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MULTIDIMENSIONAL GENERALIZATION OF THE
LIZORKIN THEOREM ON FOURIER MULTIPLIERS

L-E. PERSSON, L. SARYBEKOVA AND N. TLEUKHANOVA

Abstract. A generalization and sharpening of the Lizorkin theorem
concerning Fourier multipliers between Lp and Lq is proved. Some
multidimensional Lorentz spaces and an interpolation technique (of
Sparr type) are used as crucial tools in the proofs. The obtained re-
sults are discussed in the light of other generalizations of the Lizorkin
theorem and some open questions are raised.

îâäæñéâ. àŽêäëàŽáâĲñèæ áŽ áŽäñïðâĲñèæŽ èæäëîçæêæï åâëîâ-
éŽ òñîæâï Lp → Lq éñèðæìèæçŽðëîâĲæï öâïŽýâĲ. áŽéðçæùâĲŽ
âõîáêëĲŽ èëîâêùæï éîŽãŽèàŽêäëéæèâĲæŽê ïæãîùââĲï áŽ öìŽîæï
ðæìæï æêðâîìëèâĲæï ðâóêæçŽï. øŽéëõŽèæĲâĲñèæŽ äëàæâîåæ ôæŽ
ìîëĲèâéŽ

1. Introduction

Let F and F−1 be the direct and the inverse Fourier transforms, respec-
tively, in R2 defined by

(Ff)(ξ) :=
1
2π

∫

R2

f(x)e−i〈ξ,x〉dx,

(F−1g)(x) :=
∫

R2

g(ξ)ei〈ξ,x〉dξ.

Let p = (p1, p2), q = (q1, q2), 1 6 pi 6 qi 6 ∞, i = 1, 2. It is said that ϕ
is a Fourier multiplier from Lp to Lq, briefly, ϕ ∈ Mq

p , if there exists c1 > 0
such that for every function f in Schwartz space S the following inequality
holds

‖Tϕ(f)‖Lq
6 c1 ‖f‖Lp

,

where Tϕ(f) = F−1ϕFf .
The set Mq

p of all Fourier multipliers from Lp to Lq is a normed space
with the norm
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‖ϕ‖Mq
p

= ‖Tϕ‖Lp→Lq
.

Mp
p is denoted by Mp.
Let E = {ε = (ε1, ε2) : εi = 0 or εi = 1, i = 1, 2} be the set of corners in

the unit cube in R2. The measure of Q is denoted by |Q|.
The following important sufficient condition certifying that ϕ ∈ Mp was

given by S. Mihlin [18]:

Theorem 1.1. Let ϕ(x) be a bounded function in R2 and assume that

|x||α| |Dαϕ(x)| 6 A (|α| 6 L)

for some integer L > 1. Then ϕ ∈ Mp, 1 < p < ∞, and

‖ϕ‖Mp
6 c2A,

where the constant c2 depends only on p.

For the case p 6 2 6 q the classes Mq
p were characterized by L. Hörman-

der [8] as follows:

Theorem 1.2. Let 1 < p 6 2 6 q < ∞, 1/s = 1/p− 1/q, and let f be a
measurable function such that

∣∣ξ : |f(ξ)| > b
∣∣ 6 c3/bs.

Then f ∈ Mq
p .

Moreover, P. Lizorkin [14] studied the case 1 < p 6 q < ∞ and, in
particular, proved the following theorem:

Theorem 1.3. Let 1 < p 6 q < ∞, A > 0, β = 1
p− 1

q , ε ∈ E, |ε| = ε1+ε2

and let ϕ be a continuously differentiable function on R2 \{0} satisfying the
following condition: ∣∣∣∣∣

2∏

i=1

yεi+β
i

∂|ε|ϕ
∂yε1

1 ∂yε2
2

∣∣∣∣∣ 6 A.

Then ϕ ∈ Mq
p and

‖ϕ‖Mq
p

6 c4A,

where c4 > 0 depends only on p and q.

In this paper we will strengthen Theorem 1.3 above, by introducing some
two-dimensional parameters p = (p1, p2), q = (q1, q2), 1 < pi < qi < ∞,
i = 1, 2. The paper is organized as follows: The main results are presented
and discussed in Section 2. The detailed proofs can be found in Section
3 while Section 4 is reserved for some final remarks, i.e. concerning other
generalizations and complements of Theorems 1.2 and 1.3 (see e.g. [4]–[6],
[9]–[13], [15]–[17], [21] and the references given there).
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2. Main Results

Let f be a Lebesgue measurable function on R and

m(σ, f) =
∣∣{x ∈ R : |f(x)| > σ}∣∣

be its distribution function. The function

f∗(t) = inf{σ : m(σ, f) 6 t}
is the usual non-increasing rearrangement of f .

Let f(x1, x2) be a measurable function on R2. In what follows by f∗ =
f∗1,∗2(t1, t2) we mean the non-increasing rearrangement first with respect
to x1 with fixed x2, and then with respect to x2. This function is called the
non-increasing rearrangement of the function f .

Let ε ∈ E, then ∗ε = (∗ε1 , ∗ε2) is an operator, which is acting by the
following rule:

f∗ε =
{

f(x), if ε = 0
f∗(x), if ε = 1,

f∗ε1 ,∗ε2 (x1, x2) = (f∗ε1 (x1))
∗ε2 (x2).

Our main result reads:

Theorem 2.1. Let p = (p1, p2), q = (q1, q2), α = (α1, α2), β = (β1, β2),
1 < pi < qi < ∞, 0 6 αi < 1− 1

pi
+ 1

qi
and βi = αi + 1

pi
− 1

qi
, i = 1, 2. If the

continuously differentiable function ϕ on R2 \ {0} satisfies to the following
condition:

sup
yi∈R+

2∏

i=1

y
εi+(1−εi)βi−αi

i

( 2∏

j=1

t
εjβj

j

∂|ε|ϕ
∂tε1

1 ∂tε2
2

)∗ε1 ,∗ε2

(y1, y2) 6 A, ∀ε ∈ E,

then ϕ ∈ Mq
p and

‖ϕ‖Mq
p

6 c5A,

where c5 > 0 depends only on pi, qi and αi, |ε| = ε1 + ε2.

Remark 2.1. Theorem 2.1 is a strict generalization of (the Lizorkin)
Theorem 1.3. In fact, the assumptions in Theorem 2.1 are strictly weaker
than those in Theorem 1.3, since

sup
yi∈R+

2∏

i=1

y
εi+(1−εi)βi−αi

i

( 2∏

j=1

t
εjβj

j

∂|ε|ϕ
∂tε1

1 ∂tε2
2

)∗ε1 ,∗ε2

(y1, y2) 6

6
2∏

i=1

2εi+(1−εi)βi−αi sup
yi∈R

∣∣∣∣
2∏

i=1

yεi+β
i

∂|ε|ϕ
∂yε1

1 ∂yε2
2

∣∣∣∣,
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and there exists a function ϕ (see (10) on page 13) satisfying the assumptions
of Theorem 2.1, but not satisfying the assumptions in Theorem 1.3, i.e.

sup
yi∈R+

2∏

i=1

yβi−αi

i ϕ(y1, y2) < ∞,

sup
yi∈R+

yβ1−α1
1 y1−α2

2

(
tβ2
2 ϕ

′
t2(t1, t2)

)∗2
(y2) < ∞,

sup
yi∈R+

y1−α1
1 yβ2−α2

2

(
tβ1
1 ϕ

′
t1(t1, t2)

)∗1
(y1) < ∞,

sup
yi∈R+

2∏

i=1

y1−αi
i

(
tβ1
1 tβ2

2 ϕ
′′
t1,t2(t1, t2)

)∗1∗2
(y1, y2) < ∞,

but

sup
yi∈R

∣∣∣∣
2∏

i=1

y
1+ 1

pi
− 1

qi
i ϕ

′′
y1y2

∣∣∣∣ = ∞.

For the proof of Theorem 2.1 we need the following embedding theorem
of independent interest:

Theorem 2.2. Let 1 < p = (p1, p2) < q = (q1, q2) 6 ∞, 0 < τ =
(τ1, τ2) 6 ∞, α = (α1, α2), β = (β1, β2) and 0 6 α < 1− 1

p + 1
q . Then

Lpτ ↪→ Nα,β,τ (Lq),

where β = α + 1
p − 1

q .

Here Nα,β,r(Lq) is a version of the net spaces, which was introduced and
studied in [20] and [22], defined as follows: for 0 6 α = (α1, α2) < ∞,
0 < β = (β1, β2) < ∞, 0 < q = (q1, q2), r = (r1, r2) 6 ∞, and Gt =
{[a1, b1]× [a2, b2] : bi − ai > ti, i = 1, 2}, t ∈ R2, we say that the function f
belongs to the space Nα,β,r(Lq) if f ∈ L1 and

‖f‖Nα,β,r(Lq) :=




∞∫

0




∞∫

0

(
tα1
1 tα2

2 ×

× sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq

)r1
dt1
t1

) r2
r1 dt2

t2




1
r2

< ∞,

for 0 < r < ∞, and

‖f‖Nα,β,r(Lq) := sup
t1>0,t2>0

tα1
1 tα2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq < ∞,

for r = (r1, r2) = (∞,∞), where χQ is the characteristic function of Q.
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Let 1 6 p = (p1, p2) < ∞, 0 < τ = (τ1, τ2) 6 ∞. We say that a function
f belongs to the Lorentz space Lpτ (see [22]) if f is measurable on R2 and
for τ < ∞

‖f‖Lpτ
:=




∞∫

0




∞∫

0

(
t

1
p1
1 t

1
p2
2 f∗1,∗2(t1, t2)

)τ1 dt1
t1




τ2
τ1

dt2
t2




1
τ2

< ∞,

and for τ = ∞
‖f‖Lp∞ := sup

ti>0
t

1
p1
1 t

1
p2
2 f∗1,∗2(t1, t2) < ∞, i = 1, 2.

Moreover, for the proof of Theorem 2.2 we need some embedding and
interpolation results also of independent interest. The first one reads:

Proposition 2.1. Let 0 < α = (α1, α2) < 1, 0 < β = (β1, β2) < 1,
0 < q = (q1, q2) 6 ∞.

a) If 0 < r = (r1, r2) 6 r̃ = (r̃1, r̃2) 6 ∞, then

Nα,β,r(Lq) ↪→ Nα,β,r̃(Lq).

b) If 0 < σ < min{1− α, 1− β}, 0 < r = (r1, r2) 6 ∞, then

Nα,β,r(Lq) ↪→ Nα+σ,β+σ,r(Lq). (1)

Let A = {Aε}ε∈E be compatible Banach spaces (this means that they
are all embedded in a Hausdorff topological vector space) and define the
corresponding K-functional as follows:

K(τ, a; Aε, ε ∈ E) := inf
{ ∑

ε∈E

τε‖aε‖Aε : a =
∑

ε∈E

aε, aε ∈ Aε

}
,

where τ ε = τε1
1 τε2

2 > 0. This natural generalization of the Peetre K-
functional was introduced by G. Sparr [23] (see also [3]).

Moreover, for 0 < q = (q1, q2) < ∞, 0 < θ = (θ1, θ2) < 1, we define the
interpolation spaces Aθ,q as follows:

Aθ,q =

{
a ∈

∑

θ∈E

Aε : ‖a‖Aθ,q
=

=

( ∞∫

0

( ∞∫

0

(τ−θ1
1 τ−θ2

2 ××K(τ, a;Aε, ε ∈ E)q1
dτ1

τ1

) q2
q1 dτ2

τ2

) 1
q2

< ∞
}

,

and, for q = (∞,∞)

Aθ,∞ =
{

a ∈
∑

θ∈E

Aε : ‖a‖Aθ,∞ = sup
0<τi<∞

τ−θ1
1 τ−θ2

2 K(τ, a; Aε, ε ∈ E) < ∞
}

.

The second auxiliary result reads:
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Proposition 2.2. Let α0 = (α0
1, α0

2) = (0, 0), 0 < α1 = (α1
1, α1

2) < 1,
αε = (αε1

1 , αε2
2 ), ε ∈ E, 0 < β = (β1, β2) < 1, 0 < r = (r1, r2), q =

(q1, q2) 6 ∞. Then

(Nαε,β,∞(Lq), ε ∈ E)θ,r ↪→ Nα,β,r(Lq),

where 0 < θ = (θ1, θ2) < 1, α =
(
(1− θ1)α1

1, (1− θ2)α1
2

)
.

3. Proofs

We make the proofs in the logical order to be used in later proofs.

Proof of Proposition 2.2. Since

ϕ(t1, t2) = sup
Qi∈Gti

1
|Q1|β1 |Q2|β2

‖F−1χQFf‖Lq
,

is a non-increasing function and by using the following inequality

tαi
i ∼ t−wi

i

( ti∫

0

s
(αi+wi)ri

i

dsi

si

) 1
ri

when wi > 0, i = 1, 2, we find, that

‖f‖Nα,β,r̃ ∼



∞∫

0

(
t−w2
2

( t2∫

0

( ∞∫

0

(
t−w1
1

( t1∫

0

(
sα1+w1
1 sα2+w2

2 ×

×ϕ(s1, s2)
)r1 ds1

s1

) 1
r1

)r̃1 dt1
t1

) r2
r̃1 ds2

s2

) 1
r2

)r̃2
dt2
t2




1
r̃2

.

Then applying Minkowski inequality to each pare of integrals, taking into
account, that ri < r̃i, i = 1, 2, we obtain that

‖f‖Nα,p,r̃ 6 c1‖f‖Nα,p,r

Moreover,

‖f‖Nα+σ,β+σ,r(Lq) =




∞∫

0

( ∞∫

0

(
tα1+σ1
1 tα2+σ2

2 ×

× sup
Qi∈Gti

1

|Q1|β1+σ1

1

|Q2|β2+σ2
‖F−1χQFf‖Lq

)r1 dt1
t1

) r2
r1 dt2

t2




1
r2

6

6



∞∫

0

( ∞∫

0

(
tα1
1 tα2

2 sup
Qi∈Gti

1

|Q1|β1

1

|Q2|β2
‖F−1χQFf‖Lq

)r1 dt1
t1

) r2
r1 dt2

t2




1
r2

=

= ‖f‖Nα,β,r(Lq).
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The proof is complete. ¤
Proof of Proposition 2.1. Make an arbitrary decomposition of f in the
form f = f0 + f1 + f2 + f3, f0 ∈ N (0,0),β,∞(Lq), f1 ∈ N (0,α1

2),β,∞(Lq),
f2 ∈ N (α1

1,0),β,∞(Lq) and f3 ∈ N (α1
1,α1

2),β,∞(Lq). It is obvious that

sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq

6
2∏

i=1

2( 1
qi
−1)+×

×
(

sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf0‖Lq

+

+ sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf1‖Lq+

+ sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf2‖Lq

+

+ sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf3‖Lq

)
,

where x+ = x, if x > 0 and x+ = 0, if x 6 0. If we denote v(τi) = τ
1

αi
1

i ,
τi > 0, i = 1, 2, then

sup
0<ti<v(τi)

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq 6

6
2∏

i=1

2( 1
qi
−1)+

(
sup

0<ti<v(τi)

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf0‖Lq+

+ sup
0<ti<v(τi)

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf1‖Lq+

+ sup
0<ti<v(τi)

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf2‖Lq+

+ sup
0<ti<v(τi)

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf3‖Lq

)
6

6
2∏

i=1

2( 1
qi
−1)+

(
τ1τ2 sup

ti>0
sup

Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf0‖Lq+

+τ2 sup
ti>0

t
α1

1
1 sup

Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf1‖Lq+

+τ1 sup
ti>0

t
α1

2
2 sup

Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf2‖Lq+
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+ sup
ti>0

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf3‖Lq

)
.

Taking into account that the representation f = f0+f1+f2+f3 is arbitrary,
we obtain that

sup
0<ti<v(τi)

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq

6

6
2∏

i=1

2( 1
qi
−1)+K(τ, f ; Nαε,β,∞, ε ∈ E).

Therefore for 0 < r = (r1, r2) < ∞, we get that



∞∫

0

( ∞∫

0

(
τ−θ1
1 τ−θ2

2 K(τ, f ; Nαε,β,∞, ε ∈ E)
)r1 dτ1

τ1

) r2
r1 dτ2

τ2




1
r2

>

>
2∏

i=1

2( 1
qi
−1)+




∞∫

0

( ∞∫

0

(
τ−θ1
1 τ−θ2

2 sup
0<ti<v(τi)

t
α1

1
1 t

α1
2

2 ×

× sup
Qi∈Gti

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq

)r1 dτ1

τ1

) r2
r1 dτ2

τ2




1
r2

=

=
2∏

i=1

2( 1
qi
−1)+(α1

i )
1
ri




∞∫

0

( ∞∫

0

(
u
−θ1α1

1
1 u

−θ2α1
2

2 sup
0<ti<ui

t
α1

1
1 t

α1
2

2 ×

× sup
Qi∈Gui

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq

)r1 du1

u1

) r2
r1 du2

u2




1
r2

>

=
2∏

i=1

2( 1
qi
−1)+(α1

i )
1
ri




∞∫

0

( ∞∫

0

(
u

(1−θ1)α
1
1

1 u
(1−θ2)α

1
2

2 ×

× sup
0<ti<ui

sup
Qi∈Gui

1

|Q1|β1 |Q2|β2
‖F−1χQFf‖Lq

)r1 du1

u1

) r2
r1 du2

u2




1
r2

=

=
2∏

i=1

2( 1
qi
−1)+(α1

i )
1
ri ‖f‖Nα,β,r(Lq) ,

i.e.
(Nαε,β,∞(Lq), ε ∈ E)θ,r ↪→ Nα,β,r(Lq),

The argument for the case r = ∞ is similar. The proof is complete. ¤
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Proof of Theorem 2.2. Let 1 6 r < q 6 ∞. It is known that the characteristic
function χQ of a parallelogram Q = Q1 × Q2 is a Fourier multiplier from
Lr to Lq. Moreover, there exists c6(r, q) > 0, such that

∥∥F−1χQFf
∥∥

Lq
6 c6(r, q)

2∏

i=1

|Qi|
1
ri
− 1

qi ‖f‖Lr , (2)

for every f ∈ Lr.
Let 0 6 αi 6 1 − 1

pi
. Then 1

pi
− 1

qi
< β 6 1 − 1

qi
and there exists

p0 = (p0
1, p

0
2) such that 1 < p0

i < pi and βi = 1
p0

i
− 1

qi
, i = 1, 2. According to

(2) applied with r = p0 we have that

‖f‖N0,β,∞(Lq) = sup
ti>0

sup
Q∈Gti

1

|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq
6 c7 ‖f‖Lp0

(3)

for every f ∈ Lp0 , where c7 = c6(p0, q).
Further let p1 = (p1

1, p
1
2), pi < p1

i < qi and α1 = (α1
1, α

1
2), α1 = 1

p0
i
− 1

p1
i
.

Taking into account (2) with r = p1 we have that

sup
ti>0

sup
Q∈Gti

1

|Q1|
1

p1
1
− 1

q1 |Q2|
1

p1
2
− 1

q2

∥∥F−1χQFf
∥∥

Lq
6 c8 ‖f‖Lp1

for every f ∈ Lp1 , where c8 = c6(p1, q).
Since

sup
ti>0

sup
Qi∈Gti

1

|Q1|
1

p1
1
− 1

q1 |Q2|
1

p1
2
− 1

q2

∥∥F−1χQFf
∥∥

Lq
=

= sup
ti>0

sup
Qi∈Gti

|Q1|α
1
1 |Q2|α

1
2

|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq
>

> sup
ti>0

t
α1

1
1 t

α1
2

2 sup
Qi∈Gti

1

|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq
= ‖f‖Nα1,β,∞(Lq) ,

it yields that

‖f‖Nα1,β,∞(Lq) 6 c8 ‖f‖Lp1
(4)

for every f ∈ Lp1 . Moreover, according to (2), we have that

c6 ‖f‖L(p0
1,p1

2)
> sup

ti>0
sup

Qi∈Gti

1

|Q1|
1

p0
1
− 1

q1 |Q2|
1

p1
2
− 1

q2

∥∥F−1χQFf
∥∥

Lq
=

= sup
ti>0

sup
Qi∈Gti

|Q2|α
1
2

|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq
>

> sup
ti>0

t
α1

2
2 sup

Qi∈Gti

1

|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq
= ‖f‖

N(0,α1
2),β,∞(Lq)

,
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and, consequently,

‖f‖
N(0,α1

2),β,∞(Lq)
6 c6 ‖f‖L(p0

1,p1
2)

. (5)

Now, since

c6 ‖f‖L(p1
1,p0

2)
> sup

ti>0
sup

Qi∈Gti

1

|Q1|
1

p1
1
− 1

q1 |Q2|
1

p0
2
− 1

q2

∥∥F−1χQFf
∥∥

Lq
=

= sup
ti>0

sup
Qi∈Gti

|Q1|α
1
1

|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq
>

> sup
ti>0

t
α1

1
1 sup

Qi∈Gti

1

|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq
,

we conclude that

‖f‖
N(α1

1,0),β,∞(Lq)
6 c6 ‖f‖L(p1

1,p0
2)

. (6)

Let us denote by I the corresponding embedding operator. According to
(3)-(6), we have that

I : Lp0 ↪→ N0,β,∞(Lq),

I : Lp1 ↪→ Nα1,β,∞(Lq),

I : L(p0
1,p1

2)
↪→ N (0,α1

2),β,∞(Lq)

and
I : L(p1

1,p0
2)

↪→ N (α1
1,0),β,∞(Lq).

Moreover, in all cases the operator I is bounded. Let pε = (pε1
1 , pε2

2 ),
αε = (αε

1, α
ε
2), ε ∈ E and 0 < θ = (θ1, θ2) < 1 be such that 1

p = 1−θ
p1

+ θ
p0

.

Since
α = β − 1

p
+

1
q

=
1
p0
− 1

p
= (1− θ)α1,

by the interpolation properties of the spaces Lp (see e.g. [19], [22]) we have
that

I : Lpτ = (Lpε , ε ∈ E)θτ → (Nαε,β,∞(Lq), ε ∈ E)θτ ,

where the operator I is bounded. Thus,

Lpτ ↪→ (
Nαε,β,∞(Lq), ε ∈ E

)
θτ

,

and, hence, the statement of the theorem follows by using Proposition 2.2.
When 1− 1

p 6 α < 1− 1
p + 1

q the statement of the theorem follows from
Proposition 2.1. Indeed, let 0 < α̃ 6 1 − 1

p . Then, according to what is
proved above and by (1), we have that

Lpτ ↪→ N α̃,α̃+ 1
p− 1

q ,τ (Lq) ↪→ Nα,β,τ (Lq).

The proof is complete. ¤
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Proof of Theorem 2.1. Let f ∈ S and 0 < ai < bi < ∞, i = 1, 2. Since ϕ ∈
AC([a, b]) and, by integrating by parts and using the Minkowski inequality
for sums and integrals, we find that

∥∥∥∥∥

b2∫

a2

b1∫

a1

ϕ(y1, y2)(Ff)(y1, y2)ei〈y,z〉dy1dy2

∥∥∥∥∥
Lq

=

=

∥∥∥∥∥

b2∫

a2

b1∫

a1

ϕ(y1, y2)

( y2∫

0

y1∫

0

(Ff)(ξ1, ξ2)ei〈ξ,z〉dξ1dξ2

)′′

y1,y2

dy1dy2

∥∥∥∥∥
Lq

=

=2π

∥∥∥∥∥
∑

ε∈E

(−1)ε1(−1)ε2

b2∫

a2

b1∫

a1

D1−ε
(
Dεϕ(y1, y2) ·

(
F−1χ[0,y1]×[0,y2]Ff

))
∥∥∥∥∥

Lq

6

62π

(
∥∥ϕ(b1, b2)F−1χ[0,b1]×[0,b2]Ff

∥∥
Lq

+
∥∥ϕ(a1, a2)F−1χ[0,a1]×[0,a2]Ff

∥∥
Lq

+

+
∥∥ϕ(a1, b2)F−1χ[0,a1]×[0,b2]Ff

∥∥
Lq

+
∥∥ϕ(b1, a2)F−1χ[0,b1]×[0,a2]Ff

∥∥
Lq

+

+

∥∥∥∥∥

b2∫

a2

ϕ
′
y2

(b1, y2)F−1χ[0,b1]×[0,y2]Ffdy2

∥∥∥∥∥
Lq

+

+

∥∥∥∥∥

b2∫

a2

ϕ
′
y2

(a1, y2)F−1χ[0,a1]×[0,y2]Ffdy2

∥∥∥∥∥
Lq

+

+

∥∥∥∥∥

b1∫

a1

ϕ
′
y1

(y1, b2)F−1χ[0,y1]×[0,b2]Ffdy1

∥∥∥∥∥
Lq

+

+

∥∥∥∥∥

b1∫

a1

ϕ
′
y1

(y1, a2)F−1χ[0,y1]×[0,a2]Ffdy1

∥∥∥∥∥
Lq

+

+

∥∥∥∥∥

b2∫

a2

b1∫

a1

ϕ
′′
y1,y2

(y1, y2)F−1χ[0,y1]×[0,y2]Ffdy1dy2

∥∥∥∥∥
Lq

)
≡ 2π

9∑

k=1

Ik.

Moreover, according to (2), we have that

I1 =
2∏

i=1

a
1

pi
− 1

qi
i |ϕ(a1, a2)| 1

∏2
i=1 a

1
pi
− 1

qi
i

∥∥F−1χ[0,a1]×[0,a2]Ff
∥∥

Lq
6Ac8 ‖f‖Lp

,

where c8 = c6(p, q).
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Analogously, we find that

Ik 6 Ac8 ‖f‖Lp
, k = 2, 3, 4.

Furthermore, it yields that

I5 =

b2∫

a2

bβ1
1 yβ2

2 |ϕ
′
y2

(b1, y2)| 1

bβ1
1 yβ2

2

∥∥F−1χ[0,b1]×[0,y2]Ff
∥∥

Lq
dy2 6

6
∞∫

0

bβ1
1 yβ2

2 |ϕ
′
y2

(b1, y2)|×

×
(

sup
Q1∈Gb1Q2∈Gy2

1
|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq

)
dy2. (7)

We also note that

sup
Q1∈Gb1Q2∈Gy2

1
|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq

is a non-increasing function of y. Hence, by using (7) and the inequality∫∞
0

FGdy 6
∫∞
0

F ∗G∗dy, which holds for all nonnegative functions F and
G, we have that

I5 6
∞∫

0

bβ1
1

(
zβ2
2 ϕ

′
z2

(b1, z2)
)∗2

(y2)×

×
(

sup
Q1∈Gb1Q2∈Gy2

1
|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq

)
dy2 =

=

∞∫

0

bβ1−α1
1 y1−α2

2

(
zβ2
2 ϕ

′
z2

(b1, z2)
)∗2

(y2)×

×bα1
1 yα2

2

(
sup

Q1∈Gb1Q2∈Gy2

1
|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq

)
dy2

y2
6

6 sup
y1∈R+

yβ1−α1
1 y1−α2

2

(
zβ2
2 ϕ

′
z2

(z1, z2)
)∗2

(y2)×

×
∞∫

0

yα1
1 yα2

2 sup
Q1∈Gy1Q2∈Gy2

1
|Q1|β1 |Q2|β2

∥∥F−1χQFf
∥∥

Lq

dy2

y2
6

6 A ‖f‖Nα,β,(∞,1)(Lq) .
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Moreover, according to Theorem 2.2 there exists c9 > 0, which depends
only on p, q, α, such that

I5 6 Ac9 ‖f‖Lp(∞,1)
.

Similarly, we find that

I6 6 Ac9 ‖f‖Lp(∞,1)
,

I7 6 Ac9 ‖f‖Lp(1,∞)
,

I8 6 Ac9 ‖f‖Lp(1,∞)
,

I9 6 Ac9 ‖f‖Lp1
.

Since Lp1 ↪→ Lp, Lp1 ↪→ Lp(∞,1), Lp1 ↪→ Lp(1,∞) (see [22]), we conclude that
there exists c10 > 0, depending only on p, such that

‖f‖Lp
6 c10 ‖f‖Lp1

.

Hence, there exists c11, depending only on p, q and α, such that

∥∥∥∥∥

b2∫

a2

b1∫

a1

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lq

6 c11A ‖f‖Lp1
(8)

for every f ∈ S and any 0 < ai < bi < ∞, i = 1, 2.
Let the couples of vectors p0 = (p0

1, p0
2), q0 = (q0

1 , q0
2) and p1 = (p1

1, p1
2),

q1 = (q1
1 , q1

2) be such that 1 < p0 < p < p1 < ∞, 1 < q0 < q < q1 < ∞ and

1
p0
− 1

q0
=

1
p1
− 1

q1
=

1
p
− 1

q
. (9)

Let E = {ε = (ε1, ε2) : εi ∈ {0, 1}} be the set of corners in the unit cube in
R2, qε = (qε1

1 , qε2
2 ), pε = (pε1

1 , pε2
2 ). By (8), we get that there exists c12 > 0

such that
∥∥∥∥∥

b2∫

a2

b1∫

a1

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lqε

6 c12A ‖f‖Lpε1
, ε ∈ E

for every f ∈ S. Choose θ = (θ1, θ2) ∈ (0, 1) such that 1
p = 1−θ

p0
+ θ

p1
.

According to (9) we also have that

1
q

=
1
p
− 1

p0
+

1
q0

=
1− θ

p0
+

θ

p1
− 1

p0
+

1
q0

=

= θ

(
1
p1
− 1

p0

)
+

1
q0

= θ

(
1
q1
− 1

q0

)
+

1
q0

=
1− θ

q0
+

θ

q1
.
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By interpolation theorem [19] we have that for every 0 < r = (r1, r2) 6 ∞
∥∥∥∥∥

b2∫

a2

b1∫

a1

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lqr

6 c13A ‖f‖Lpr
,

where c13 > 0 depends only on p, q, α and r.
If, specifically, r = p, then, for some c13 > 0, which depends only on p, q

and α, it yields that
∥∥∥∥∥

b2∫

a2

b1∫

a1

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lq

6 c13A ‖f‖Lp

for all f ∈ S and for any 0 < ai < bi < ∞, i = 1, 2, because Lqp ↪→ Lq if
p < q.

Since |ϕ(y1, y2)| 6 A
∏2

i=1 |yi|−
1

pi
+ 1

qi , yi ∈ R \ {0} and Ff ∈ S, we find
that the integral

∞∫

0

∞∫

0

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

converges absolutely for every z ∈ R2.
Hence, for every z ∈ R2, it yields that

lim
n→∞

∣∣∣∣∣

n∫

1
n

n∫

1
n

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∣∣∣∣∣ =

=

∣∣∣∣∣

∞∫

0

∞∫

0

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∣∣∣∣∣,

and, by the Fatou theorem,
∥∥∥∥∥

∞∫

0

∞∫

0

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lq

6

6 sup
n∈N

∥∥∥∥∥

n∫

1
n

n∫

1
n

ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lq

6 c13A ‖f‖Lp
.

Similarly, we find that
∥∥∥∥∥

0∫

−∞

0∫

−∞
ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lq

6 c13A ‖f‖Lp
.
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Therefore,

‖Tϕ(f)‖Lq
=

∥∥F−1ϕFf
∥∥

Lq
=

=
1
2π

∥∥∥∥∥

∞∫

−∞
ϕ(y1, y2)(Ff)(y1, y2)ei〈yz〉dy1dy2

∥∥∥∥∥
Lq

6 c14 ‖f‖Lp
,

for every f ∈ S. This means that

‖Tϕ(f)‖Lq
6 c14 ‖f‖Lp

for every f ∈ Lp, i.e. ϕ ∈ Mq
p and

‖ϕ‖Mq
p

6 c14.

The proof is complete. ¤
Finally we will present a proof of Remark 2.1.

Proof of Remark 2.1. Let γ = (γ1, γ2), β = (β1, β2), 1 > γi > βi, i = 1, 2,
and

µi
k =

(
k1−βi + k−γi − (k + 1)−γi

) 1
1−βi , k ∈ N, i = 1, 2,

where βi > 1
pi
− 1

qi
, and consider

ϕ1(x1) =

{
k1−β1 + k−γ1 − x1−β1

1 , x1 ∈
[
k, µ1

k

]
,

(k + 1)−γ1 , x1 ∈
[
µ1

k, k + 1
]
,

k ∈ N,

ϕ2(x2) =

{
k1−β2 + k−γ2 − x1−β2

2 , x2 ∈
[
k, µ2

k

]
,

(k + 1)−γ2 , x2 ∈
[
µ2

k, k + 1
]
,

k ∈ N.

We define the function ϕ = ϕ(x1, x2) as follows: (10)

ϕ(x1, x2) = ϕ1(x1)ϕ2(x2)

for xi > 1, i = 1, 2,

ϕ(x1, x2) = 1,

for 0 6 xi 6 1, i = 1, 2, and

ϕ(x1, x2) = ϕ(−x1, x2)ϕ(x1,−x2)

for xi < 0, i = 1, 2.
The function ϕ ∈ ACloc(R2 \{0}), because it is continuous on R2, is even

by definition and is absolutely continuous.
We now prove that the function ϕ satisfies the first condition. Let xi ∈

[k, k + 1], i = 1, 2. Then
2∏

i=1

|xi|
1

pi
− 1

qi |ϕ(x1, x2)| 6
2∏

i=1

|xi|
1

pi
− 1

qi |ϕ1(x1)| |ϕ2(x2)| 6
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6
2∏

i=1

(k + 1)
1

pi
− 1

qi
1
kγ

i

6
2∏

i=1

(k + 1)
1

pi
− 1

qi

k
1

pi
− 1

qi

6 2.

Note that
∣∣∣xβ2

2 ϕ
′
x2

(x1, x2)
∣∣∣ = ϕ1(x1)

{
1− β2, x2 ∈

(
k, µ2

k

)
,

0, x2 ∈
(
µ2

k, k + 1
)
,

k ∈ N.

Let
I2 =

{
x2 :

∣∣xβ2
2 ϕ

′
x2

(x1, x2)
∣∣ = 1− β2

}
.

We now prove that the measure of this set

|I2| =
∞∑

k=1

(
µ2

k − k
)

=
∞∑

k=1

k

((
1 +

1
k1−β2

(
k−γ2 − (k + 1)−γ2

) ) 1
1−β2 − 1

)

is finite.
In fact, by applying the elementary inequality (1 + x)ν − 1 6 ν2ν−1x for

ν > 1 and 0 6 x 6 1 (see e.g. [7]), we obtain that

|I2| 6 2
β2

1−β2

1− β2

∞∑

k=1

k

k1−β2

(
k−γ2 − (k + 1)−γ2

)
.

Moreover, since the series
∑∞

k=1 k−(1−β2+γ2) converges, by the limit com-
parison theorem, we find that also the series

∞∑

k=1

k

k1−β2

(
k−γ2 − (k + 1)−γ2

)

converges. Since the function
∣∣∣xβ2

2 ϕ
′
x2

(x1, x2)
∣∣∣ takes two values namely 0

and 1− β, we have that
(
xβ2

2 ϕ
′
x2

(x1, x2)
)∗2

(t2) =
{

1− β2, x2 ∈ [0, |I2|],
0, x2 > |I2| .

Hence

sup
ti>0

tβ1−α1
1 ϕ1(t1)t1−α2

2 ·
(
xβ2

2 ϕ
′
x2

(x1, x2)
)∗2

(t) =

= sup
t1>0

tβ1−α1
1 ϕ1(t1) sup

0<t262d2

t1−α2
2 (1− β2) = 2 (1− β2) (|I2|)1−α2 < ∞,

i.e. the second condition holds. The third and fourth conditions can be
proved similarly so we omit the details.

On the other hand, if we choose a sequence of arbitrary points {xk}∞k=1,
{yk}∞k=1, where xk ∈

(
k, µ1

k

)
, yk ∈

(
k, µ2

k

)
, then

lim
k→∞

∣∣∣∣x
1+ 1

p1
− 1

q1
k y

1+ 1
p2
− 1

q2
k ϕ

′′
x1,x2

(xk, yk)
∣∣∣∣ =
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= lim
k→∞

∣∣∣∣x
1+ 1

p1
− 1

q1
−β1

k y
1+ 1

p2
− 1

q2
−β2

k xβ1
k ϕ

′
x1

(xk)yβ2
k ϕ

′
x2

(yk)
∣∣∣∣ =

= lim
k→∞

|xk|1+
1

p1
− 1

q1
−β1 |yk|1+

1
p2
− 1

q2
−β2 (1− β1)(1− β2) = ∞.

This completes the proof. ¤

4. Concluding Remarks

Remark 4.1. Already P. Lizorkin himself proved some complementary
results of Theorem 1.3, see [13]-[17]. An interesting extension of these results
was done by V. Kokilashvili and P. Lizorkin [11] (see also [9]). Moreover, an
improvement of (Hörmander’s) Theorem 1.2 in terms of spaces of fractional
smoothness was presented by O. Besov [4]. Note that in [21] Hörmander’s
result was generalized to the case concerning anisotropic Lorentz spaces.

Remark 4.2. Two-weighted estimates for Fourier multipliers was first
obtained in the important paper [6] by D. E. Edmunds, V. Kokilashvili and
A. Meskhi. Their main technique in the proofs consisted of a representation
of the operator under consideration in the form of compositions of certain
”elementary” transformations.

Remark 4.3. An important argument in our proof is to use interpolation
of Sparr type [23] (see also e.g. [3]). In the paper [5] M. Carro used another
interpolation technique (Schechter’s method) to obtain some other Fourier
multiplier results of the type studied in this paper.

Remark 4.4. In this paper we have worked with extension of the Lorentz
spaces to a two-dimensional situation [19], [22]. In her PhD thesis [1] S.
Barza introduced and studied another multidimensional Lorentz space (see
also [2]). We conjecture that our results can be given also in terms of these
Lorentz spaces.

Remark 4.5. Partly guided by the result mentioned in Remark 4.2 and
other results in [10] it should be interesting to generalize our results to a
more general weighted situation. By combining the techniques used in [6]
with those in this paper it seems to be possible to further generalize and
sharpen the results in [6]. The present authors aim to come back to this
question in a forthcoming paper.
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