∆ϕ∗2 +

1
4

ρ1ϕ
∗
2

]
, (2.29)

ρ1/2
[
∆ψ2 − µρ1ψ2

]
= −ρ1/2

[
∆ψ∗2 −

3
4

ρ1ψ
∗
2

]
, (2.30)

where ρ1 = 1
ρ2

[(
∂ρ
∂ξ

)2 +
(

∂ρ
∂η

)2], λ = 1
4 , µ = 3

4 .
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The equalities (2.29) and (2.30) can be rewritten in the form

∆ϕ2 +
1
4
ρ1ϕ2 = −

[
∆ϕ∗2 +

1
4

ρ1ϕ
∗
2

]
, (2.31)

∆ψ2 − 3
4
ρ1ψ2 = −ρ−1/2

[
∆ψ∗2 −

3
4

ρ1ψ
∗
2

]
. (2.32)

Assuming that ϕ∗2(ξ, η) and ψ∗2(ξ, η) are the known functions, we rewrite
the equations (2.31), (2.32) as

∆(ϕ2 + ϕ∗2) = −1
4

ρ1(ϕ2 + ϕ∗2) ≡ f∗1 (ξ, η), (2.33)

∆(ψ2 + ψ∗2) =
3
4

ρ1(ψ2 + ψ∗2) ≡ f∗2 (ξ, η). (2.34)

Consider the Poisson equation

∆u(ξ, η) = f∗1 (ξ, η), (ξ1, η1) ∈ Im(ζ) > 0. (2.35)

Define the function u(ξ, η) by the formula

u(ξ, η) = − 1
2π

∫∫

Im(ζ)>0

G(ξ, η;x, y)f1(x, y) dx dy, (2.36)

where

G(ξ, η; x, y) =
1
4π

ln
(ξ − x)2 + (η + y)2

(ξ − x)2 + (η − y)2
(2.37)

is the Green’s function of the Dirichlet problem for the harmonic in Im(ζ) >
0 function, while the function f∗1 (ξ, η) is bounded and has continuous first
derivatives bounded in Im(ζ) > 0, U(ξ, η) is a regular solution of the Poisson
equation (2.35). It is proved that (2.36) satisfies the boundary condition [4]

lim
(ξ,η)→(ξ0,η0)

u(ξ, η) = 0, (ξ, η) ∈ Im(ζ) > 0, (ξ0, η0) ∈ Im(ζ0). (2.38)

Using (2.35) and (2.36) with respect to (2.33) and (2.34), we obtain

ϕ2(ξ, η) = −ϕ∗2(ξ, η) +
1
2π

∫∫

Im(ζ)>0

G(ξ, η;x, y)f∗1 (x, y) dx dy, (2.39)

ψ2(ξ, η) = −ψ∗2(ξ, η) +
1
2π

∫∫

Im(ζ)>0

G(ξ, η;x, y)f∗2 (x, y) dx dy. (2.40)

The equalities (2.39) and (2.40) can be written as follows:

ϕ2(ξ, η) = −ρ1/2ϕ0(ξ, η)+

+
1
8π

∫∫

Im(ζ)>0

G(ξ, η; x, y)ρ1(x, y)
[
ϕ2(x, y) + ρ1/2ϕ0(x, y)

]
dx dy, (2.41)
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ψ2(ξ, η) = −ψ∗(ξ, η)+

+
3
8π

∫∫

Im(ζ)>0

G(ξ, η; x, y)ρ1(x, y)
[
ψ2(x, y) + ψ∗2(x, y)

]
dx dy. (2.42)

We rewrite the equations (2.40) and (2.42) in the form

ϕ2(ξ, η) = f3(ξ, η) +
1
8π

∫∫

Im(ζ)>0

G(ξ, η; x, y)ρ1(x, y)ϕ2(x, y) dx dy, (2.43)

ψ2(ξ, η) = f4(ξ, η) +
3
8π

∫∫

Im(ζ)>0

G(ξ, η; x, y)ρ1(x, y)ψ2(x, y) dx dy, (2.44)

where

f3(ξ, η) =− ρ1/2ϕ0(ξ, η)+

+
1
8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ρ1/2ϕ0(x, y) dx dy, (2.45)

f4(ξ, η) =− ψ∗(ξ, η)+

+
3
8π

∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ψ∗2(x, y) dx dy. (2.46)

Thus we have obtained the second kind Fredholm’s integral equations
(2.43) and (2.44) with respect to ϕ2(ξ, η) and ψ2(ξ, η). The problems (2.33)
and (2.34) are, respectively, equivalent to the integral equations (2.43) and
(2.44) which will be solved by using the exact methods.

Solutions of the integral equations (2.43) and (2.44) will be sought by
the method of successive approximations in the form of the series

ϕ2(ξ, η) =
∞∑

n=0

λnϕ2(n)(ξ, η), (2.47)

ψ2(ξ, η) =
∞∑

n=0

µnψ2(n)(ξ, η), (2.48)

where λ = 1
8π , µ = 3

8π .
Substituting the series (2.47) and (2.48) respectively into the integral

equations and equating the coefficients with the same powers of the param-
eters λ and µ, we obtain

ϕ2(0)(ξ, η) = f3(ξ, η), (2.49)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ϕ2(n)(ξ, η) =
∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ϕ2(n−1)(x, y) dx dy, (2.50)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ2(0)(ξ, η) = f4(ξ, η), (2.51)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ2(n)(ξ, η) =
∫∫

Im(ζ)>0

G(ξ, η;x, y)ρ1(x, y)ψ2(n−1)(x, y) dx dy, (2.52)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = 1, 2, 3, . . . .

The parameters λ = 1
8π and µ = 3

8π of the integral equations (2.43) and
(2.44) are small enough; this ensures the convergence of the series (2.47)
and (2.48). Recall here that as initial approximations, as usual, are taken
the free terms f3(ξ, η) and f4(ξ, η).

Basing on (2.47)–(2.52), we can construct general formulas which allow
one to express any approximations through the free terms by means of
iterated kernels.

Assuming that the series (2.47) and (2.48) are already constructed, we
can multiply them respectively by ρ−1/2 and ρ1/2. We obtain

ϕ(ξ, η) = ϕ0(ξ, η) + ϕ1(ξ, η), (2.53)

ψ(ξ, η) = ψ0(ξ, η) + ψ1(ξ, η). (2.54)

Recall that the boundary conditions along the oz-axis of symmetry, when
some parts of oz coincide with the boundary S(σ), have in the coordinates
(z, ρ) the form

ρ → 0, α = ρ2,

∂ϕ

∂ρ
=

∂ϕ

∂α

∂α

∂ρ
=

∂ϕ

∂α
· 2ρ → 0;

∂ψ

∂ρ
=

∂ψ

∂α

∂α

∂ρ
=

∂ψ

∂α
· 2ρ → 0.

(2.55)

In the coordinates (ξ, η), the boundary conditions along the oz-axis have
the form

ρ(ξ, η) = 0,
∂ρ

∂ξ
= 0,

∂ρ

∂η
= 0;

(∂ϕ

∂ξ

)
ρ→0

=
(∂ϕ

∂z

∂z

∂ζ
+

∂ϕ

∂α

∂α

∂ρ

∂ρ

∂ξ

)
ρ→0

=
(∂ϕ

∂z

∂z

∂ξ

)
ρ→0

,

∣∣∣∂ϕ

∂α

∂α

∂ρ

∂ρ

∂ξ

∣∣∣
ρ→0

→ 0,

(2.56)
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(∂ϕ

∂ρ

)
ρ→0

=
(∂ϕ

∂α

∂α

∂ρ

)
ρ→0

→ 0,

(∂ϕ

∂η

)
=

(∂ϕ

∂z

∂z

∂η
+

∂ϕ

∂α

∂α

∂ρ

∂ρ

∂η

)
ρ→0

=
(∂ϕ

∂z

∂z

∂η

)
ρ→∞

∂ρ

∂η
→ 0.

(2.57)

Suppose that the oz-axis of symmetry (or its parts) does not coincide
with the boundary of the filtration domain S(σ),

ρ = const 6= 0, α = ρ2,

∂ϕ

∂ρ
=

∂ϕ

∂α

∂α

∂ρ
=

∂ϕ

∂α
· 2ρ =

∂ϕ

∂α
· 2 const, ρ → const .

(2.58)

(∂ψ

∂α

∂α

∂ρ

)
ρ→const

=
(∂ψ

∂α

)
· 2 const, (ψ)ρ=const = const,

(∂ψ

∂ξ

)
ρ→const

→ 0,
(∂ψ

∂η

)
ρ→const

→ 0,

(∂ϕ

∂η

)
ρ=const

=
(∂ϕ

∂z

∂z

∂η
+

∂ϕ

∂α

∂α

∂ρ

∂ρ

∂η

)
ρ=const

=
(∂ϕ

∂z

∂z

∂η

)
ρ=const

,

∂ρ

∂η
= 0.

(2.59)

Below we will present another way of solution of the system (2.10) and
(2.11).

10. Green’s function belongs to the class of fundamental solutions of the
Laplace equation. It is determined that as a harmonic function of a pair of
points (P ; Q), is symmetric with respect to P and Q, equals to zero on the
boundary and is analytic at all points P of the domain Di, except of the
points P = Q at which it has logarithmic singularity, i.e. at the point P of
the neighborhood of Q, the relation

G(P ;Q) =
1
2π

ln r(P ;Q) + g(P ; Q) (2.60)

is fulfilled, where r =
√

(x− ξ)2 + (y − η)2 is the distance between the
points P and Q. Moreover, Green’s function, as a function of P , should have
everywhere inside of Di, except the point of Q, continuous derivatives up to
the second order and satisfy the Laplace equation, while on the boundary
it should satisfy the limiting condition. Next, G(P ; Q), as a function of P ,
must have singularity at the point Q corresponding to the initial charge (or
to the mass) concentrated at the point Q. Green’s function of the Laplace
operator for the plane simply connected domain under the limiting condition
U` = 0 is tightly connected with the function which transforms conformally
the above-mentioned domain onto the circle |W | ≤ 1.

G(P ; Q) is a harmonic in the domain Di function of the coordinates x
and y ([4], [17], [33]–[36]).
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If d is the diameter of the domain Di, then the inequality

0 ≤ G(P ; Q) ≤ ln
(d

r

)
(2.61)

is valid. Green’s function for the circle of radius R = 1 has the form

G(P ; Q) =
1
2π

ln
(ρr1

r

)
, (2.62)

where ρ =
√

ξ2 + η2 is the distance of the point Q(ξ, η) from the center of
the circle. r1 is defined as follows: r1 =

√
(x− ξ/ρ2)2 + (y − η/ρ2)2.

20. Consider the inhomogeneous equation

∆U(x, y) = −ϕ(x, y). (2.63)

We seek for a solution of (2.63), continuous up to the contour of the
domain and satisfying the limiting equation U

∣∣
`

= 0. There may be only
one such solution ([35]).

The unknown solution has the form

U(x, y) =
∫∫

Di

G(x, y; ξ, η)ϕ(ξ, η) dξ dη, (2.64)

that is,

U(x, y) =
1
2π

∫∫

Di

ϕ(ξ, η) ln
1
r

dξ dη+

+
∫∫

Di

g(x, y; ξ, η)ϕ(ξ, η) ln
1
r

dξ dη, (2.65)

otherwise.
The first summand of (2.65) has inside of Di continuous derivatives up to

the second order, and its Laplace operator is equal to [−ϕ(ξ, η)]. It is proved
that the second summand of (2.65) can be differentiated under the integral
sign with respect to the coordinates (x, y) of the point P (x, y) as many
times as desired. This implies that this summand is a function harmonic
inside of Di, because g(P ; Q) is a harmonic function of the point P (x, y).
g(P ;Q) is a harmonic function of the point Q with limiting values

(
1
2π ln r

)
,

where r =
√

(x− ξ)2 + (y − η)2. It is assumed that P (x, y) is inside of Di.
The formula (2.65) provides us with the solution of the equation (2.63)
satisfying the condition U

∣∣
`

= 0. Recall that there exists a generalized
solution of (2.63).

30. The linear-fractional conformal mapping of the half-plane Im(ζ) > 0
onto the circle |W | < 1 has the form

W =
1 + iζ

i + zt
, ζ = ξ + iη, w = u + iv. (2.66)
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It follows from (2.66) that

u =
2ξ

ξ2 + (1 + η)2
, v =

ξ2 + η2 − 1
ξ2 + (1 + η)2

. (2.67)

On the other hand, from (2.66) we have

ζ =
i + w

1 + iw
, ξ =

2u

u2 + (1− v)2
, η =

1− v2 − u2

u2 + (1− v)2
. (2.68)

40. Harmonic and analytic functions of a complex variable.
Let

w = f(z) = u(x, y) + iv(x, y), z = x + iy (2.69)
be some function of the complex variable z = x + iy; u and v are the
real functions of the variables x and y. The Cauchy–Riemann conditions
ux = vy, uy = −vx are necessary and sufficient for the function to be
analytic. It follows from these conditions that ∆U = 0, ∆V = 0, where ∆
is the Laplace operator.

Consider the transformation

x = x(u, v), y = y(u, v), (2.70)

u = u(x, y), v = v(x, y), (2.71)

where u(x, y) and v(x, y) are the conjugate harmonic functions. Then the
above transformation is equivalent to (2.69).

By virtue of the Cauchy–Riemann conditions, the relations [36]

u2
x + u2

y = u2
x + v2

x = v2
y + v2

x = |f ′(z)|2, uxvx + uyvy = 0 (2.72)

should be satisfied for the functions u and v.
Let us find out how the Laplace operator varies under that transforma-

tion. We obtain

U = U
[
x(u, v), y(u, v)

]
= Ũ(u, v), (2.73)

Uxx + Uyy = (Ũuu + Ṽuu)|f ′(z)|2, (2.74)

whence it follows that as a result of the transformation w = f(z) = u +
iv, the function U(x, y), harmonic in the domain G, transforms into the
function Ũ = Ũ(u, v), harmonic in the domain G′, and if only if |f ′(z)|2 6= 0.

Consider the equations

∆ϕ +
1
4

ρ1ϕ = 0, (2.75)

∆ψ − 3
4

ρ1ψ = 0, (2.76)

where ρ1 = 1
ρ2

[(
∂ρ
∂x

)2 +
(

∂ρ
∂y

)2]. The transformations

ϕ = ϕ
[
x(u, v), y(u, v)

]
= ϕ̃(u, v), (2.77)
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ψ = ψ
[
x(u, v), y(u, v)

]
= ψ̃(u, v) (2.78)

result in the equalities

ϕxx + ϕyy +
1
4

1
ρ2(x, y)

[(∂ρ

∂x

)2

+
(∂ρ

∂y

)2]
ϕ(x, y) =

{
ϕ̃uu + ϕ̃vv+

+
1
4

1
ρ̃(u, v)

[(∂ρ̃

∂u

)2

+
(∂ρ̃

∂v

)2]
ϕ̃(u, v)

}
|f ′(z)|2 = 0, |f ′(z)|2 6= 0, (2.79)

ψxx + ψyy − 3
4

1
ρ2(x, y)

{(∂ρ

∂x

)2

+
(∂ρ

∂y

)2}
ψ(x, y) =

=
{

ψ̃uu + ψ̃vv − 3
4

1
ρ̃(u, v)

[(∂ρ̃

∂u

)2

+
(∂ρ̃

∂v

)2]
ϕ̃(u, v)

}
|f ′(z)|2 = 0, (2.80)

since |f ′(z)| 6= 0, and hence from (2.79) and (2.80) we have

ϕ̃uu + ϕ̃vv +
1
4

1
ρ̃2

[(∂ρ̃

∂u

)2

+
(∂ρ̃

∂v

)2]
ϕ̃ = 0, (2.81)

ψ̃uu + ψ̃vv − 3
4

1
ρ̃2

[(∂ρ̃

∂u

)2

+
(∂ρ̃

∂v

)2]
ψ̃ = 0. (2.82)

It follows from the above-said that using the transformations (2.68), (2.71)
and Green’s function (2.62), we can reduce the problem (2.31) (or (2.32)) to
the solution of Fredholm’s integral equation of second kind, where the given
functions, the kernel and the right-hand side are defined in the domain of
the unit circle. In this case, for the convergence of Neumann’s series we can
indicate a simpler condition. In particular, if the kernel is bounded, then for
the convergence of Neumann’s series there exist more plausible condition.

In hydrodynamics, there exists the method of sources and channels. This
method has been for the first time applied by Rankin to the spatial problem
of body streamline. The method consists in the replacement of the body
streamline by such a system of sources and channels that the body surface
is one of the stream surfaces; note that the algebraic sum of abundance
sources should be equal to zero. The choice of a system of sources and
channels by means of a preassigned surface formed of a body streamline is
of great mathematical difficulty ([1-3], [7]).

Below we will present an algorithm for finding the functions ϕ0(ξ, η),
ψ0(ξ, η), z(ξ, η) and ρ(ξ, η). Recall that the plane of liquid motion coincides
with that of the complex variable σ = z + iρ, i = −√−1.

In the domain S(σ) with the boundary `(σ) we seek for a complex
potential (i.e., a potential divided by the filtration coefficient) ω(σ) =
ϕ0(z, ρ)+ iψ0(z, ρ). The velocity potential ϕ0(z, ρ) and the stream function
ψ0(z, ρ) satisfy the Cauchy–Riemann conditions and the boundary condi-
tions

akjϕ0(z, ρ)+ak2ψ0(z, ρ)+ak3z+ak4ρ = fk, k = 1, 2, (z, ρ) ∈ `(σ), (2.83)
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where akj , fk, k = 1, 2, j = 1, . . . , n, are the given piecewise constant real
functions; fk, k = 1, 2, depend on an unknown parameter Q of the filtrated
liquid discharge.

Using (2.60), we can find a part of the boundary `(ω0) of S(ω0) and the
boundary `(w0) of the domain of complex velocity S(w0), where w0(z) =
dω0/dσ = ω′0(ζ)

σ′(ζ) , excluding some coordinates of those vertices of circular
polygons which are connected with cut ends. By means of the functions
ω0(σ) and w(σ), we map conformally the domain `(σ) with the boundary
`(σ) onto the domains S(ω0) and S(w). The domain S(w) is a circular
polygon.

Angular points of the boundaries `(σ), `(ω0) and `(w) which can be
encountered at least at one of them when passing in the positive direction
we denote by Ak, k = 1, . . . , n.

The half-plane Im(ζ) > 0 of the plane ζ = ξ + iη is mapped conformally
onto the domains S(σ), S(ω0) and S(w0). We denote the corresponding
mapping functions by σ(ζ), ω0(ζ), w(ζ0) = ω′0(ζ)/σ′(ζ), dω0(ζ)/dζ = ω′0(ζ),
dσ(ζ)/dζ = σ′(ζ). To the angular points Ak, k = 1, . . . , n, there correspond
the points ζ = ek, k = 1, . . . , n, along the axis t with −∞ < e1 < e2 < · · · <
en−1 < en < +∞, and ξ = en+1 = 0 is mapped into the nonangular point
A∞ of the boundary `(σ) which is located between the points An and A1.

3. Construction of the Functions dω0(ζ)/dσ(ζ), ω0(ζ) and σ(ζ)

By σ(ξ) = z(ξ) + iρ(ξ), ω0(ξ) = ϕ0(ξ) + iψ0(ξ), w0(ξ) = u0(ξ) + iv0(ξ)
we denote the boundary values of the functions σ(ζ), ω0(ζ) and w0(ζ) as
ζ → ξ, ζ ∈ Im(ζ) > 0. By σ(ξ), ω0(ξ) and w0(ξ) we denote the complex
conjugate functions corresponding to the functions σ(ξ), ω0(ξ) and w0(ξ).

Introduce the vectors Φ0(ξ)=[ω0(ξ), σ(ξ)], Φ0(ξ)= [ω0(ξ), σ(ξ)], Φ′0(ξ) =
[ω′0(ξ), σ

′(ξ)], Φ0
′(ξ) = [ω0

′(ξ), σ ′(ξ)], f(ξ) = [f1(ξ), f2(ξ)]. Then the
boundary conditions ([26]–[31])

Φ0(ξ) = g(ξ)Φ0(ξ) + i · 2G−1f(ξ), −∞ < ξ < +∞, (3.1)

where G−1(ξ)G(ξ) = g(ξ) is a piecewise constant nonsingular second rank
matrix with the points of discontinuity ξ = ek, k = 1, . . . , n; G−1(ξ) and
G(ξ) are, respectively, the inverse and complex conjugate matrices to the
matrix G(ξ), and the vector f(ξ) is defined by means of (2.83).

Differentiating (3.1) along the boundary ξ, we obtain

Φ′0(ξ) = g(ξ)Φ′0(ξ), −∞ < ξ < +∞. (3.2)

It can be verified that the equality g(ξ) = G
−1

(ξ)G(ξ) holds. For the points
ξ = ej , j = 1, . . . , n, let us consider the characteristic equation ([1]–[31])

det
[
g−1

j+1(ej + 0)gj(ej − 0)− λE
]

(3.3)
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with respect to the parameter λ, where E is the unit matrix, gj(ξ), ej < ξ <

ej+1, g−1
j+1(ej +0), gj(ej−0) are the limiting values of the matrices g−1

j+1(ξ),
gi(ξ) at the point ξ = ej from the right and from the left, respectively.

By means of the roots λkj of the equation (3.3) we define uniquely the
numbers αkj = (2πi)−1 ln λkj , k = 1, 2; j = 1 . . . , n ([1]–[30]).

Suppose that among the points Ak, k = 1 . . . , n, of the boundaries `(σ)
and `(ω0) there exist removable points to which on the boundary `(w0) of
S(w0) there correspond regular nonangular points ([26]–[30]).

For the sake of simplicity we assume that the removable singular point
coincides with the point ξ = ej to which on the boundaries `(σ) and `(ω0)
there correspond the angles π/2, while on the boundary `(w0) the angle π.
To remove this point from the homogeneous boundary conditions (3.2), we
introduce a new unknown vector Φ1(ξ) ([26]–[30])

Φ′0(ξ) = χ1(ξ)Φ1(ξ), (3.4)

where

χ1(ξ =

√
ξ − ej−1

ξ − ej
. (3.5)

After the passage from the vector Φ′(ξ) to Φ1(ξ), we multiply the matrix
gi(ξ) by (−1).

The boundary conditions with respect to Φ1(ξ) take the form

Φ1(ξ) = g∗(ξ)Φ1(ξ), (3.6)

where
g∗(ξ) = [χ1(ξ)]

−1g(ξ)[χ
1
(ξ)]. (3.7)

On the contour `(w0) we renumerate singular points and denote them by
aj , j = 1, . . . ,m. We denote the characteristic points defined uniquely and
those corresponding to the points t = aj again by αkj , k = 1, 2, j = 1, . . . , m.
They satisfy the Fuchs condition.

Now we write the Fuchs class equation ([1]–[39])

u′′(ξ) + p(ξ)u′(ζ) + g(ξ)u(ξ) = 0, (3.8)

where

p(ξ) =
m∑

j=1

(1− α1j − α2j)(ξ − aj)−1, (3.9)

q(ξ) =
m∑

j=1

[
α1jα2j(ξ − aj)−2 + cj(ξ − aj)−1

]
, (3.10)

where cj are unknown real accessory parameters satisfying the conditions

N1 =
m∑

j=1

cj = 0. (3.11)
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By means of matrices, we write the equation (3.8) in the form of the
system ([26]–[39)]

χ′(ξ) = χ(ξ)Φ(ξ), (3.12)

χ(ξ) =
(

u1(ξ) u′1(ξ)
u2(ξ) u′2(ξ)

)
, Φ(ξ) =

(
0 −g(ξ)
1 −p(ξ)

)
. (3.13)

Further, using linearly independent solutions u1(ξ) and u2(ξ) of the equation
(3.8), we construct the general solution

w(ξ) =
pu1(ξ) + qu2(ξ)
ru1(ξ) + su2(ξ)

(3.14)

of the Schwarz equation ([26]–[30])

{w; ξ} =
w′′′(ξ)
w′(ξ)

− 1, 5
(w′(ξ)

w′(ξ)

)2

= R(ξ), (3.15)

where

R(ξ) = 2q(ξ)− p′(ξ)− 0, 5[p(ξ)]2 =

=
m∑

j=1

{
0, 5

[
1− (α1j − α2j)2

]
(ζ − aj)−2 + c∗j (ξ − aj)−1

}
, (3.16)

α1j − α2j = νj , j = 1, . . . ,m,

c∗j = 2ci − βj

m∑

k=1, k 6=j

βk(aj − ak)−1,

βk = 1− a1k − a2k, k = 1, . . . , m,

(3.17)

p, q, r and s are constants of integration of (3.14) which satisfy the condition
ps−rq 6= 0, πνj is the interior angle at the vertex Bj of the circular polygon.

Using (3.14), we map conformally the half-plane Im(ζ) > 0 (or Im(ζ) < 0)
onto the domain S(w) with the boundary `(w). Expanding the functions
R(ζ) into the serie of powers of 1/ζ, we obtain

R(ζ) =
∞∑

k=1

Mkζ−k. (3.18)

Since the point ζ = ∞ is the image of the nonsingular point of the boundary
`(σ), the conditions ([1]–[31])

M1 =
m∑

k=1

c∗k = 0, (3.19)

M2 =
m∑

k=1

[
akc∗k + 0, 5(1− ν2

k)
]

= 0, (3.20)
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M3 =
m∑

k=1

[
a2

kc∗k + ak(1− ν2
k)

]
= 0 (3.21)

should be fulfilled. From the condition (3.19) follows (3.11), and vice versa.
We can obtain the conditions (3.20) and (3.21) in somewhat different way
and in another form. Taking into account (3.12), the conditions (3.19)–
(3.21) allow one to define three parameters cj , j = 1, 2, 3, of the parameters
cj , j = 1, . . . , m. Moreover, we choose arbitrarily three of the parameters
t = aj , j = 1, . . . , m and fix them according to the Riemann theorem.
Therefore R(ζ) defined by the formula (3.16) will depend on 2(m − 3) un-
known parameters aj , cj , j = 1, . . . ,m − 3. The equation (3.18) near the
point ξ = aj can be rewritten as [26–31]

(ζ − aj)2u′′(ξ) + (ξ − aj)pj(ξ)u′(ξ) + qj(ξ)u(ξ) = 0, (3.22)

where

pj(ξ) = p0j +
∞∑

n=1

pnj(ξ − aj)n, (3.23)

pnj = (−1)n−1
m∑

k=1, k 6=j

βk(aj − ak)−n, βk = 1− α1k − al2k, (3.24)

qj = α1jα2j + cj(ξ − aj) +
∞∑

n=2

qnj(ξ − aj)n, (3.25)

qnj = (−1)n−2
m∑

k=2, k 6=j

[
α1kα2k(n− 1)+

+ ck(aj − ak)
]
(aj − ak)−n, n = 2, 3, . . . , (3.26)

q0j = α1jα2j , q1j = cj , j = 1, . . . , m. (3.27)

4. Local Solutions

Local solutions of the equation (3.32) for the points ξ = aj , j = 1, . . . , m,
are sought in the form

uj(ξ) = (ξ − aj)αj ũj(ξ), ũj(ξ) = 1 +
∞∑

n=1

γnj(ξ − aj)n, (4.1)

where γ0j , n = 1, . . . ,∞, j = 1, . . . , m, are defined by the recurrence for-
mulas ([26]–[31])

f0j(αj) = αj(αj−1) + pnjαj + q0j = 0, (4.2)

γ1jf0j(αj + 1) + f1j(αj) = 0, (4.3)

γ2jf0j(αj + 2) + γ1jf1j(αj + 1) + f2j(αj) = 0, (4.4)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where
fn(αj) = α1jpnj + qnj . (4.5)

If the difference α1j − α2j , j = 1, . . . , m, is noninteger, then using the
formulas (4.3)–(4.5), we construct the linearly independent solutions (3.32),

uki(ξ) = (ξ − aj)αkj ũkj(ξ),

ũkj(ξ) = 1 +
∞∑

n=1

γk
nj(ξ − aj)n, k = 1, 2, j = 1, . . . , m.

(4.6)

However, if α1j − α2j = n, n = 0, 1, 2, then u1j(ξ) is constructed by the
formulas (4.3)–(4.5), while u2j(ξ) by the Frobenius method ([24], [26]–[31]).
Note that for α1j − α2j = 0, the function u2j(ζ) has the form

u2j(ξ) = u1j(ξ) ln(ξ − aj) + (ξ − aj)α1j

∞∑
n=1

γ2
nj(ξ − aj)n, (4.7)

where

γ2
nj =

{dγ1j(αj)
dαj

}
αj=α2j

.

If α1j − α2j = n, n = 1, 2, then for the construction of u2j(ξ) we have to
differentiate the equality

u2j(ξ) = (ξ − aj)αj

[
αj − α2j +

∞∑
n=1

γ2
nj(ξ − aj)n

]
(4.8)

with respect to αj , then take αj → α2j , we obtain

u2j(ξ) = (ξ − aj)α2j

[ ∞∑
n=1

lim
αj→α2j

γnj(αi)(t− aj)n
]
ln(t− aj)+

+ (t− aj)α2j

{
1 +

∞∑
n=1

[dγ1j(αj)
dαj

]
αj=α2j

(t− aj)n
}

. (4.9)

P. Ya. Polubarinova–Kochina has proved that a solution for the cut
end u2j(ξ), where α1j − α2j = 2, does not involve a logarithmic term.
Moreover, for such points she also obtained an algebraic equation connecting
the parameters aj , cj , j = 1, . . . , m. To construct u2j(ξ) uniquely, we
suggested in our works the following method. For the point t = aj , the
equality (4.4) fails to be fulfilled since

f0j(αj + 2) = 0, αj → α2j . (4.10)

For the equality (4.4) to take place as αj → α2j , it will be necessary and
sufficient to require the condition

γ1jf1(αj + 1) + f2(αj) = 0, α1j → α2j + 2. (4.11)
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After simplification, (4.11) takes the form ([26]–[31])

q2j + q2
1j + q1jp1j = 0. (4.12)

To construct u2j(ξ) uniquely, it suffices to construct γ2
2j(α2j) and then

make use of the formulas (4.3)–(4.5) ([26]–[39]). Indeed, suppose α1j 6= α2j .
Then using (4.4), we find γ2j(αj) and obtain

γ2j(αj) = −γ1j(αj)f1j(αj + 1) + f2j(αj)
f0(αj + 2)

. (4.13)

In the formula (4.13) we remove uncertainty and then pass to the limit
αj → α2j . We have

γ2
2j = −0, 5

[
p1j(p1j + 2q1j) + p2j

]
. (4.14)

Next we define local solutions near the point t = ∞. The functions p(ξ)
and q(ξ) near the point t = ∞ can be represented in the form

p(ξ) = ξ−1
∞∑

n=0

pn∞ξ−4, q(ξ) = ξ−2
∞∑

n=0

qn∞ξ−n, (4.15)

where

pn∞ =
m∑

k=1

βkan
k , p0∞ = 6, (4.16)

qn∞ =
m∑

k=1

[
α1kα2k(n + 1) + ckak

]
an

k . (4.17)

Local solutions near the point ξ = ∞ have the form

u∞(ξ) = ξ−∞
∞∑

n=1

γn∞ξ−(α∞+n), (4.18)

where γn∞, n = 1, . . . ,∞, are defined by the formulas

f0∞(α∞) = α∞(α∞ + 1)− p0∞α∞ + q0∞ = 0, (4.19)

α1∞f0∞(α∞ + 1)− p1∞α∞ + q1∞ = 0, (4.20)

α2∞f0∞(α∞ + 2) + γ1∞(α∞ + 1)− p2∞α∞ + q2∞ = 0, (4.21)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where
fk∞ = qk∞ − (α∞ + k)pk∞. (4.22)

Since t = ∞ is the image of the nonangular point, the equation (4.19)
should have the roots α1∞ = 3, α2∞ = 2. Consequently,

q0∞ =
m∑

k=1

[
α1kα2k + akck

]
= 6. (4.23)
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As far as α1∞−α2∞ = 1, the equations (4.20)–(4.22) allow one to define
only one solution u1∞(ξ). To find u2∞(ξ) as α∞ → α2∞, it is necessary and
sufficient that the condition

q1∞ − p1∞α2∞ = 0 (4.24)

takes place. To determine γ2
1∞, we act as follows. By virtue of (4.20), for

α1∞ 6= α2∞, we find γ1∞ and obtain

γ1∞ =
p1∞α∞ − q1∞
f0∞(α∞ + 1)

. (4.25)

Since the numerator and the denominator in (4.25) vanish as α∞ → α2∞,
we have to remove uncertainty. We uniquely obtain ([26]–[31])

γ2
1∞ = p1∞. (4.26)

Having defined γ2
1∞, we can find the remaining γ2

n∞, n = 2, . . . ,∞, by
using the formulas (4.20)–(4.22). Consequently, u2∞(ξ) is defined uniquely.
Finally, we obtain

uk∞(ξ) = ξ−αk∞ +
∞∑

n=1

γk
n∞ξ−αk∞−n, k = 1, 2. (4.27)

The system (3.19), (3.20), (3.21) coincides respectively with the system
(3.11), (4.23), (4.24), and vice versa.

Local solutions ukj(ξ), k = 1, 2, j = 1, . . . , m, contain multi-valued func-
tions of which we choose one-valued branches

exp
[
βkj ln(ξ − aj)

]
> 0, t > aj ,

{
exp

[
αkj ln(ξ − aj)

]}−1

= exp
[
iπαkj

] {
exp ln(aj − ξ)

}
, aj − ξ > 0,

{
exp

[
αkj ln(ξ − aj)

]}−1

= exp
[− iπαkj

] {
exp

[
αkj ln(aj − ξ)

]}
,

aj − t > 0.

For the equation (3.8), in the neighborhood of every singular point ξ =
aj , j = 1, . . . , m + 1, and in the neighborhood of the points t = a∗1 =
(aj + aj+1)/2, j = 1, . . . , m− 1, we construct respectively ukj(ξ), k = 1, 2,
j = 1, . . . , m + 1 and γkj(ξ), k = 1, 2, j = 1, . . . , m− 1.

A solution of (3.6) is sought by means of the matrix TX(ξ), where χ(ξ)
is a solution of (3.12). If χ(ξ) is a solution of (3.12), then TX(ξ) is likewise
a solution of (3.12), where the constant matrix is defined as

T =
(

p q
r s

)
, detT 6= 0, (4.28)

p, q, r and s are constants of integration of the equation (3.14).
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5. Fundamental Matrices

The local fundamental matrices Θj(ξ), σj(ξ), Θ∗j (ξ), Θj(ξ), where Θj(ξ)
is the matrix, complex-conjugate to the matrix Θj(ξ), are defined as follows:

Θj(ξ) =
(

u1j(ξ) u′1j(ξ)
u2j(ξ) u′2j(ξ)

)
, aj < ξ < aj+1, j = 1, . . . , j − 1, (5.1)

Θ∗j (ξ) =

(
u∗1j(ξ) u

′∗
1j(ξ)

u∗2j(ξ) u
′∗
2j(ξ)

)
, aj−1 < ξ < aj , (5.2)

σj(ξ) =
(

σ1j(ξ) σ′1j(ξ)
σ2j(ξ) σ′2j(ξ)

)
, ξ=

aj +aj+1

2
=a∗j , j =1, . . . , m−1, (5.3)

Θ∗j (ξ) = ϑ±j Θ∗j (ξ), aj−1 < ξ < aj , (5.4)

Θ∞(ξ) =
(

u1∞(ξ) u′1∞(ξ)
u2∞(ξ) u′2∞(ξ)

)
, (5.5)

ϑ±j =
(

exp(±iπα1j) 0
0 exp(±iπα2j)

)
,

ϑ
+

j = ϑ−j , α1j − α2j 6= n, n = 0, 1, 2,

(5.6)

while if α1j − α2j = n, n = 0, 1, 2, we have

ϑ±j = exp
[± iπα2j

] (
1 0
±iπ 1

)
, n = 0, 2, (5.7)

ϑ±j = exp
[± iπα2j

] (−1 0
∓πi 1

)
, n = 1. (5.8)

One Essential Remark. The fact that the series ukj(ξ), k = 1, 2, j =
1, . . . , m, converge weakly this makes the process of calculations difficult.
To remove this drawback, we act as follows ([26]–[31]). We replace the series
ukj(ξ), k = 1, 2, j = 1, . . . ,m + 1, by strongly and uniformly convergent
functional series. Towards this end, it suffices to write the series ukj(ξ),
k = 1, 2, j = 1, . . . , m + 1, in a somewhat different form:

ukj(ξ) = (ξ − aj)αkj ũkj(ξ − aj),

ũkj(ξ − aj) = 1 +
∞∑

n=1

γk
nj(ξ − aj), k = 1, 2; j = 1, . . . , m,

(5.9)

uk∞(ξ) = ξ−αk∞
(
1 +

∞∑
n=1

γk
n∞(ξ)

)
, (5.10)

where γk
nj , γk

n∞ are defined through fnj(αj) and fk∞(αj) as follows:

fnj

[
(ξ − aj), βk

]
= αkjpnj(ξ − aj) + qmj(ξ − aj), (5.11)
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pnj(ξ − aj) = −
m∑

k=0, k 6=j

βj

( ξ − aj

aj − ak

)n

, n = 1, 2, . . . , (5.12)

q1j(ξ − aj) = cj(ξ − aj), (5.13)

qnj(ξ − aj) = (−1)n−2
m∑

k=1, k 6=j

[
α1kα2k(n− 1) + ck(aj − ak)

]×

×
( ξ − aj

aj − ak

)n

, n = 1, 2, . . . , (5.14)

∣∣∣ ξ − aj

aj − ak

∣∣∣ < 1, k 6= j,

pn∞(ξ) =
∞∑

k=1

βk

(ak

ξ

)n

,

qn∞(ξ) =
∞∑

k=1

[
α1jα2j(n + 1) + ckak

](ak

ξ

)n

, n = 01, 2, . . . .

(5.15)

The local matrix Θ−j (ξ) is complex conjugate to the matrix Θ+
j (ξ). The

real matrices Θj(ξ), Θ∗j (ξ) are local solutions of the system of equations
(3.22). Suppose that the elements of these matrices converge on some part
of the interval aj−1 < ξ < aj , on which the matrices Θ∗j (ξ) and Θj−1(ξ) are
connected by the following matrix identity ([26]–[31]):

Θ∗j (ξ) = Tj−1Θj−1(ξ), j = m,m− 1, . . . , 2, (5.16)

from which the matrices Tj−1 are defined uniquely. Assume also that the
domains of convergence of the matrices Θ∗j (ξ) and Θj−1(ξ) do not intersect.
In this case, we construct at the point ξ = a∗j = (aj−1 + aj)/2 the matrix
σj(ξ) which converges in the interval aj−1 < ξ < aj . It is seen that one can
always pass from the matrix Θ∗j (ξ) to the matrix Θj−1(ξ) with the following
sequence:

Θ∗j (ξ) = Taj σj(ξ), σj(ξ) = T ∗j−1(ξ)Θj−1(ξ). (5.17)

It follows from the above-said that Θm(ξ) can be analytically continued
along the whole axis ξ.

To define the functions ω′0(ξ) and z′(ξ) in the interval (−∞,+∞), we
consider the matrices ([26]–[31])

χ±(ξ) = TΘ∗m(ξ), ξ > am; Θ+
m(ξ) = Θ−m(ζ), am < ξ < +∞. (5.18)

From (5.18) we have T = T .
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We continue the matrix (5.18) along the real axis ξ and use the notation

χ∗(ξ) = χ(ξ), ϑ+
j = ϑj .

We obtain

χ(ξ) = TϑmΘ∗m(ξ), am−1 < ξ < am,

χ(ξ) = TϑmTm−1Θm−1(ξ), am−1 < ξ < am,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ(ξ) = TϑmTm−1ϑm−1Θ∗m−1(ξ) · · ·T1ϑ1Θ∗1(ξ), ξ < a1,

χ(ξ) = TϑmTm−1ϑm−1 · · ·T1ϑ1T−∞Θ∞(ξ), −∞ < ξ < ∞,

(5.19)

where
Θ∗m(ξ) = Tm−1Θm−1(ξ), am−1 < ξ < am,

Θ∗m−1(ξ) = Tm−2Θm−2(ξ), am−2 < ξ < am−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ∗2(ξ) = T1Θ1(ξ), a1 < ξ < a2,

Θ∗1(ξ) = T−∞Θ∞(ξ), −∞ < ξ < a1,

Θm(ξ) = TmΘ∞(ξ), am < ξ < +∞.

(5.20)

(5.20) allows one to determine the matrices T1, T2, . . . , Tm−1, T−∞, T+∞.
Substituting the matrices (5.19) into the boundary conditions (3.6) and then
multiplying successively every matrix equality from the left by [Θ∗j (ξ)]

−1,
j = m,m− 1, . . . , 1, we obtain the system of matrix equations ([26]–[31])

Tϑm = gm−1Tϑ−m, ξ = am,

TϑmTm−1ϑm−1 = gm−2TϑmTm−1ϑm−1, t = am−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TϑmTm−1ϑm−1 · · ·T1ϑ1 = TϑmTm−1ϑm−1 · · ·T1ϑ1, ξ = a1.

(5.21)

The number of matrix equations is m. Every matrix equation gives two real
equations. Consequently, we obtain the system consisting of 2m equations
with respect to the parameters p, q, r, s, aj , cj , j = 1, . . . , m. From the
system (5.20) we define the elements of the matrices Tj , j = 1, . . . , m − 1,
and substitute them in (5.21).

According to Riemann’s theorem, we can choose arbitrarily three of the
parameters ξ = aj , j = 1, . . . , m, and fix them. Thus we obtain the system
of equations (3.11), (4.23, (4.25).

Suppose that one of the vertices of the circular polygon has a cut with
the angle 2π at the cut end. If to that point on the contour `(σ) there
corresponds a regular nonangular point, then instead of two equations we
have only one, (4.12). Under such an assumption we will have a system of
2(m+1) equations with respect to 2m+1 parameters (aj , j = 1, . . . , m−3,
cj , j = 1, . . . , j, p, q, r, s).
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From the system (3.19), (4.23), (4.24), (4.12) we can define four accessory
parameters and then substitute them in the remaining equations.

For the sake of simplicity, we assume that on the plane of complex velocity
there is a circular pentagon whose one vertex has a cut with the angle 2π
at the cut end. In this case, the homogeneous problem (3.6) is reduced to
a system of three higher transcendent equations. It is assumed that such a
system of equations has a solution.

If we denote v1(ξ) and v2(ξ), where

v1(ξ) = pu1(ξ) + qu2(ξ), (5.22)

v2(ξ) = ru1(ξ) + su2(ξ) (5.23)

are the components of the vector Φ(ξ), or what comes to the same thing,
the components of the first row of the matrix χ(ξ), then by the formula

w(ξ) =
v1(ξ)
v2(ξ)

(5.24)

we obtain the general solution (3.14). The components ω′(z) and z′(ξ) of
the vector Φ′(ξ) are defined by the equalities

dω0(ξ) = v1(ξ)χ1(ξ)dξ, −∞ < ξ < +∞, (5.25)

dσ(ξ) = v2(ξ)χ1(ξ)dξ, −∞ < ξ < +∞, (5.26)

where v1(ξ)χ1(ξ), v2(ξ)χ1(ξ) satisfy the boundary conditions (3.1) and those
at the singular points ξ = ej , j = 1, . . . , n, ξ = ∞. The integration of (5.25)
and (5.26) in the intervals (−∞ < ξ), (ej , ξ), j = 1, . . . , n, provides us with

ω0(ξ) =

ξ∫

−∞
v1(ξ)χ1(ξ) dξ + ω(−∞), (5.27)

σ(ξ) =

ξ∫

−∞
v2(ξ)χ1(ξ) dξ + σ(−∞), (5.28)

ω(ξ) =

ξ∫

ej

v1(ξ)χ1(ξ) dξ + ω(ej+), (5.29)

σ(ξ) =

ξ∫

ej

v2(ξ)χ1(ξ) dξ + σ(ej ,+0). (5.30)

Considering (5.29) and (5.30) for ξ = ej+1, we obtain a system of equations
with respect to the removable singular points ξ = ej+1 and to another un-
known parameters. The equations (5.29) and (5.30) allow one to determine
the parametric equation of the depression curve.
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6. One Essential Remark

Consider one simplest integral Fredholm equation of the second kind
([33]–[39])

u(x)− λ

b∫

a

k(x, t)u(t) dt = f(x), (6.1)

where the unknown function u(x) depends on the real variable x which
changes in the same interval [a, b] as the integration variable t; this require-
ment refers to all classes of integral equations we deal with in the present
work. The interval may be finite or infinite. The functions k(x, t) and f(x)
are assumed to be known and defined almost everywhere respectively in the
square a ≤ x ≤ b, a ≤ t ≤ b and in the interval [a, b]. The function k(x, t)
is called the kernel of the integral equation. It is assumed that the kernel
k(x, t) of Fredholm’s equation satisfies the inequality

b∫

a

b∫

a

|k(x, t)|2 dx dt < ∞, (6.2)

while the free term of Fredholm’s equation satisfies the inequality
b∫

a

|f(x)|2 dx < ∞. (6.3)

It is necessary to consider Fredholm’s equations of more general type.
Let Ω− be a measurable set in the space of any number of variables, x

and t be the points of that set, and µ be a nonnegative measure defined in
Ω. The equation

u(x)− λ

∫

Ω

k(x, t)u(t) dµ(t) = f(x) (6.4)

is likewise called the Fredholm equation whose kernel k(x, t) and free term
f(x) satisfy respectively the inequalities

∫

Ω

∫

Ω

|k(x, t)|2 dµ(x) dµ(t) < 0,

∫

Ω

|f(x)|2 dµ(x) < ∞. (6.5)

The kernel k(x, t) satisfying (6.5) is called the Fredholm one.
The unknown function u(x) is quadratically summable in (a, b), and

hence belongs to the functional space L2(a, b). A solution of the equation
(6.4) belongs to the space L2(µ, Ω) of functions which are quadratically
summable with respect to µ. The inequalities (6.3) and (6.5) imply that
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the free term of the equation belongs to the same space. The parameter λ
may take both real and complex values.

Denote the volume element by dx, and the integral (6.5) by B2
k:∫

Ω

∫

Ω

|k(x, t)|2 dx dt = B2
k. (6.6)

As is known, Fredholm’s equation has either finite, or countable set of char-
acteristic numbers; if there is a countable set of numbers, then they tend to
infinity. But there are kernels which have no characteristic numbers at all,
for example, Volterra kernels. A complete characteristic of such kernels is
given in the following Lalesko’s theorem. Let k(x, t) be a Fredholm kernel
and kn(x, t) be its iteration. For the kernel k(x, t) to have no characteristic
numbers, it is necessary and sufficient that

An =
∫

Ω

kn(x, x) dx = 0, n = 3, 4, 5, . . . . (6.7)

Note that the numbers An are called the traces of the kernel k(x, t). Lalesko
has proved his theorem for bounded kernels, and a general proof has been
given by S. N. Krachkovskĭı ([33]–[39]).

The determinant and Fredholm’s minors are represented as a quotient of
two entire functions of λ. Note that the poles of the resolvent, the charac-
teristic numbers of the kernel k(x, t), do not depend on x and t. Thus the
resolvent should be of the form

Γ(x, t;λ) =
D(x, t; λ)

D(λ)
, (6.8)

where D(x, t; λ) and D(λ) are entire functions of λ. If we succeed in con-
structing these functions, then we will be able to find the resolvent, and
a solution of the integral equation will be constructed by the well-known
formula. For the numerator and the denominator of the fraction in (6.8) we
give representations in the form of the so-called Fredholm series

D(x, t; λ) =
∞∑

n=1

(−1)n

n!
Bn(x, t)λn,

D(λ) =
∞∑

n=0

(−1)n

n!
Cnλn,

(6.9)

where the formulas

C0 = 1, B0(x, t) = k(x, t), Cn =
∫

Ω

Bn−1(x, x) dx, n > 0,

Bn = Cnk(x, t)− n

∫

Ω

k(x, τ)Bn−1(τ, t) dτ

(6.10)
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allow one to calculate recursively the coefficients Bn(x, t) and Cn.
Below, we will need the well-known formula ([33]–[39])

D′(λ)
D(λ)

= −
∞∑

n=1

Anλn−1, (6.11)

where

An =
∫

Ω

kn(x, x) dx, n = 1, 2, 3, . . . , (6.12)

are the traces of the kernel k(x, t) mentioned above.
If the kernel is not continuous having second order discontinuities, then

the integrals (6.12) defining the coefficients c1, c2, c3, . . . from the formulas
(6.10), make no sense. For example, when the kernel k(x, t) contains as a
multiplier Green’s function G[P, Q] of the Dirichlet problem for harmonic
functions which is symmetric with respect to P and Q, equals to zero on
the boundary C and is analytic at all points P of the domain D except the
points P = Q where it has logarithmic singularity, the kernel k(x, t) will
have logarithmic singularity as well. Then the integral

∫
Ω

k(x, x) dx defining

the coefficient c1 makes no sense. This difficulty can be disregarded by
putting, for example, the density c1 = 0.

The iterated kernel k2(s, t) has the form

k2(s, t) =

b∫

a

k(s, t1)k(t1, t) dt1. (6.13)

The integral k2(s, t) has sense for any s and t from [a, b] since in the unfa-
vorable case, when s and t coincide, we have the following estimate of the
integrand:

∣∣k(s, t1k(t1, s)
∣∣ ≤ M1

|s− t1|ε1
, ε1 > 0. (6.14)

It is proved that the function k2(s, t) is continuous in the square a ≤ x ≤ b,
a ≤ t1 ≤ b. The functions

kn(s, t) =

b∫

a

k(s, t1)kn−1(t1, t) dt1, n = 1, 2, 3, . . . , (6.15)

∣∣k(s, t1kn−1(t1, t)
∣∣ <

Mn−1

|s− t1|ε1
, εn−1 > 0, (6.16)

are estimated analogously. The integral kn(s, t), n = 1, 2, 3 . . . , makes sense
for any positions s and t from [a, b], and the estimates of the integrand have
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the form (6.16). Thus we have to put

An =
∫

Ω

kn(s, s) ds = 0, n = 1, 2, 3, . . . , n, (6.17)

and then kn(x, x) = 0, n = 1, 2, 3, . . ., cn = 0, n = 1, 2, 3, . . . , n. Taking into
account (6.17), we obtain from (6.11) that

D′(λ) = 0, (6.18)

and from (6.18) we have
D(λ) = 1. (6.19)

Consequently, the kernel of the integral equation (2.43) has no character-
istic numbers. Analogously, one can prove that the considered in our work
[39] kernel of the integral equation (3.35) has no characteristic numbers.
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Chapter V

A General Method of Constructing the Solutions
of Spatial Axisymmetric Stationary with Partially

Unknown Boundaries Problems of the Jet
and Filtration Theories

Abstract. We consider a general mathematical method of construct-
ing the solutions of spatial axisymmetric stationary with partially unknown
boundaries problems of the jet and filtration theories. The x-axis coincides
with the symmetry axis, and the distance to the x-axis is denoted by y. The
use is made of the right coordinate system. Of infinitely many half-planes
we arbitrarily select one passing through the symmetric axis. But for the
sake of effectiveness sometimes it is more convenient to take two symmetric
half-planes lying in one plane. The boundary of the domain under consider-
ation consists of the known and unknown parts. The known ones consist of
straight lines and their portions, while the unknown parts consist of curves.
Every portion of the boundary is assigned two boundary conditions. The
unknown functions (the velocity potential, the flow function) and their ar-
guments on every portion of the boundary must satisfy two inhomogeneous
boundary conditions.

The system of differential equations with respect to the velocity potential
and flow function is reduced to a normal equation. Unknown functions are
represented as sums of holomorphic and generalized analytic functions.

One problem of the jet theory and one problem of the filtration theory
are solved.

1. Axisymmetric Flows

If the velocity components ux and uy are functions of only x and y,
whereas the velocity component uz is equal to zero, then the motion takes
place in the planes parallel to the plane x, y; the motion is the same in all
such planes. This implies that there is a direction to which all velocities
of the field are perpendicular. The investigation of the plane stationary
liquid motion under the above assumptions is, as is known, characterized by
certain analytic peculiarities, and many interesting problems can be solved
effectively ([1]–[37]).

But, as is known, if the boundaries of the problems under consideration
are partially unknown and the boundary conditions are mixed, then the
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solution of such problems becomes more complicated. The flow function in
terms of which many problems are formulated is, as usual, introduced in the
plane case, but it is very difficult to introduce it in the spatial case. In the
plane problems, the velocity potential and the flow function form analytic
functions, and the theory of such functions is well developed both from
the qualitative and quantitative points of view ([1]–[6]). As it can be seen
below, there exist spatial axisymmetric problems whose solution reduces to
the solution of plane problems ([23]–[25]).

The solution of spatial axisymmetric problems with partially unknown
boundaries present great mathematical difficulties. Such problems are en-
countered in the theory of filtration, in the theory of jet flows, and in many
parts of mathematical physics such, for example, as the mathematical the-
ory of hydromechanics and some other sections of mechanics. The condi-
tions are different in each case. For example, the liquid in the theory of jet
flows is weightless, ideal and incompressible, capillary forces and vortices
are absent, and the flow is stationary. In the problem of filtration the liquid
has weight. Below we will describe a general method of solution of spatial
axisymmetric with partially unknown boundaries problems of the jet and
filtration theories.

The liquid motion is said to be spatial and axisymmetric, if all velocity
vectors lie in half-planes passing through a straight line which is called the
axis of symmetry, and the picture of the field of velocities is the same for
all meridional half-planes. However, from the mechanical point of view
the difference between the half-planes exists, and this is connected with the
direction of velocity which can be determined according to the physical sense
of the variables involved. The spatial field of velocities of an axisymmetric
motion is completely described by the plane field of any of such half-planes.
The symmetry axis is assumed to be the x-axis; the distance to the x-axis is
denoted by y, and by ux and uy we denote, respectively, the components of
the velocity vector ~u(ux, uy) which is connected with the velocity potential
ϕ(x, t) as follows: ~u

[
∂ϕ
∂x , ∂ϕ

∂y

]
. On the plane, the use is made, as usual, of

the right system of coordinates x, y; z = x + iy ([1]–[3]).
The velocity potential ϕ and the flow function ψ are the functions of only

cylindrical coordinates x, y. Due to the axial symmetry, it suffices to study
the flow in any arbitrarily taken meridional half-plane with the system of
coordinates x, y.

We choose arbitrarily one half-plane passing through the symmetry axis x
on which the moving liquid occupies certain simply connected domain S(z),
where z = x + iy, with the boundary S(`); if some part of the boundary
`(z) of the domain S(z) is unknown, we have to find it.
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Here we present another definition of axisymmetry: the flow is axisym-
metric, if the flow lines lie in the half-planes passing thorough the given axis;
a picture of distribution of the flow lines is the same for every half-plane.

The lines of intersection of a surface and the planes passing through the
symmetry axis x are called meridians, whereas the lines of intersection with
the planes perpendicular to the x-axis are called parallels.

In the cylindrical system of coordinates x, θ, y, where from the definition
of axisymmetry follows uθ = 0, the equation of continuity has the form

∂(yux)
∂x

+
∂(yuy)

∂y
= 0, (1.1)

where ux = ∂ϕ
∂x and uy = ∂ϕ

∂y are the projections of velocities onto the axes
x and y.

As is known, the differential equation of any flow line for an axisymmetric
flow, uydx − uxdy = 0, multiplied by y, is the full differential of the flow
function dψ = yuydx− yuxdy, since

ux =
1
y

∂ψ

∂y
, uy = −1

y

∂ψ

∂x
. (1.2)

On the other hand,

ux =
∂ϕ

∂x
=

1
y

∂ψ

∂y
, uy =

∂ϕ

∂y
= −1

y

∂ψ

∂x
. (1.3)

In [25] the reader can find a general method of solution of spatial axisym-
metric stationary with partially unknown boundaries problems of filtration
with the mixed boundary conditions, where the porous medium is non-
deformable, isotropic and homogeneous. Stationary motion of the liquid in
the porous medium obeys the Darcy law.

Below we will present some statements of the well-known authors re-
garding solutions of spatial stationary axisymmetric problems with partially
unknown boundaries ([3], [4], [6]).

Everywhere below, when solving the problems of the jet theory, the use
will be made of the following assumptions. The liquid is weightless, ideal
and incompressible. Capillary forces and vortices are absent, and the flow
is stationary [3].

“Solution of spatial jet problems presents great mathematical difficulty.
At present we are aware only of the works which are devoted to axisymmetric
jet flows. However, even for that simple particular case of spatial problems
no one succeeded in creation of a mathematical device which would be as
convenient as that of the theory of functions of a complex variable. The
authors engaged in the axisymmetric jet flows either restrict themselves
to approximate numerical solutions of the problems, or prove theorems of
general nature” [3].
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“Unfortunately, the methods of the theory of functions of complex vari-
able applied to solution of plane problems have no effective analogue in the
axisymmetric case, or, more precisely, analytic methods provide us with
little information of physical interest” [6].

“The qualitative theory of solutions of the system of differential equa-
tions (1.3) can be constructed rather completely, whereas the quantitative
theory is not as well developed as for the solutions of the (Cauchy–Riemann)
system, i.e., for analytic functions” [4].

Below, we will give a general method of solution of spatial axisymmetric
problems with unknown boundaries both in the theory of filtration and in
the theory of jet flows.

Here we cite some rather frequently encountered boundary conditions for
spatial axisymmetric problems of filtration.

1. On a free surface, the boundary conditions have the form

ϕ(x, y)− kx = const, (1.4)

ψ(x, y) = const, (1.5)

where k = const is the coefficient of filtration;
2. along the boundary of water basins:

ϕ(x, y) = const, (1.6)

a1x + b1y + c1 = 0, a1, b1, c1 = const; (1.7)

3. along the leaking intervals:

ϕ(x, y)− kx = const, (1.8)

a2x + b2y + c2 = 0, a2, b2, c2 = const; (1.9)

4. along the symmetry axis, when a segment of the symmetry axis
x coincides with a portion of the boundary of S(z), the boundary
conditions are of the form

y = 0, (1.10)

ψ(x, y) = 0, (1.11)

but if the symmetry axis does not coincide with any part of the
boundary of the flow domain S(z), then

y = const, const 6= 0, (1.12)

ψ(x, y) = const, const 6= 0; (1.13)

5. along nonpermeable boundaries there take place the following bo-
undary conditions:

ψ(x, y) = const, (1.14)

a3x + b3y + c3 = 0, a3, b3, c3 = const; (1.15)
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6. along the nonpermeable boundary, the velocity vector is directed
along the boundary;

7. the velocity vector is perpendicular to the boundaries of water
basins;

8. along a free surface (depression curve) we have

u2
x + u2

y − kux = 0. (1.16)

In our works [23]–[25] it is assumed that on the plane of complex velocity
we have circular polygons of particular types. Despite this fact, this class
of problem is still wide enough. There exist axisymmetric spatial problems
with partially unknown boundaries, when the boundary of the domain does
not contain the symmetry axis. But there are problems when the boundary
of the domain involves, as is said above, the symmetry axis or its portions.

For circular polygons, in particular for linear ones, we are able to solve
plane with partially unknown boundaries problems of filtration. The state-
ment and solution of the corresponding plane with partially unknown bound-
aries problems of filtration can be found in [2], [12] and [18]–[25].

A flow of a substance moving almost in a constant direction at a distance
exceeding many times its cross-section size is called a jet. In order to get a
jet, it suffices to make a hole in the reservoir whose local pressure exceeds
that of the environment ([3], [5], [6]).

When flowing around an immovable obstacle or a wall protuberance, the
flow, as usual, separates and forms the so-called isolated flow lines. The
liquid between these flow lines forms a trace; right behind the obstacle the
flow is quiet. The traces in the liquid are of dissimilar nature. A trace
forms a chain of vortices stretching at a long distance behind the obstacle.
The importance of traces is that they are the main source of resistance in
the real liquid. As is known, the resistance in nonviscous liquids does not
usually arise for subsonic velocities if the flow separation and the associated
trace are absent ([3]–[6]).

If a body moves in a liquid with great velocity, the trace becomes gaseous;
such a trace is called a cavity. If a ball moves in water at velocity about
8m/sec or more, we obtain a cavity filled with air. Cavities arising at the
velocity 30m/sec or more are filled with steam ([3]–[6]).

Besides, there are still many questions of practical importance which are
connected with formation of jets, traces and cavities ([3]–[6]).

2. Statement of the Problem in the Theory of Jets

The theory of jets considers flows which are bounded partially by rigid
walls and unknown free surfaces of constant pressure ([3]–[6]).

The hydrodynamic problem is assumed to be solved if any of the two
functions ϕ(x, y) and ψ(x, y) is known. Besides the equations (1.2) and
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(1.3), for finding ϕ(x, y) and ψ(x, y) we have the following boundary con-
ditions. The normal velocity on the free and body surfaces is equal to zero
([1]–[7]),

∂ϕ

∂n
= 0, (2.1)

where n is the normal directed into the liquid. The flow function ψ on the
free and body surfaces is a constant value [3],

ψ = const. (2.2)

This condition for ψ is equivalent to the condition (2.1). On the boundaries,
the constant in (2.2) may take different values.

For example, in Figure 1 we can see one-half of the meridional plane
x0y for the problem concerning the flow round a circular cone in a tube.
Since the stream function is defined within a constant summand, we can
put ψ = 0 on the symmetry axis x, on the cone and on the free surface. But
the difference between the values of ψ on the flow surface is equal to the
liquid discharge between these surfaces divided by 2π; hence on the tube
walls ψ = πv∞h2/(2π), where h is the tube radius, and v∞ is the velocity
at infinity of the flow coming from the left ([3]–[6]).

Figure 1

The form of the free surfaces is unknown, but here we have the supple-
mentary condition of constancy of the velocity modulus v, which is equiv-
alent to the condition of pressure constancy. This condition can be written
as ([3])

1
ρ

[(
∂ψ

∂x

)2

+
(

∂ψ

∂y

)2
]

=
(

∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

= v2
0, (2.3)

where v0 is equal to v on the free surface ([3]–[6]).
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3. The Stream Function for the Axisymmetric Flows

If the flow is irrotational, then the stream function ψ should satisfy the
equation

∂ux

∂y
=

∂uy

∂x
, then

∂

∂x

(
1
y

∂ψ

∂x

)
+

∂

∂y

(
1
y

∂ψ

∂y

)
= 0. (3.1)

Recall that the function ϕ(x, t) is harmonic in the cylindrical coordinate
system. Unlike the plane case, the steam function ψ(x, y) is not harmonic.
It follows from (1.3) that

∂ϕ

∂x

∂ψ

∂x
+

∂ϕ

∂y

∂ψ

∂y
= 0. (3.2)

The system (1.1), (1.3) can be rewritten as follows:

∆ϕ(x, t) +
1
y

∂ϕ

∂y
= 0, (3.3)

∆ψ(x, t)− 1
y

∂ψ

∂y
= 0, (3.4)

where ∆ is the Laplace operator.
We write the system (3.3), (3.4) in the form

∂2ϕ

∂x2
+ 4α

∂2ϕ

∂α2
+ 4

∂ϕ

∂α
= 0, (3.5)

∂2ψ

∂x2
+ 4α

∂2ψ

∂α2
= 0, (3.6)

where α = y2.
It can be seen from (3.5) and (3.6) that the given system for α = y2 6= 0

is elliptic. Along the 0x-axis, as α → 0, we have

∂2ϕ

∂x2
+

1
4

∂ϕ

∂α
= 0, (3.7)

∂2ψ

∂x2
= 0. (3.8)

Along the symmetry axis 0x, we have

lim
y→0

∂ϕ

∂y
= 0, lim

y→0

∂ψ

∂y
= 0, lim

y→0

1
y

∂ϕ

∂y
=

∂2ϕ

∂y2
, (3.9)

lim
y→0

1
y

∂ψ

∂y
=

∂2ϕ

∂y2
. (3.10)
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4. Application of Analytic and Generalized Analytic
Functions to Solution of Axisymmetric Problems

We map conformally the half-plane Im(ζ) ≥ 0 (or Im(ζ) < 0) of an
auxiliary complex plane ζ = ξ + iη onto the domain S(z), where z(ζ) =
x(ξ, η)+iy(ξ, η). A part of the boundary S(`) of the domain S(z) is unknown
and should be defined. On the plane ζ = ξ + iη, the system (1.3) takes the
form

∂ϕ

∂ξ
=

1
y(ξ, η)

∂ψ

∂η
, (4.1)

∂ψ

∂η
= − 1

y(ξ, η)
∂ψ

∂ξ
. (4.2)

It can be seen from (4.1), (4.2) that ϕ(ξ, η) and ψ(ξ, η) are mutually
connected, and this fact should always be taken into consideration.

We rewrite the system (4.1), (4.2) as follows:

∆ϕ(ξ, η) +
1
y

∂y

∂ξ

∂ϕ

∂ξ
+

1
y

∂y

∂η

∂ϕ

∂η
= 0, (4.3)

∆ψ(ξ, η)− 1
y

∂y

∂ξ

∂ψ

∂ξ
− 1

y

∂y

∂η

∂ψ

∂η
= 0. (4.4)

Suppose that we have solved the plane problem, i.e., we have constructed
analytic functions mapping conformally the half-plane Im(ζ) ≥ 0 (or
Im(ζ) < 0) of the plane ζ = ξ + iη onto the circular polygon. For gen-
eral discussion we assume that there is a circular polygon with m vertices.
To find an analytic function in the general case, we have to solve a non-
linear third order Schwartz differential equation. Its solution is reduced to
the solution of a Fuchs class differential equation. The Schwartz equation,
and hence the corresponding Fuchs class equation, contains 2(m− 3) essen-
tial unknown parameters. The general solution of the Schwartz equation
involves additionally six parameters of integration. We write the system of
higher 2(m−3) transcendent equations and also the system of six equations
for finding the integration parameters of the Schwartz equation. Next, we
construct solutions ϕ(ξ, η) and ψ(ξ, η) for the system (4.3) and (4.4) with
regard for (4.1), (4.2) ([18]–[25]).

Introduce the notation for three analytic functions:

z(ζ) = x(ξ, η) + iy(ξ, η), ω0(ζ) = ϕ0(ξ, η) + iψ0(ξ, η),

w0(ζ) = ω′0(ζ)/z′(ζ),
(4.5)

∆x(ξ, η) = 0, ∆y(ξ, η) = 0, ∆ϕ0(ξ, η) = 0, ∆ψ0(ξ, η) = 0, (4.6)

which map conformally the half-plane Im(ζ) ≥ 0 respectively onto the do-
main S(z(ζ)) of liquid motion, onto the domain of the complex potential
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ϕ0(ξ, η) + iψ0(ξ, η) = ω0(ζ), and onto the domain of the complex velocity
S(ω′0(ζ)/z′(ζ)). The above functions are unknown and to be defined.

Below, we will consider the problem of solvability of the system of equa-
tions (4.1), (4.2).

A solution of (4.3), (4.4) will be sought with regard for (4.1) and (4.2)
in the form

ϕ(ξ, η) = ϕ0(ξ, η) + ϕ1(ξ, η), (4.7)

ψ(ξ, η) = ψ0(ξ, η) + ψ1(ξ, η), (4.8)

where ϕ0(ξ, η), ψ0(ξ, η) are self-conjugate harmonic functions satisfying all
boundary conditions. Substituting (4.7) and (4.8) into (4.3) and (4.4), we
obtain

∆ϕ1(ξ, η) +
1
y

∂y

∂ξ

∂ϕ1

∂ξ
+

1
y

∂y

∂η

∂ϕ1

∂η
=

=−
[
∆ϕ0 +

1
y

∂y

∂ξ

∂ϕ0

∂ξ
+

1
y

∂y

∂η

∂ϕ0

∂η

]
, (4.9)

∆ψ1(ξ, η)− 1
y

∂y

∂ξ

∂ψ1

∂ξ
− 1

y

∂y

∂η

∂ψ1

∂η
=

=−
[
∆ψ0 − 1

y

∂y

∂ξ

∂ψ0

∂ξ
− 1

y

∂y

∂η

∂ψ0

∂η

]
. (4.10)

In the right-hand sides of (4.9) and (4.10) we retain ∆ϕ0 = 0 and ∆ψ0 =
0 deliberately.

We transform the unknown functions ϕ1(ξ, η), ψ1(ξ, η), ϕ0(ξ, η) and
ψ0(ξ, η) as follows:

ϕ1(ξ, η) = y−1/2(ξ, η)ϕ2(ξ, η), ψ1 = y1/2(ξ, η)ψ2(ξ, η), (4.11)

ϕ0(ξ, η) = y−1/2(ξ, η)ϕ∗2(ξ, η), ψ0(ξ, η) = y1/2(ξ, η)ψ∗2(ξ, η). (4.12)

After transformation, the system (4.9), (4.10) takes the form

∆(ϕ1 + ϕ∗2) = −1
4

ρ1(ϕ2 + ϕ∗2), (4.13)

∆(ψ2 + ψ∗2) =
3
4

ρ1(ψ2 + ψ∗2), (4.14)

where

ρ1 =
(

1
y

∂y

∂ξ

)2

+
(

1
y

∂y

∂η

)2

. (4.15)

As is said above, the hydrodynamic problem is assumed to be solved if
either of the functions ϕ(x, y) and ψ(x, y) is found with regard for (4.13).
Next, on the plane ζ we have to take into consideration (4.1) and (4.2).



134 A. Tsitskishvili

Using Green’s formula, we can obtain from (4.13) and (4.14) the following
Fredholm integral equations of second kind:

ϕ2(ξ, η) +
1
4

∫∫

Im(ζ)≥0

G(ξ, η; x, y)ρ1(x, y)ϕ2(x, y) dx dy = f1(ξ, η), (4.16)

ψ2(ξ, η)− 3
4

∫∫

Im(ζ)≥0

G(ξ, η; x, y)ρ1(x, y)ψ2(x, y) dx dy = f2(ξ, η), (4.17)

where

f1(ξ, η) =− ϕ2(ξ, η)−

− 1
4

∫∫

Im(ζ)≥0

G(ξ, η; x, y)ρ1(x, y)ϕ∗2(x, y) dx dy, (4.18)

f2(ξ, η) =− ψ∗2(ξ, η)+

+
3
4

∫∫

Im(ζ)≥0

G(ξ, η; x, y)ρ1(x, y)ψ∗2(x, y) dx dy (4.19)

and

G(ξ, η; x, y) =
1
4π

ln
(ξ − x)2 + (η + y)2

(ξ − x)2 + (η − y)2
.

Solutions of the integral equations (4.16) and (4.17) will be sought by
using the method of successive approximations in the form of the following
series:

ϕ2(ξ, η) =
∞∑

n=0

λnϕ2(n)(ξ, η), (4.20)

ψ2(ξ, η) =
∞∑

n=0

µnψ2(n)(ξ, η), (4.21)

where λ = 1
4 , µ = 3

4 .
Substituting the series (4.20) and (4.21) respectively into the integral

equations (4.16) and (4.17), and then equating the coefficients at the same
degrees of the parameters λ and µ, we will obtain

ϕ2(0)(ξ, η) = f1(ξ, η), (4.22)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ2(n)(ξ, η) =
∫∫

Im(ζ)≥0

G(ξ, η; x, y)ρ1(x, y)ϕ2(n−1)(x, y) dx dy, (4.23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ2(0)(ξ, η) = f2(ξ, η), (4.24)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ2(n)(ξ, η) =
∫∫

Im(ζ)≥0

G(ξ, η; x, y)ρ1(x, y)ψ2(n−1)(x, y) dx dy, (4.25)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n = 1, 2, 3, . . . .

5. On the Solution of Some Fredholm Integral Equations

Consider the simplest Fredholm integral equation of the second kind [32]

u(x)− λ

b∫

a

K(x, t)u(t) dt = f(x), (5.1)

where the unknown function u(x) depends on the real variable x which
varies in the same interval [a, b] as the integration variable t. This require-
ment concerns without exception to all classes of integral equations under
consideration. The interval [a, b] may be finite or infinite. The functions
K(x, t) and f(x) are assumed to be given and defined almost everywhere,
respectively, in the square a ≤ x ≤ b, a ≤ t ≤ b and in the interval a ≤ x ≤ b.

The function K(x, t) is said to be the kernel of the integral equation. The
kernel K(x, t) of the Fredholm equation satisfies the inequality

b∫

a

b∫

a

|K(x, t)|2 dx dt < ∞ (5.2)

and the free term f(x) satisfies the inequality
b∫

a

|f(x)|2 dx < ∞. (5.3)

We consider Fredholm equations of more general type. Let Ω be a mea-
surable set in the space of an arbitrary number of variables, x and t be
points of that set, and µ be a nonnegative measure defined on Ω [32].

The equality

u(x)− λ

∫

Ω

K(x, t)u(t) dµ(t) = f(x), (5.4)

whose kernel K(x, t) and free terms f(x) satisfy, respectively, the inequali-
ties ∫

Ω

∫

Ω

|K(x, t)|2 dµ(x) dµ(t) < ∞,

∫

Ω

|f(x)|2 dµ(x) < ∞, (5.5)
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is also called a Fredholm equation.
The kernel K(x, t) satisfying (5.5) is called the Fredholm kernel. We

denote the volume element by dx and the integral (5.5) by B2
K :

∫

Ω

∫

Ω

|K(x, t)|2 dx dt = B2
K . (5.6)

The unknown function u(x) is quadratically summable in (a, b), and,
consequently, belongs to the space L2(a, b). A solution of the equation (5.4)
belongs to the space L2(µ, Ω) of functions which are quadratically summable
in Ω in measure µ. The inequalities (5.3) and (5.5) mean that the free term
of the equation belongs to the same space. The parameter λ may take both
real and complex values.

The parameters λ and µ of the integral equations (4.16) and (4.17) are
less than unity, hence the convergence of the series (4.20) and (4.21) is
guaranteed.

As is known, the Fredholm equation of the second kind has either finite,
or countable set of characteristic numbers. But there are kernels having
no characteristic numbers at all, as, for example, Volterra kernels. A com-
plete characteristic of such kernels is given in the following Lalesko theorem.
Let K(x, t) be a Fredholm kernel, and Kn(x, t) be its iterated kernel. For
the kernel K(x, t) to have no characteristic numbers, it is necessary and
sufficient that

An =
∫

Ω

Kn(x, t) dx = 0, n = 3, 4, . . . , (5.7)

where the numbers An are called traces of the kernel K(x, t). Lalesko has
proved his theorem for the case of bounded kernels, while a general proof
has been given by S. Krachkovskĭı (see [31], [32]).

The Fredholm determinant and minors are represented as quotients of
two entire functions of λ, the poles of the resolvent, i.e., the characteristic
numbers of the kernel K(x, t), not depending on x and t. Thus the resolvent
should have the form

R(x, t; λ) = D(x, t; λ)/D(λ), (5.8)

where D(x, t; λ) and D(λ) are entire functions of λ ([31], [32]).
For the numerator and denominator of the fraction in (5.8) we give the

representations in the form of the following series ([31], [32]):

D(x, t; λ) =
∞∑

n=1

(−1)n

n!
Bn(x, t)λn, D(λ) =

∞∑
n=0

(−1)n

n!
cnλn, (5.9)
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where

c0 = 1, B0(x, t) = K(x, t), cn =
∫

Ω

Bn−1(x, x) dx, n > 0, (5.10)

Bn(x, t) = cn − n

∫

Ω

K(x, t)Bn−1(τ, t) dτ, (5.11)

which makes it possible to calculate the coefficients Bn(x, t) and cn recur-
sively.

Below we will need the well-known formula ([31], [32])

D′(λ)/D(λ) = −
∞∑

n=1

Anλn−1, (5.12)

where

An =
∫

Ω

Kn(x, x) dx, n = 1, 2, 3, . . . , (5.13)

are the above-mentioned traces of the kernel K(x, t).
If the kernel K(x, t) is noncontinuous and, more so, has discontinuities

of the second kind, then the integrals in (5.10) defining the coefficients
c1, c2, . . . become meaningless.

The Fredholm kernel may sometimes have Green’s function G(P,Q) as
a multiplier. As is known, this function is defined as a harmonic function
symmetric with respect to P and Q, equal on the boundary to zero, and
analytic at all points P of the domain D, except for the points P = Q at
which it has logarithmic singularity.

The kernel K(x, t) may have logarithmic singularity. Then the integral
∫

Ω

K(x, x) dx (5.14)

defining the coefficient c1 becomes meaningless. This difficulty can be over-
come successfully by putting, for example, c1 = 0 ([31], [32]).

The iterated kernel K2(s, t) has the form

K2(s, t) =
∫

Ω

K(s, t1)K(t1, t) dt1. (5.15)

The integral K2(s, t) is meaningful for any positions of s and t in [a, b]
because in the most unfavorable case, when s and t coincide, the integrand
admits the following estimate ([?, 27]-[30]):

|K(s.t1)K(t1, t)| ≤ M1

|s− t1|ε1
, ε1 > 0. (5.16)
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It is proved that K2(s, t) is a function, continuous in the square a ≤ x ≤ b,
a ≤ t1 ≤ b, and the functions

Kn(s, t) =
∫

Ω

K(s, t1)Kn−1(t1, t) dt1, n = 1, 2, 3, . . . , (5.17)

are estimated analogously:

|K(s, t1)Kn−1(t1, t)| ≤ Mn−1

|s− t1|εn−1
, εn−1 > 0. (5.18)

The integral Kn(s, t), n = 1, 2, . . . , is meaningful for any positions of s
and t in [a, b], and the estimates of the integrands have the form (5.18).
Consequently, we have to put

Kn(s, s) = 0, n = 1, 2, . . . , (5.19)

An =
∫

Ω

Kn(s, s) ds = 0, n = 1, 2, . . . . (5.20)

Then
cn = 0, n = 1, 2, . . . , n, . . . . (5.21)

Taking into account (5.19), from (5.12) we get

D′(λ) = 0, (5.22)

and in its turn, from (5.22) it follows that

D(λ) = 1. (5.23)

Consequently, the kernel of the integral equation (5.4) has no charac-
teristic numbers. In a complete analogy we can prove that the kernel of
the integral equation (3.36), considered by us in [24], has no characteristic
numbers.

6. Spatial Axisymmetric Jet Flows with Partially Unknown
Boundaries

Below, the use will frequently be made of the works [3], [6]. Let us
consider the stationary axisymmetric flow of an ideal, weightless, incom-
pressible liquid. Let the x-axis coincide with the symmetry axis. The ve-
locity potential ϕ(x, y) and the flow function ψ(x, y) are the functions of
only cylindrical coordinates x and y, where y is the distance to the axis x.
Owing to the axial symmetry, it suffices to study the flow in an arbitra-
rily chosen meridional half-plane with the coordinate system x, y ([1]–[6]).
By w(x, y) = ϕ(x, y) + iψ(x, y) we denote the complex potential, and by
z = x + iy the complex coordinate. As is known, these functions should
satisfy the conditions (1.2) and (1.3).
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In Figure 1 we can see one half of the meridional plane x0y for the prob-
lem of flow round a circular cone in a circular tube. Since the flow function
ψ(x, y) is defined to within a constant summand, we can put ψ(x, y) = 0
along the symmetry axis x both on the cone and on the free surface. But
the difference between the values of ψ on the flow surfaces is equal to the
liquid discharge between these surfaces divided by 2π, and hence on the
tube walls ψ = πv∞h2/(2π), where h is the tube radius, and v∞ is velocity
at infinity coming from the left [3].

The form of the free surfaces is unknown, but the supplementary condi-
tion for steady pressure is given. This condition can be written in the form
(2.3), where v0 is equal to v on the free surface [3].

To solve the problem, we map conformally the domains of variation of
dw

(v0dz) and w onto the semi-circle of unit radius (Figure 2) of the parametric
variable t (|t| ≤ 1, Im(t) ≥ 0), where t = ξ + iη. Having chosen arbitrarily
three points on the mapped contour according to the Riemann theorem, we
assume that to the singular points a1, a2, a3, a4, a5 there correspond the
points ξ = a1 = 0, a2 = 1, a3 = −1, a4 = −h0 and a5 = − 1

h0
, where a4 and

a5 are the source, and a3 is the sink. The complex potential can be written
either as

w(t) =
q

π
ln

{[
(t− a4)(t− 1/a4)

]/
(t− a3)2

}
, (6.1)

or as

w(t) =
q

π
ln

{[
(ξ − a4) + iη

] [
(ξ − 1/a4) + iη

]/[
(ξ − a3) + iη

]2}
. (6.2)

Figure 2

In the hodograph domain, the filtration velocity dw/(v0dx) does get equal
to infinity and it vanishes only at the point ξ = a1.

Analyzing the behavior of the function dw/(v0dz) [3], we obtain

dw

(v0dx)
= tµ, t > 0. (6.3)

We can easily see that the formula (6.3) is valid. Inside the upper half of
the semi-circle |t| ≤ 1, the function tµ is holomorphic. On the circumference
we have the equality |t|µ = 1. On the real axis 0 < t ≤ 1, the function tµ

takes real positive values. Moving in the upper half-plane t around the
point ξ = a1 counterclockwise, we can see that the argument tµ on OA



140 A. Tsitskishvili

(−1 ≤ t ≤ 0) is equal to πµ, that is, the boundary conditions are fulfilled
everywhere.

To see that the formula (6.2) is valid, it suffices to verify that the bound-
ary conditions are fulfilled. Suppose that η = 0. Then

w(t) =
q

π
ln

{[
(ξ − a4)(ξ − 1/a4)

]/
(ξ − a3)2

}
=

=
q

π
ln

{[
(ξ + h0)(ξ + 1/h0)

]/
(ξ + 1)2

}
. (6.4)

It follows from (6.4) that ψ = q. Since the expression (t− a4)(t− 1/a4)
in the interval ( 1

a4
, a4) is negative, we have Im w(t) = q, a3 < ξ < a3, and it

is positive in the intervals t < 1
a4

, t > a4. This implies that in the interval
a4 < ξ < a2

Imw(t) = 0, a4 < ξ < a2. (6.5)

Assuming on the arc t = eiα, we obtain

Im w(t) =

=
q

π
Im ln

[
(eiα − a4)(e−iα − a4)

( 1
−a4

)]/
(e−α/2 + e−iα/2)2 = 0. (6.6)

Now find the velocity va4 of the flow in the vessel at infinity:

va4

v0
=

( dw

v0dx

)
a4

= hµ
0 . (6.7)

Thus the value h0 defines the velocity in the vessel at infinity. Obviously,
q = hva4 , whence according to (6.7) we obtain

q = h · v0h
µ
0 . (6.71)

From (6.4) and (6.3) we can find z(t). Thus we have

z(t) =
eiπµ

v0

t∫

0

t−µw′(t) dt. (6.8)

When t → a2, the equality (6.8) allows us to obtain the formulas

z(a2) =
eiπµ

v0

a2∫

0

t−µw′(t) dt, a2 = 1. (6.9)

When t < 0, we define z(t) by the formula

z(t) = − 1
v0

0∫

t

(−t)−µw′(t) dt, t < 0. (6.10)
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It follows from (6.9) that

x(a2) = cos(πµ)
1
v0

a2∫

0

t−µw′(t) dt, (6.11)

y(a2) = sin(πµ)
1
v0

a2∫

0

t−µw′(t) dt, (6.12)

√
[x(a2)]2 + [y(a2)]2 =

1
v0

a2∫

0

t−µw′(t) dt. (6.13)

Using the formula (6.10) and moving around the singular point ζ = a4

on an infinitesimal semi-circumference K with center t = a4, we obtain

h =
q

v0
h−µ

0 , q = hv0h
µ
0 , (6.14)

where h0 = −a4, h is the radius of the cylinder.
The formula (6.14) coincides with (6.71).
In calculating the integral (6.10), when integration involves the singular

point ξ = −a4 = h0, we have to apply the principal value of the Cauchy
type integral, while when moving around the point t = a3 = −1, we act as
follows: (

dw

(v0dx)

)

a3

= (+1)µ = 1. (6.15)

At infinity and at the point a3 = −1, the direction of the jets coincides
with that of the x-axis.

Next, our main task is to obtain a complete exact solution of the plane
problem by means of analytic functions which should be used to obtain a
complete solution of the corresponding axisymmetric problem.

Using the functions

ln t = 2i arccos
1
ζ

, ζ2 > 1; ln t = −2i ln
∣∣∣∣
1 +

√
1− ζ2

ζ

∣∣∣∣, ζ < 1, (6.16)

we map conformally the half-plane Im(ζ) ≥ 0 of the auxiliary plane ζ =
ξ + iη (Figure 4) onto a triangle (Figure 3), and then, using the function
ln t, we map conformally the triangle of the type as in Figure 3 onto the
upper semi-circle of unit radius (|t| ≤ 1, Im(t) > 0).

Thus the functions (6.1), (6.2) and (6.6) are defined in that domain, so
we have obtained the solution of the plane problem on a liquid flowing out
of a skew-walled vessel (Figure 1). Using the above-obtained functions,
we pass to the solution of the spatial problem of flow around the circular
cone in the tube. Using the functions (6.1), (6.2) and (6.3), we assume
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Figure 3

Figure 4

that the functions ϕ0(ξ, η), ψ0(ξ, η) are the first approximations of the un-
known functions ϕ(ξ, η), ψ(ξ, η). The functions ϕ0(ξ, η), ψ0(ξ, η), x(ξ, η)
and y(ξ, η) should satisfy all boundary conditions. Thus the above-defined
functions ϕ0(ξ, η), ψ0(ξ, η), x(ξ, η) and y(ξ, η) are pairwise self-conjugate
harmonic once. Note that the conditions of compatibility (4.1), (4.2) should
be taken into account. The hydrodynamic problem is assumed to be solved
if either of the functions ϕ(x, y) and ψ(x, y) is known.

Finally, we proceed to finding the functions ϕ2(ξ, η), ψ2(ξ, η). When sol-
ving the integral equation (4.16) or (4.17), we use the method of successive
approximations and the fact that the right-hand sides of (4.16) and (4.17)
involve the known functions. On the symmetry axis x of the cone and on
the free surface we put ψ = 0. But the difference between the values of ψ on
the flow surfaces is equal to 2π, hence on the tube walls ψ = πv∞h2/(2π),
where h is the tube radius, v∞ is velocity at infinity of the flow coming from
the left.

As is said above, the form of free surfaces is unknown, but there is a
complementary condition of constancy of the velocity modulus v which is
equivalent to the condition of pressure constancy. This condition can be
written in the form (2.3), where v0 is equal to v on the free surface [3].

7. The Problem on the Ground Water Influx to A Spatial
Axisymmetric Basin with Trapezoidal Axial Cross-Section

Under a water permeable ground layer is laid a ground layer of greater
(theoretically infinite) water permeability, the pressure on the upper hori-
zontal surface of the lower layer being constant. The depth of the water in
the basin is neglected; if water is deep, the solution of the problem becomes
more complicated. The basin is given in Figure 5.

In solving this spatial axisymmetric problem the use will be made of
the solution of the corresponding plane problem. The plane axisymmetric
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Figure 5

problem on the ground water influx to a drainage ditch with trapezoidal
cross-section has been solved by V. V. Vedernikov [33], and his investigation
was complemented by Yu. D. Sokolov [34]. Here we generalize the problem
solved by V. V. Vedernikov [33]. Our generalization consists in the following:
under the water permeable ground layer we lay ground layer of greater
(theoretically, infinite) water permeability, and the pressure on the upper
horizontal surface of the layer is constant. In its turn, we generalize this
generalized plane problem to the spatial axisymmetric problem.

We direct the x-axis vertically downwards along the symmetry axis, and
the y-axis we direct horizontally; here y is the distance to the x-axis.

Along the whole contour of the domain of liquid motion we have the
conditions ϕ − kx = 0 and ϕ − ky = T . Hence on the Zhukovski’s plane
we have a strip of length T . To solve the problem under consideration, it is
convenient to use Zhukovski’s function

θ = θ1 + iθ2, θ1 = ϕ− kx, θ2 = ψ − ky. (7.1)

The boundaries of the velocity hodograph consists of a circumference arc
and straight lines which intersect each other at one point F , where u = −u0,
v0 = 0.

The plane case under consideration is represented schematically in Figure
5. Note that

θ = ω(z)− kz; ω(z) = ϕ(x, y) + iψ(x, y), z = x + iy,

dθ

dz
= w − k.

(7.2)

The use will be made of the formula

u =
dz

dθ
=

1
w − k

, (7.3)

which corresponds to that function whose domain is obtained after inversion
(see Figure 5). We transfer the vertices of this polygonal domain to the
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Figure 6

points of the plane ζ as in Figure 6, and obtain

u(ζ) = M

ζ∫

a4

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ + u(a4), (7.4)

where
u(a4) = 1/k, M is a real number. (7.5)

From (7.4), it follows that

u(a5) = M

a5(+∞)∫

a4

ζ(ζ2−a2
2)

α−1(ζ2−a2
3)
− 1

2−α(ζ2−a2
4)
− 1

2 dζ +u(a4), (7.6)

where
u(a5) = u5 is a real number. (7.7)

u5 = M

a5(+∞)∫

a4

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ +
1
k

, (7.8)

u(ζ) = −Mi

ζ∫

a3

(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ + u(a3), (7.9)

where
u(a3) = −1

k
tg(πα) +

i

k
. (7.10)

u(a4) = −Mi

a4∫

a3

ζ(ζ2−a2
2)

α−1(ζ2−a2
3)
− 1

2−α(ζ2−a2
4)
− 1

2 dζ +u(a3), (7.11)

where u(a4) = 1
k .
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From (7.11), we have

M

a4∫

a4

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ +
1
k

tg πα = 0, (7.12)

u(ζ) = (−1)Me−iπα×

×
ζ∫

a2

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ + u(a2), (7.13)

where u(a2) = 0,

u(a3) = (−1)Me−iπα

a3∫

a2

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2−a2
4)
− 1

2 dζ, (7.14)

u(a3) =
−i

k
tg πα +

1
k

,
1
k
−M cos πα×

×
a3∫

a2

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ = 0, (7.15)

u(ζ) = M

ζ∫

a1

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ + u(a1), (7.16)

M

a2∫

a1

ζ(ζ2 − a2
2)

α−1(ζ2 − a2
3)
− 1

2−α(ζ2 − a2
4)
− 1

2 dζ − 1
u0 + k

= 0, (7.17)

u(a2) =
−1

u0 + k
, u(a2) = 0. (7.18)

Of the parameters a2, a3 and a4, we fix one as a2 = 1, and the parameters
u0, a3, a4, M are to be defined by means of the system of equations (7.6),
(7.8), (7.12), (7.15) and (7.17).

We now define Zhukovski’s function. We have

θ(ζ) =
T

π
ln

(
ζ − a4

ζ + a4

)
+ T. (7.19)

For finding the function z(θ), we use the following formulas:

z(ζ) =

ζ∫

a4

u(ζ)θ′(ζ) dζ + z(a4), z(a5) =

a5∫

a4

u(ζ)θ′(ζ) dζ + z(a4), (7.20)



146 A. Tsitskishvili

z(ζ) =

ζ∫

a3

u(ζ)θ′(ζ) dζ + z(a3), z(a4) =

a4∫

a3

u(ζ)θ′(ζ) dζ + z(a3), (7.21)

z(ζ) =

ζ∫

a2

u(ζ)θ′(ζ) dζ + z(a2), z(a3) =

a3∫

a2

u(ζ)θ′(ζ) dζ + z(a2), (7.22)

z(ζ) =

ζ∫

a1

u(ζ)θ′(ζ) dζ + z(a1), z(a2) =

a2∫

a1

u(ζ)θ′(ζ) dζ + z(a1). (7.23)

The system (7.20)–(7.23) allows us to define the coordinates of the leaking
interval, and then using the function θ(ζ), we find parametric equations of
depression curves. In solving the problem (Figure 5) we have considered two
symmetric half-planes. Owing to the symmetry, we could have considered
arbitrarily one half of the two half-planes. But because of the fact that on
the boundary of the hodograph velocity, along the symmetry axis, we have
two cuts to the ends of which there correspond two unknown parameters,
for their determination we have to write two equations. Determination of
another unknown parameters needs another equations, and this exactly has
been done in the present work.
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