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MULTIDIMENSIONAL GENERALIZATION OF THE
LIZORKIN THEOREM ON FOURIER MULTIPLIERS

L-E. PERSSON, L. SARYBEKOVA AND N. TLEUKHANOVA

ABSTRACT. A generalization and sharpening of the Lizorkin theorem
concerning Fourier multipliers between L, and L4 is proved. Some
multidimensional Lorentz spaces and an interpolation technique (of
Sparr type) are used as crucial tools in the proofs. The obtained re-
sults are discussed in the light of other generalizations of the Lizorkin
theorem and some open questions are raised.
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1. INTRODUCTION

Let F and F~! be the direct and the inverse Fourier transforms, respec-
tively, in R? defined by

(Ff)(E) :

1 .
or [ S
2

R2

(Fg)(a) = [ 9@ e,
R2
Let p = (p1,p2), = (q1,¢2), 1 < pi < ¢; <00, =1,2. It is said that ¢
is a Fourier multiplier from L, to Lg, briefly, ¢ € M}, if there exists ¢; > 0
such that for every function f in Schwartz space S the following inequality
holds
1T (D, <cllflz,

where T,,(f) = F~1oFf.
The set M}! of all Fourier multipliers from L, to L, is a normed space
with the norm
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lelag = 1Tl s -
MY is denoted by M,,.

Let E = {e = (e1,62) : e, =0o0rg; =1, i = 1,2} be the set of corners in
the unit cube in R?. The measure of @ is denoted by |Q)|.

The following important sufficient condition certifying that ¢ € M, was
given by S. Mihlin [18]:

Theorem 1.1. Let p(x) be a bounded function in R? and assume that
o D ()] <A (o] < L)
for some integer L > 1. Then ¢ € M, 1 < p < o0, and
lllyy, < o,
where the constant co depends only on p.

For the case p < 2 < ¢ the classes M|! were characterized by L. Horman-
der [8] as follows:

Theorem 1.2. Let 1 <p<2<qg<oo, 1/s=1/p—1/q, and let | be a
measurable function such that

€ 17(0)] > | < e/t
Then f € MJ.

Moreover, P. Lizorkin [14] studied the case 1 < p < ¢ < oo and, in
particular, proved the following theorem:

Theorem 1.3. Letl <p<g<oo, A>0,0= %f%, e €F, |e|=e1+e2

and let p be a continuously differentiable function on R?\ {0} satisfying the

following condition:
2

A dlElp
it
114 ﬂay?ay? <A

X
i=1

Then ¢ € M and
Illars < cad,
where ¢y > 0 depends only on p and q.

In this paper we will strengthen Theorem 1.3 above, by introducing some
two-dimensional parameters p = (p1,p2), ¢ = (q1,92), 1 < p; < ¢; < 00,
i = 1,2. The paper is organized as follows: The main results are presented
and discussed in Section 2. The detailed proofs can be found in Section
3 while Section 4 is reserved for some final remarks, i.e. concerning other
generalizations and complements of Theorems 1.2 and 1.3 (see e.g. [4]-[6],
[9]-[13], [15]-[17], [21] and the references given there).
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2. MAIN RESULTS

Let f be a Lebesgue measurable function on R and
m(o, f) = [{z € R:|f(2)| > o}
be its distribution function. The function

@) =inf{o : m(o, f) < t}

is the usual non-increasing rearrangement of f.

Let f(x1,72) be a measurable function on R2. In what follows by f* =
f*1*2(t1,t2) we mean the non-increasing rearrangement first with respect
to z1 with fixed x5, and then with respect to x5. This function is called the
non-increasing rearrangement of the function f.

Let ¢ € E, then *. = (%, *c,) is an operator, which is acting by the
following rule:

v fl@), if e=0
=0\ ), if e=1,
frevrez (@, me) = (f1(21))2 (22).

Our main result reads:

Theorem 2.1. Letp—(phpz) q (q1,92), (041,062) B = (b1, B2),
1<p; <q <o, 0<a1<17—+f andﬁlfozl+—f— i =1,2. If the

continuously differentiable functwn o on R%\ {0} satzsﬁes to the following
condition:

le] *eqor¥eg
+(1—e)Bi—au 0
sup Hy +(1—€;)Bi—ay (thﬁ] telaf“) (y1,92) < A, Ve € E,

vy €RY ;5

then ¢ € M} and
el < s,
where c5 > 0 depends only on p;,q; and o, |e| = 1 + €2.
Remark 2.1. Theorem 2.1 is a strict generalization of (the Lizorkin)

Theorem 1.3. In fact, the assumptions in Theorem 2.1 are strictly weaker
than those in Theorem 1.3, since

2 le] *eqr¥ey
it(1—ei)Bi—a; 0o
sup Hye (1—e4)Bi—ay ( t;‘;BJ 3t518t52> (y1,9s) <
j=1

Yy €ERT ;1

Hys i+8 8‘ |<P

ei+(1—e;)Bi—a;
<H2 sup Gy Oy

yiER

)
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and there exists a function ¢ (see (10) on page 13) satisfying the assumptions
of Theorem 2.1, but not satisfying the assumptions in Theorem 1.3, i.e.

sup Hyﬁl “o(y1,y2) < o0
yi €RY ;5

*2
sup yp' My (tBQ@tg(tlat2)> (y2) < o0
yi ERT

l—ay, fa—az (51 1
SUp Y, 'y (t wtl(tl,tz)) (y1) < o0
yz€R+

*1 %2
sup Hyl o (tth @1, tg(t17t2)> (y1,92) < o0
y7€R+

but

1 1

o T o "
I | m a;
yZ S01!12/2

For the proof of Theorem 2.1 we need the following embedding theorem
of independent interest:

sup
y; €ER

= Q.

Theorem 2.2. Let 1 < p = (p1,p2) < ¢ = (¢1,q2) < 00, 0 < 7 =
(11,72) < 00, a = (a1,02), = (01,02) and0 < a<1— % + %. Then
Ly > N®BT(L,)

)

whereﬂ:aJr%f%.

Here N*A(L,) is a version of the net spaces, which was introduced and
studied in [20] and [22], defined as follows: for 0 < a = (a1, a2) < oo,
0<pB=(p1,0) <00, 0<q=(q,q2), 7 = (r1,72) < o0, and Gy =
{la1,b1] X [ag,ba] : b; —a; > t;, i = 1,2}, t € R%, we say that the function f
belongs to the space N“A7(L,) if f € Ly and

oo/ o0

e = [ | ] (tmzx

0 0
1
2 2
IFierils,) M) ) o
|ﬁ1|cz LT

sSup 00,
QzEGt t2
for 0 < r < oo, and
Fllye.s.r = sup t7'9% sup ———— YoFf|L., < oo,
Flvesrisg = s 55 sy ot PN i,

for r = (r1,72) = (00, 00), where x¢ is the characteristic function of Q.
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Let 1 < p=(p1,p2) < 00,0 <7 =(11,72) < 00. We say that a function
f belongs to the Lorentz space L,, (see [22]) if f is measurable on R? and
for 7 < 00

1
TS >y
oo oo T

1 Tdt | dts
||fHLpT = / /(tlpltzpzf b Z(tlut2)> E E < 00,

0 0

and for 7 = oo
R
I fllz,o = sup ty* t3? f*0"2(t1,t2) < 00,4 = 1,2.
t; >0

Moreover, for the proof of Theorem 2.2 we need some embedding and
interpolation results also of independent interest. The first one reads:

Proposition 2.1. Let 0 < a = (a,a0) < 1, 0 < 8 = (61,02) < 1,
0<q=(q1,q2) < o0.
a) If 0 <r=(r,re) <7 =(F1, 72) < 00, then
NOPT(Ly) o NOPT(L,).
b) If 0 < o <min{l —a,1— G}, 0 <r = (r1,r2) < 00, then
Na,ﬁ,r(Lq) SN Noz+a,ﬁ+a,r(Lq). (1)

Let A = {A.}_.p be compatible Banach spaces (this means that they
are all embedded in a Hausdorff topological vector space) and define the
corresponding K-functional as follows:

K(7,a;Ac,e € E) := inf{ > rfllacla.: a= ac,a. € AE},
eelE eeE

where 7¢ = 77'75> > 0. This natural generalization of the Peetre K-

functional was introduced by G. Sparr [23] (see also [3]).
Moreover, for 0 < ¢ = (q1,¢2) < 00, 0 < 8 = (01,603) < 1, we define the
interpolation spaces Ay 4 as follows:

Ag’q = {a S Z AE : ||a||Aeyq =

0€E
1

0 oo }
d a1 a2
:(/(/(TlelTQGZXXK(Taa;AE,EEE)qlTl) 17—2> <OO},
T1 o
0

0

and, for ¢ = (00, 00)

Ag oo = {a = ZAE Nalla, . = sup TfeleagK(Tya§As,5 €FE)< OO}'
0cE 0<T1; <0

The second auxiliary result reads:
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Proposition 2.2. Let ag = (af, a3) = (0,0), 0 < aq = (ai, ad) < 1,
a: = (', 05?), e € E,0< = (f1,02) < 1,0 <71 = (r,r), ¢ =
(g1,92) < 00. Then

(N@=B22(L,), e € E)g,p — N*FT (L ),
where 0 < 0 = (01,602) <1, a= ((1—61)eq,(1 )od) .
3. PROOFS

We make the proofs in the logical order to be used in later proofs.

Proof of Proposition 2.2. Since

@(t1,t2) = sup IF " xqF L,

1
QiEGti ‘Ql ‘51 |C‘22|B2

is a non-increasing function and by using the following inequality
ti

1
. —ws L) dSg ) T
t?l Ntl wl(/3§a1+w1)“5-1)
i

0
when w; > 0,7 = 1,2, we find, that

oo

tg oo t
Fllyons ~ /(t( / ( / ( > / s gt
0 0 0

1 1
s To T2
X()O(Sl 52))7‘1 d51 dtl 1 @ 2 @ .
7 s1 31 82 to
Then applying Minkowski inequality to each pare of integrals, taking into
account, that r; < r;, i = 1,2, we obtain that

[l veawr < cal[flnverr
Moreover,

oo o, o0

Fllxetessorp,) = / </ (t‘f“*“lt;“”"z x

0 0
1 1 1 dty \ " dts
X sup F~xoFf L) — — <
Qi€Gy, |Q1|51+01 |Q2|52+02 ” Q ” a th to =
- a1
i o\ dty )
1 2
</ (/ (152 sup 1P F I, ) d -
;\J |Q1|51 Qs |‘32 o)

= || fllvesr(L,)
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The proof is complete. O

Proof of Proposition 2.1. Make an arbitrary decomposition of f in the
1

form f = fo+ fi + fo+ f3, fo € NOOB2(L), fi € NOe2)Boo(L ),

fo € N(O‘ivo)’ﬁv‘x’(Lq) and f3 € N(O‘%’aé)ﬁ"’o(Lq). It is obvious that

[ V)

(-4
sup IF~'xqF fll, < ]2 7+ x
Qi th |Q1|5l Q2] ’ £[1

x| sup 7” "XoF follL,+
(Qz |[31 |Q |ﬁ2

+ sup 7” "YoF fillL,+
Qlect 10117 |Q2" ‘

IF~ xQF foll, +

1
sup —————
Qi€ |ﬁl Q2|

©osup — P XQFf3||L)
0.c6n, |1 1Qal” )

1
o

where zy =z, if x > 0 and x4 = 0, if z < 0. If we denote v(1;) = 7, ',
7 > 0,1 =1,2, then

S

o<5‘<‘5@ﬁ%t2 oo W” "YoF fllz, <
S f[l2(;i_l)+ (0<t§i‘i€(mt?it2 WH "XoF follz,+
+0<t§1<15(n)t?1t2 Q?up WH XoF fille,+
+0<51<113(mt;1%t2 Q?UP WH "XoF f2ll,+
+0<51<113<n>t(ﬁtg% 0.e0,, WFlXQFfBHLq) <
< f[l2(qli_1)+ (7’17’2 tSli}% Q?EG, WH _1XQFf0HLq+
+72 sup tl sup 7” XQFf1||Lq+

t;>0 Qlth |Ql|ﬁl |Q |B2

+71 sup t;z sup HF71XQFf2||Lq—|—

1
60 QieGr, |Qif™ |Qol™
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1
+ sup t?th sup
;>0 Qi€Gy,;

WH XQFf3||Lq>-

Taking into account that the representation f = fo+ f1+ fo+ f3 is arbitrary,
we obtain that

sup tait sup ——————

0<t;<v(7;) P Qlth ‘Ql‘ﬁl |Q |B2
2

< Hz(i’l)JfK(T,f;N%ﬁ’oo,e €E).

1P~ xoF fllz, <

Therefore for 0 < r = (r1,7r2) < 0o, we get that

r2 Ty

(7 01, —0 modr | dny
/ /(T; K (n NP e B)) ) 2
1 2

0 0
00

2 oo
1 _ _ 1 1
> | | 9la; ~1+ / / (7’1 917'2 2 sup g2 x
i—1 0<t;<v(7;)

0 0

ry
" dT2

y PP f| ) dn
sup ———— I oL a2 —
ey |@1|‘*1 Qo= X))

2
—.—1)+ i —f101 ) —0z0; ag oy
H ;)T Uy Ug sup ty'ty* X
0<ti<uy

=1 0
1
r2 Ty

1 " dU1 " dUQ
< sl P er s, ) S )
QieC, |Q1]7 Qa)™ ¢ ! Uz

oo (oo}
2 ( ( TG

0

WV

r2 To

duy \ Y du
T XQFfHLq) ) 2

Ui

U2

X sup s
0<t; <uy Q,eGul

Q1|"1 Q2]

i.e.
(N=F2(L,), e € E)g, — N*PT(L,),

The argument for the case r = oo is similar. The proof is complete. O



MULTIDIMENSIONAL GENERALIZATION OF THE LIZORKIN THEOREM 91

Proof of Theorem 2.2. Let 1 < r < ¢ < oo. It is known that the characteristic
function xq of a parallelogram @ = Q1 X @2 is a Fourier multiplier from
L, to Ly. Moreover, there exists cg(r,q) > 0, such that

2
HF_IXQFfHLq <06(7"»Q)H|Qi Tioa > (2)
=1

for every f € L,.
Let0<al\1f%. Thenff$<ﬁ 17;andthereeX1sts
1 1

po = (p,p9) such that 1 < p? < p; and 3; = 0T gt = 1,2. According to

(2) applied with r = pg we have that

1
11l vo.0.00(z,) = SUP sUp ——g=——g
N (Lq) ti>0 QEGY, |Q1|ﬁ1 |QZ|62

for every f € Ly,, where c7 = cs(po, q).
Further let p; = (pl,pd), pi < p} < ¢ and o = (o, 04), o = &5 — Lt

IF~ xaF S|, <erllfll,, (3)

Taking into account (2) with » = p; we have that

1
sup sup 11 11 HF XQFfHL X C8 ”f”L
QG Q)T Qaf
for every f € Ly, , where cs = cs(p1,q).
Since
1
sup sup - — [|[F” XoFfl,, =
t>0Q1€Gt |Q1| % tn |Q |p2 qz
Q1™ Q2] |
= sup sup %HF YeFfll, =

t:>0 Q;€Gy; |Q1 \51 |Q2|ﬁ2

1 1
o IV R
Z supt; ty? sup

1
——————|F " "xoF [, = lIfllyersoo(r,y s
t:>0 QicCr, |Q1]7 Q2™ | @ HLq 1| veroe )

it yields that
Hf”NO‘lvﬁvO"(Lq) S e ||f||Lp1 (4)

for every f € L,,. Moreover, according to (2), we have that
1

1

%

Q1" " |Q2]”
|Q2| 2 HF_

Ql‘ﬁl |Q2|B2

wllflly,,,, >sw suw
172

F~lxoF —
t:>0 Q.G -4 H XQ fHLq

a2

l\?)—“H

= sup
t:>0 Q;€Gy,

X FfHLq Z

1
> sup th sup

1 -1
S S g 1 X, = Mllyebs i,
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and, consequently,
Hf||N(o.,a;),ﬁ,oo(Lq) < Co Hf“L(p?’p%) : (5)

Now, since
1 _
11 11 HF 1XQFfHL =
Qllp% a1 |Q2|pg a2 4
1
Q™
Ql‘ﬁl |Q2|ﬁ2

1
> sup t?l sup
t;>0  Qi€Gy,

il , > 5w sw
P1.P3) ti>OQi€Gti

= sup

FyoF >
ti>0Qi€Gti H XQ fHLq =

1 -
@i el

we conclude that
Al ot onm.me ) < €6 HfIIL(p%’pg) : (6)

Let us denote by I the corresponding embedding operator. According to
(3)-(6), we have that

I LPU - NO,ﬁ,oo(Lq)’
I: Ly, — N“P(L,)

)

I: Lo pty < N©O020oo(L )

P1,Po
and )
. ay,0),8,00
L5 Ligy pg) = NP2 (Ly).
Moreover, in all cases the operator I is bounded. Let p. = (pi', p5?),
a: = (af,a5), e € Eand 0 < § = (61,62) < 1 be such that % = 1p_19 + %.
Since

a:ﬂ—l—i-}:i—}:(l—ﬂ)al,
p q Ppo P
by the interpolation properties of the spaces L, (see e.g. [19], [22]) we have
that
I:Ly = (Ly.,e€E)y, — (N*P¥(L,),e € E)gsr,
where the operator I is bounded. Thus,

Ly — (N°P®(L,),e € E),_,

and, hence, the statement of the theorem follows by using Proposition 2.2.
When 1 — ]% <a<l- % + % the statement of the theorem follows from

Proposition 2.1. Indeed, let 0 < & < 1 — %. Then, according to what is
proved above and by (1), we have that

Lpr > N5 707 (Lg) < NP7 (Ly).
The proof is complete. O
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Proof of Theorem 2.1. Let f € S and 0 < a; < b; < 00,7 = 1,2. Since ¢ €
AC([a,b]) and, by integrating by parts and using the Minkowski inequality
for sums and integrals, we find that

bs by
/ / (1, 12) (FF) (91, 1) " dyrdyn || =
az ai Lg
by by Y2 Y1 "
= //Sﬁ(ylayz)<//(Ff)(fla52)6i<£’z>d§1d§2> dyidya|| =
az aj 0 0 Y1,Y2 Lg
bs b1
=2 Z(_l)sl(_l)@//l)lﬁs (DFe(y1,92) - (F Xomxfow) FF)) || <
e€FE as ai Lq

<27T< H‘P(bhb2)F_1X[O,b1]X[O,bz]FfHLq+H<p(a1’a2)F—1X[O,a1]X[O"U]FfHLq_'_

+ (a1, b2) P X0, <o FF ||, + (0001, 02) F = x o, (0,021 F £, +
b

/‘P;z (b1,¥2) F ™ X(0,61)x[0,52) F fdy2

as

ba
/‘P;,Q (a1, y2)F71X[07a1]X[O,yz]FfdyQ

as

by
/%1 (y1,02) F "X (0,511 x[0,02] F .S A1

ax

by
/90;,1 (y1, a2)F_1X[O,y1]X[O,ag]Ffdyl

ay

+

_|_

+

+ +

Lq

bs by
+ //‘P;I,yz(yhyz)F_IX[o,yl]x[o,yz]Ffdyldyz

a2 ai q

9
> E27TZIk.
L

k=1

Moreover, according to (2), we have that

2 a1 1
L=]]ar plar, a2)| ———— [|[F X0 F | 1, < Aes £,
=1

P 4
i=1""1

where ¢g = ¢(p, q).
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Analogously, we find that
I, < Acg ||f||Lp Jk=2,3,4.

Furthermore, it yields that

bo
I5 _/b1 y22|@y2(bl7y2)| glng HF_1X[O,b1]X[O,yz]FfHLq dys <

az

< /b1 ?JQ |<Py2(b1:3/2)|
0

1 _
X ( sup WHF 1XQFfHLq>dyz' (7)

Q1 EC?leQEcy2
We also note that

1
sup

——||F'xoF
Q1EG51Q2€Gy2 |Q1|51|Q2|52 H XQ f||Lq

is a non-increasing function of y. Hence, by using (7) and the inequality
I, FGdy < [ F*G*dy, which holds for all nonnegative functions F* and
G, we have that

oo

*2
/b ' 22 QOZQ 61722)) (yQ)X

0

‘ Do 1F xeF g, Jdye =
x( sup |Q1|51‘Q2‘ﬁ2 [F~"xq fHLq> Yo

Q1€GCh g, cq,

/bﬁ1 Myy 2 (352@;2(1)1722)) (y2) x

1 _
i (o g e,

Q1€Gu, Q2eGy,

dy2
Y2

N

< sup Pk (220 (21,2)) ()%
X D%y Yo 2 Pz, \R1, 22 Y2
Y1€

oo

1

dys
a1 2 —1
iyt sw oo ([P e P A,
0/ Q1€ g,cq,, Q1151 |Q2 |52 Lq y

N

S Allfllyescemry) -
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Moreover, according to Theorem 2.2 there exists cg > 0, which depends
only on p, q, a, such that

I5 < Acy ||fHLp(oo,1) ’

Similarly, we find that

Is < Acy ||fHLp(oo,1> ’
17 < Acy ||fHLp(1,x> ’
Iz < Acy ||fHLp(1,m> !
Iy < Acy ||fHLp1 :

Since Lpy — Ly, Lp1 = Lp(oo,1), Lp1 = Lp(1,00) (see [22]), we conclude that
there exists c19 > 0, depending only on p, such that

1Az, < cwollfll,, -

Hence, there exists c¢11, depending only on p, ¢ and «, such that

ba b1

/ /@(yh y2) (F ) (y1, y2)e' = dyrdys

a2 ai

<endllfllg,, (8)

Ly

for every f €S and any 0 < a; < b; < 00,1 =1,2.
Let the couples of vectors py = (p¥, p3), ¢ = (¢?, ¢9) and p1 = (p1, p3),
@1 = (g}, ¢3) be such that 1 < py < p <p; <00, 1< gy < ¢q<q < oo and
1 1 1 1 1 1
L1 1 1 1.1 )

Let E = {e = (e1,e2) : €; € {0,1}} be the set of corners in the unit cube in
R? q¢. = (¢i*,452), p- = (p*,p5%)- By (8), we get that there exists c12 > 0
such that

ba b1

//so(yl, Y2) (Ff)(y1, y2)e ™ dy, dys

az ai

<erAlfly,, c€ B

L

€

for every f € S. Choose 6 = (01,602) € (0,1) such that % =1=8 4
According to (9) we also have that

1 1 1 1 1-6 0 1 1

-—=—-——+—= +———+—=
q P Po qo Do P1 Po qo
1

1 1 1 1 1 1-6 0
=0|l———|+—=0|——— ) +—= + —.
P1 Do q0 q1 qo qo qo q1
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By interpolation theorem [19] we have that for every 0 < r = (r1,72) < 00
by by

/ / o, 92) (FF) (91, 92) ) dyadys

az ai

<csAlfll,,
Lar
where c¢13 > 0 depends only on p,q,« and r

If, specifically, r = p, then, for some c;3 > 0, which depends only on p, ¢
and «, it yields that

ba by

(Y1, y2) (F £)(y1, y2)e ¥ dy, dys <013A||fHLp

Lq
for all f € S and for any 0 < a; < b; < 00,71 = 1,2, because Ly, — Ly if

az ai

p<gq.
. 2 141
Since |@(y1,y2)| < ATy lyil

T,y € R\ {0} and Ff € S, we find
that the integral

//w(yl,yz)(Ff)(yl,yz)e“yz>dy1dyz
0 0

converges absolutely for every z € R?
Hence, for every z € R2, it yields that

lim

n—oo

(Y1, y2) (Ff) (y1, y2)e" Y dyy dys

(Y1, y2) (F ) (y1, y2)e' V2 dy dys

)

0\8 3\H\§
0\8 ;\H\:

and, by the Fatou theorem,

// o(y1,y2) (F £) (1, y2)e Y dy, dys

<
Lq
< sup //ﬁﬂ(yl,yz)(Ff)(yhyz) Ddydys | < csAllfll, -
neN S Ly
Similarly, we find that
0 0
‘ / /903/1»2!2 (Ff)(y1, y2)e' V= dyrdys <casdlfl,, -
— 00 —0O0

Ly
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Therefore,
1Tl = |FeF S, =
1 i(yz)
=3 ey, y2) (Ff) (1, y2)e™  dyrdys|| < caa||fllf,
A L,
for every f € S. This means that
1T (N, < crallfllz,
for every f € Ly, i.e. ¢ € M and
lollarg < cia-

The proof is complete. O

Finally we will present a proof of Remark 2.1.

P'/’OOf Of Remark 2.1. Let Y= (71a72)7 ﬁ = (ﬂlaﬂ?)’ 1> Yi > ﬂ’ia = 1727
and

. 1
‘uz — (klfﬁi _|_k,*’Yi _ (k+1)*7i)lfﬁi 7k c N,’L = 1’2,
1

where 3; > i q—, and consider
orfay) = 4 BT o melkm], oy
(k+1)™m, x1 € [pg,k+1], ’
Pa(r2) = R T oy ] keN.
(k+1)*’Y2’ To € [szk—’_l] 9
We define the function ¢ = ¢(x1,x2) as follows: (10)

p(z1,72) = @1(1)p2(72)
forz; 2 1,1=1,2,
p(z1,22) = 1,
for0<z; <1,1=1,2, and

p(x1,22) = p(—21, 22)0(21, —22)
forz; < 0,i=1,2.
The function ¢ € AC™¢(R2?\ {0}), because it is continuous on R?, is even
by definition and is absolutely continuous.
We now prove that the function ¢ satisfies the first condition. Let x; €
[k,k+1],5=1,2. Then
2

H‘xl|p’ W lp(w1, 22)] H|~T1

i=1

T o (21)] 2 (2)] <
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i=1
Note that

Bz )/ 1 —fs, x2 € (k,p3),

‘mz %z(xhxz)‘ =<P1(x1){ 0, ame (2 k+1), keN.
Let
I, = {1’2 : ’$g2§0;2(1’1,$2)| =1- 52}.

We now prove that the measure of this set

0o 1

\lzlzkzl Zk(( T (kvz—(k+1)vz)>1_ﬁ2 —1>

is finite.
In fact, by applying the elementary inequality (14 z)” — 1 < v2"~ 'z for
v>zland 0 <z <1 (seee.g. [7]), we obtain that

Ba Jo%e)
21 k —72 —72
1] < 1752;1@1% (k™72 — (k+1)772).
=1

Moreover, since the series Y ;- k—(1=B21+72) converges, by the limit com-
parison theorem, we find that also the series

> klljﬂz (k772 = (k+1)7)
k=1

converges. Since the function ‘x§2<p;2 (1‘1,.132)’ takes two values namely 0
and 1 — 3, we have that

(1,52%2 (361,372))*2 (t2) = { 17062’ @2 € [0, L,

) T > ‘I2| .
Hence
_ _ ’ *2
su%tfl Mpr(ta)ty (x§290x2($17$2)) (t)=
ti>
= sup i (h) sup 7% (1= ) = 2(1— ) (|la]) 7 < oc,
t1>0 0<t2<2ds

i.e. the second condition holds. The third and fourth conditions can be
proved similarly so we omit the details.
On the other hand, if we choose a sequence of arbitrary points {zx}72 ,,

{yx}32,, where z;, € (k‘,,u,lc), Yk € (k,ui) , then

1 1 g4 11
P1 a1 P2 a2
Y

. "
lim Ty prl,:w(xkayk) =

k—oo
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1 1 1 1
oo =P It - P2 gy o

= lim |z, i T 0 (@)Y o, ()| =
~ lim g, | T T T g e a0 (1= B)(1 - B) = oo
— 00
This completes the proof. (Il

4. CONCLUDING REMARKS

Remark 4.1. Already P. Lizorkin himself proved some complementary
results of Theorem 1.3, see [13]-[17]. An interesting extension of these results
was done by V. Kokilashvili and P. Lizorkin [11] (see also [9]). Moreover, an
improvement of (Hérmander’s) Theorem 1.2 in terms of spaces of fractional
smoothness was presented by O. Besov [4]. Note that in [21] Hoérmander’s
result was generalized to the case concerning anisotropic Lorentz spaces.

Remark 4.2. Two-weighted estimates for Fourier multipliers was first
obtained in the important paper [6] by D. E. Edmunds, V. Kokilashvili and
A. Meskhi. Their main technique in the proofs consisted of a representation
of the operator under consideration in the form of compositions of certain
”elementary” transformations.

Remark 4.3. An important argument in our proof is to use interpolation
of Sparr type [23] (see also e.g. [3]). In the paper [5] M. Carro used another
interpolation technique (Schechter’s method) to obtain some other Fourier
multiplier results of the type studied in this paper.

Remark 4.4. In this paper we have worked with extension of the Lorentz
spaces to a two-dimensional situation [19], [22]. In her PhD thesis [1] S.
Barza introduced and studied another multidimensional Lorentz space (see
also [2]). We conjecture that our results can be given also in terms of these
Lorentz spaces.

Remark 4.5. Partly guided by the result mentioned in Remark 4.2 and
other results in [10] it should be interesting to generalize our results to a
more general weighted situation. By combining the techniques used in [6]
with those in this paper it seems to be possible to further generalize and
sharpen the results in [6]. The present authors aim to come back to this
question in a forthcoming paper.
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