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THE DYNAMICAL CONTACT PROBLEM FOR A
HALF-PLANE WITH AN ELASTIC COVER PLATE

N. SHAVLAKADZE

Abstract. The dynamical contact problem for a half-plane rein-
forced along its boundary by an elastic finite cover plate of small
thickness and loaded with horizontal and vertical harmonic forces is
considered. To find unknown contact stresses, the problem is reduced
to the solution of a system of integro-differential equations. Using
the methods of the theory of analytic functions and integral transfor-
mations, the system is solved explicitly. The case in which the cover
plate is under the action of only normal harmonic load is considered
in detail.

îâäæñéâ. àŽêýæèñèæŽ áæêŽéæçñîæ ïŽçëêðŽóðë ŽéëùŽêŽ êŽýâãŽî-
ïæĲîðõæïŽåãæï, îëéèæï ïŽäôãŽîæ àŽéŽàîâĲñèæŽ ñïŽïîñèë åýâèæ
áŽçãîæå áŽ îëéâèäâáŽù éëóéâáâĲï ßëîæäëêðŽèñîæ áŽ ãâîðæ-
çŽèñîæ ßŽîéëêæñèæ áŽðãæîåãâĲæ. ñùêëĲæ ïŽçëêðŽóðë úŽĲãâĲæï
éæéŽîå éææôâĲŽ æêðâàîë-áæòâîâêùæŽèñî àŽêðëèâĲŽåŽ ïæïðâéŽ.
ŽêŽèæäñî òñêóùæŽåŽ åâëîææï éâåëáâĲæïŽ áŽ æêðâàîŽèñîæ àŽî-
áŽóéêâĲæï àŽéëõâêâĲæå ñçŽêŽïçêâèæ ïæïðâéŽ ŽéëýïêæèæŽ ùýŽáæ ïŽ-
ýæå. ñòîë áâðâèñîŽáŽŽ àŽêýæèñèæ öâéåýãâãŽ, îëáâïŽù áŽçã-
îŽäâ éëóéâáâĲï éýëèëá êëîéŽèñîæ ßŽîéëêæñèæ áŽðãæîåãŽ.

A great deal of works are devoted to the investigation of statical con-
tact problems for various domains reinforced by an elastic fastenings or
inclusions in the form of cover plates of small thickness. A sufficiently com-
plete bibliography dealing with these questions is contained in monographs
[1–2]. The dynamical contact problems for bodies with thin cover plates are
considered in [3–6].

In the present work we consider the dynamical contact problem for a
half-plane which is reinforced along its boundary by an elastic cover plate
of small thickness and excited by harmonic forces.

1. First of all, we consider an auxiliary problem on stationary oscillations
of an elastic half-plane whose boundary is under the action of concentrated
at the origin unitary horizontal and vertical forces of frequency ω.
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Mathematically, the problem is formulated in the form of the differential
Lame equations (with perturbation)

(λ + µ)
∂θ

∂x
+ µ∆u = ρ

∂2u

∂t2
+ ρε

∂u

∂t
,

(λ + µ)
∂θ

∂y
+ µ∆v = ρ

∂2v

∂t2
+ ρε

∂v

∂t

(1.1)

under the boundary conditions

σy =
(
λθ + 2µ

∂v

∂y

)∣∣∣
y=0

= δ(x) e−iωt,

τxy = µ
(∂u

∂y
+

∂v

∂x

)∣∣∣
y=0

= −δ(x) e−iωt,

(1.2)

where δ(x) is the Dirac function, u(x, y, t) and v(x, y, t) are the projections
of the displacement vector onto the coordinate axes, λ and µ are the Lame
parameters, ρ is density of the material, and ε is an arbitrarily small positive
number.

Considering stationary oscillations of the elastic half-plate and assuming
that

u(x, y, t) = uε(x, y)e−iωt, v(x, y, t) = vε(x, y)e−iωt,

we obtain the following boundary problem:

(∆ + p2
1)uε +

(c2
1

c2
2

− 1
)∂θε

∂x
= 0, (∆ + p2

2)vε +
(c2

1

c2
2

− 1
)∂θε

∂y
= 0, (1.3)

(
λθε + 2µ

∂vε

∂y

)∣∣∣
y=0

= δ(x), µ
(∂uε

∂y
+

∂vε

∂x

)∣∣∣
y=0

= −δ(x), (1.4)

where θε(x, y) =
∂uε

∂x
+

∂vε

∂y
, c1 = (λ+2µ)1/2ρ−1/2 is velocity of propagation

of extension waves, c2 = µ1/2ρ−1/2 is velocity of propagation of distortion

waves, p2
1 =

ω2

c2
1

+
iωε

c2
1

, p2
2 =

ω2

c2
2

+
iωε

c2
2

(p1 = k1 + ik′1, p2 = k2 + ik′2, k1 > 0,

k′1 > 0, k2 > 0, k′2 > 0).
To solve the boundary value problem (3,4), we use the method of the

Fourier integral transformations with respect to the variable x and find those
solutions uε(x, y) and vε(x, y) of the above-mentioned problem which vanish
as x2 + y2 → ∞. As a result, we obtain a system of ordinary differential
equations under the above boundary conditions. Its general solution has
the form

u∗ε(α, y) = iαAe−γ1y − γ2Be−γ2y + Ceγ1y + Deγ2y,

v∗ε (α, y) = γ1Ae−γ1y + iαBe−γ2y + Eeγ1y + Feγ2y,
(1.5)
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where

u∗ε(α, y) =

∞∫

−∞
uε(x, y)eiαxdx, v∗ε (α, y) =

∞∫

−∞
vε(x, y)eiαxdx,

γ1 =
√

α2 − p2
1 , γ2 =

√
α2 − p2

2 , α = σ + iτ,

A,B, C,D, R,E, F are the unknown constants.
It is obvious that α = ±p1, α = ±p2 are the points of branching of the

function γ1(α), γ2(α). To choose a single-valued analytic branch of that
function, we make in a complex plane a cut connecting the points p1 and
p2 with a point at infinity in the upper half-plane, and the points −p1 and
−p2 in the lower half-plane. In the plane, cut as is indicated above, we have
the equalities

γ1(α) = −i
√

p2
1 − α2 , γ2(α) = −i

√
p2
2 − α2 ,

γ1(α), γ2(α) → |α| as |σ| → ∞ ([7]).
Relying on the above-said, we can show that u∗ε(α, y) and v∗ε (α, y) as

y →∞ tend to zero if we put C = D = E = F = 0 in (1.5). When defining
the rest constants from the boundary condition for y = 0, we obtain

u∗ε(α, 0) =
γ2p

2
2

µ∆(α)
+

iα(2α2 − p2
2 − 2γ1γ2)

µ∆(α)
,

v∗ε (α, 0) =
iα(2α2 − p2

2 − 2γ1γ2)
µ∆(α)

− γ1p
2
2

µ∆(α)
,

(1.6)

where ∆(α) = 4α2γ1γ2 − (2α2 − p2
2)

2.
On the basis of the previous results, the functions u∗ε(α, 0) and v∗ε (α, 0)

are the Fourier transforms of the functions [7]

u∗∗ε (x) =
1
2π

iτ+∞∫

iτ−∞

u∗ε(α, 0)e−iαxdx,

v∗∗ε (x) =
1
2π

iτ+∞∫

iτ−∞

v∗ε (α, 0)e−iαxdx,

(1.7)

and the following inequalities are valid:
∣∣u∗∗ε (x)

∣∣, ∣∣v∗∗ε (x)
∣∣ < exp(−k′1 + δ)x as x → +∞,∣∣u∗∗ε (x)

∣∣,
∣∣v∗∗ε (x)

∣∣ < exp(k′1 − δ)x as x → −∞,

−k′1 < τ < k′1, δ is an arbitrarily small positive number.
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Thus the amplitudes of horizontal and vertical displacements of the boun-
dary point from the unitary concentrated at the origin horizontal and verti-
cal harmonic force are defined by formulas (1.7), where u∗ε(α, 0) and v∗ε (α, 0)
are given by means of (1.6).

2. Let the elastic half-plane be reinforced along its boundary by an elastic
fastening in the from of an infinite cover plate of small thickness h.

The problem is to determine the law of distribution of contact stresses
along the contact line, when harmonic horizontal and vertical forces
τ0δ(x)e−iωt and p0δ(x)e−iωt act on the upper cover side. Assume that
the tangential and normal contact stresses act under the cover plate.

Using the D’Alembert principle and Hook’s law, the differential equations
of cover plate oscillations have the form

∂2u(1)(x, t)
∂x2

− ρ1

E1

∂2u(1)(x, t)
∂t2

=
1

E1h1
τ(x, t)− τ0δ(x)e−iωt

E1h1
,

D
∂4v(1)(x, t)

∂x4
− ρ1h1

∂2v(1)(x, t)
∂t2

= p(x, t)− ρ0δ(x)e−iωt,

(2.1)

where τ(x, t) and p(x, t) are, respectively, the tangential and normal stresses
at the point x at the time moment t, acting onto the cover plate along the
line of joint with the plane, E1 is the elasticity modulus of the cover plate, ρ1

is density of the material, u(1)(x, t) and v(1)(x, t) are, respectively, horizontal
and vertical displacements of points of the cover plate.

We will now pass to the perturbed equation and consider stationary
oscillations of the cover plate, assuming that u(1)(x, t) = u

(1)
ε (x)e−iωt,

v(1)(x, t) = v
(1)
ε (x)e−iωt, τ(x, t) = τε(x)e−iωt, p(x, t) = pε(x)e−iωt. As a

result, for the displacement amplitude we obtain the following differential
equations:

d2u
(1)
ε (x)
dx2

+ p2u(1)
ε (x) =

1
E1h1

τε(x)− τ0δ(x)
E1h1

,

d4u
(1)
ε (x)
dx4

+ p̃ 2v(1)
ε (x) =

pε(x)
D

− p0

D
δ(x),

(2.2)

where

p2 =
ω2

c2
+

iωε

c2
, p̃ 2 =

ω2

c̃ 2
+

iωε

c̃ 2
, c2 =

E1

ρ1
, c̃ 2 =

D

ρ1h1
.

On the other hand, the amplitudes u
(2)
ε (x) and v

(2)
ε (x) of horizontal and

vertical displacements of boundary points of the elastic half-plane from the
same amplitudes of stresses τε(x) and pε(x) applied to the half-plane bound-
ary are given, according to (1.6) and the superposition principle, by the
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formulas

u(2)
ε (x)=

∞∫

−∞
k1(|x−s|)τε(s)ds+

∞∫

−∞
k2(|x−s|)pε(s)ds,

v(2)
ε (x)=

∞∫

−∞
k2(|x−s|)τε(s)ds+

∞∫

−∞
k3(|x−s|)pε(s)ds,

−∞<x<∞, (2.3)

where

k1(x) =
1

2πµ

iτ+∞∫

iτ−∞

γ2p
2
2e
−iαxdα

∆(α)
,

k2(x) =
1

2πµ

iτ+∞∫

iτ−∞

α(2α2 − p2
2 − 2γ1γ2)e−iαxdα

∆(α)
,

k3(x) =
1

2πµ

iτ+∞∫

iτ−∞

γ1p
2
2e
−iαxdα

∆(α)
.

On the line connecting the cover plate with the half-plate the contact
conditions

u(1)
ε (x) = u(2)

ε (x) and v(1)
ε (x) = v(2)

ε (x), −∞ < x < ∞ (2.4)

should be fulfilled. These conditions together with equation (2.2) and for-
mulas (2.3) reduce the problem of finding an amplitude of contact stresses
to the solution of a system of integro-differential equations

( d2

dx2
+ p2

) ∞∫

−∞
k1(|x− s|)τε(s)ds +

∞∫

−∞
k2(|x− s|)pε(s)ds =

= λτε(x)− λτ0δ(x),

( d4

dx4
+ p̃ 2

) ∞∫

−∞
k2(|x− s|)τε(s)ds +

∞∫

−∞
k3(|x− s|)pε(s)ds =

= λ̃pε(x)− λ̃p0δ(x),

(2.5)

where λ = 1
E1h1

, λ̃ = 1
D .
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Applying to the both parts of equations (2.5) the Fourier transformation
and making use of the known properties of convolution, we obtain

τ∗ε (α) =λ∆(α)µ
(α4 + p̃ 2)γ1p

2
2 − λ̃∆(α)µ

∆̃(α)
τ0−

− λ̃∆(α)µ
(α2 − p2)α(2α2 − p2

2 − 2γ1γ2)

∆̃(α)
p0,

p∗ε(α) =− λ̃∆(α)µ
(α2 − p2)γ2p

2
2 + λ∆(α)µ

∆̃(α)
p0−

− λ∆(α)µ
(α4 + p̃ 2)α(2α2 − p2

2 − 2γ1γ2)

∆̃(α)
τ0,

(2.6)

where

∆̃(α) = (α2 − p2)(α4 + p̃ 2)(γ1γ2p
4
2 + 2α4 − α2p2

2 − 2γ1γ2α
2)+

+ λ(α4 + p̃ 2)γ1p
2
2µ∆(α)− λ̃(α2 − p2)γ2p

2
2µ∆(α)− λλ̃∆2(α)µ2.

It is not difficult to show that the functions τ∗ε (α) and p∗ε(α) given by
formulas (2.6), have in the strip −k′1 < τ < k′1 no zeros and poles. Therefore
they satisfy the conditions of the well-known theorem ([7]) by which

τε(x) =
1
2π

iτ+∞∫

iτ−∞

τ∗ε (α)e−iαxdα, pε(x) =
1
2π

iτ+∞∫

iτ−∞

p∗ε(α)e−iαxdα, (2.7)

−∞ < x < ∞ − k′1 < τ < k′1

and
(|τε(x)|, |pε(x)|) < exp(−k′1 + δ)x as x → +∞,(|τε(x)|, |pε(x)|) < exp(k′1 − δ)x as x → −∞.

If ε tends to zero, the contour if integration in (2.7) turns into the real
axis and amplitudes of the unknown contact stresses have in this case the
form

τ(x) = lim
ε→0

τε(x), p(x) = lim
ε→0

pε(x).

3. Referring to the case of an infinite cover plate loaded with only vertical
(normal) harmonic force p0δ(x)e−iωt, the problem of finding an amplitude
of contact normal stresses is reduced to the solution of the following integro-
differential equation

( d4

dx4
+ p̃ 2

) ∞∫

−∞
k3(|x− s|)p3(s)ds = λ̃pε(x)− λ̃p0δ(x). (3.1)
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Applying to the both parts of equation (3.1) the Fourier transformation,
we obtain (

(α4 + p̃ 2)γ1p
2
2

µ∆(α)
− λ̃

)
p∗ε(α) = −λ̃p0.

Investigate now the roots of the functions

∆(α) = 4α2
√

(α2 − p2
1)(α2 − p2

2)− (2α2 − p2
2)

2,

fε(α)=(α4+p̃ 2)
√

α2−p2
1 p2

2−λ̃
(
4α2

√
(α2−p2

1)(α2−p2
2)−(2α2−p2

2)
2
)
.

After the change of variables α2 = z2m2 (m2 = ω2 + iεω, m = m1 + im2,
m1 > 0, m2 > 0, m2(ε) → 0 as ε → 0), we obtain

∆(z) = −m4

[(
2z2 − 1

c2
2

)2

− 4z2

√(
z2 − 1

c2
1

)(
z2 − 1

c2
2

) ]
,

fε(z) = m4

[(
m2z4 +

1
c̃ 2

)m1

c2
2

√
z2 − 1

c2
1

+ λ̃

((
2z2 − 1

c2
2

)2

−4z2

√(
z2− 1

c2
1

)(
z2− 1

c2
2

) )]
+

im2

c2
2

(
m2z4+

1
c̃ 2

)√
z2− 1

c2
1

·m4.

The function ∆(z) has two real roots z = ±zR (zR > 1
c2

). This im-
plies that the function f0(z) = lim

ε→0
fε(z) has no real roots in the intervals

(± 1
c2

,±zR), since

f0(±zR) =
ω5

c2
2

(
ω2z4

R +
1
c̃ 2

)√
z2
R −

1
c2
1

> 0,

f0

(
± 1

c2

)
=

ω5

c2
2

(ω2

c4
2

+
1
c̃ 2

)√
1
c2
2

− 1
c2
1

+ λ̃
ω4

c4
2

> 0.

As far as ∆(z) > 0 for real z satisfying the condition |z| > zR > 0, there
exists λ̃0 such that for λ̃ < λ̃0 the function f0(z) has no real roots and for
λ̃ > λ̃0 it has two real roots ±zλ̃, |zλ̃| > zR. If f0(z) has two real roots,
then the function fε(z) has likewise two roots in a sufficiently narrow strip
of the complex plane z containing the real axis.

Passing to the variable α, we find that fε(α) either has no, or may have
roots α = ±αλ̃ = ±mzλ̃, while the function ∆(α) has the roots α = ±αR =
±mzR. This implies that αR and αλ̃ lie outside of the strip −k′1 < τ < k′1.
Consequently, pε(x) is defined from the second formula (2.7).

If ε tends to zero, then the contour of integration turns into the real axis
which goes around the points σR = lim

ε→0
αR, σλ̃ = lim

ε→0
αλ̃, k2, k1 from below,
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while the points −σR, −σλ̃, −k2, −k1 from above. Then

p(x) = lim
ε→0

pε(x) =

=−λ̃µp0

2π

∞∫

−∞

[
4σ2

√
(σ2−k2

1)(σ2−k2
2)−(2σ2−k2

2)
2
]
e−iσxdσ

(σ4+k̃ 2)k2
2

√
σ2−k2

1−λ̃
[
(2σ2−k2

2)2−4σ2
√

(σ2−k2
1)(σ2−k2

2)
] .

Here the integral is understood in the sense of the principle Cauchy value
when the integrand function has the first order poles at the points ±σλ̃.

The presence of poles in the integrand function corresponds to the exis-
tence of stresses coming from the surface waves, and such waves do not arise
in the opposite case. In either of the cases the stress p(x) involves always
summands from the extension and distortion waves.
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