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ON THE UNIQUENESS OF EXTREMAL FUNCTIONS IN
CLASSES OF ENTIRE FUNCTIONS BOUNDED ON THE

REAL AXIS

FERHAD H.(G.) NASIBOV

Abstract. In this paper we investigate the uniqueness problems for:
(1) extremal elements for linear functionals defined in the class

(Bσ) of bounded entire functions of finite degree on R = (−∞,∞)
and

(2) entire functions giving the best approximation in the uniform
metric to continuous functions on R using the duality relations for
the first time. In both cases, we obtain the solution using the identity
properties for entire functions.

îâäæñéâ. êŽöîëéöæ àŽéëçãèâñèæŽ âîåŽáâîåëĲæï ìîëĲèâéâĲæ
ôâîúäâ ïŽïîñèæ îæàæï öâéëïŽäôãîñè éåâè òñêóùæâĲäâ àŽêïŽäôã-
îñèæ ûîòæãæ òñêóùæëêŽèæï âóïðîâéŽèñîæ âèâéâêðâĲæïŽåãæï áŽ
æé éåâèæ òñêóùæâĲæïŽåãæï, îëéèâĲæù æúèâãæŽê ñûõãâðæ òñêóùæ-
âĲæï ïŽñçâåâïë éæŽýèëâĲŽï åŽêŽĲŽî éâðîæçŽöæ.

1. Introduction

1.1. Let Bσ denote the class of entire functions of finite degree ≤ σ,
bounded on the axis R = (−∞,∞). This class was defined by S.N. Bernstein
for the first time in [2], where it was proved that

|f ′(x)| ≤ σ‖f‖c = σsup
x∈R

|f(x)| (∀x ∈ R)

for each f ∈ Bσ. This inequality reduces to the equality for the function

f0(z) = A sin(σz + α),

where A = ‖f0‖c and α ∈ R.
After Bernstein”s paper, this inequality was generalized in various di-

rections and transferred onto other functions with various applications (see
[1], [3], [4], [6], [13]). In a series of papers, the author has considered all
such partial problems from a unified standpoint to show that all of them
can be joined into a unique scheme. In the classes of entire functions Wσ,p
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(of order ρ = 1 and belonging to Lp on R), Dσ, 1
2
, Bσ, 1

2
(D are the classes

of entire functions of order ρ = 1
2 ) such general investigations were carried

out earlier by the author in [8], [9], [10] and [12]. Investigations involving
the uniform metric are complicated due to the absence of a general form for
linear functionals in the space C(−∞,∞).

Some similar works have been done for the class Bσ using the L2 space
techniques [8]. In [11], the author considered Bσ as a subspace of C(R)
and investigated some extremal problems related to the class Bσ (using a
uniform metric).

We also note that such a general approach has been used by S.Y. Khavin-
son [15] for the first time in 1949. Then S.Y. Khavinson, G. Ts. Tumarkin,
V. Rogozinskii, A. Macintyre, G. Shapiro, etc. considered extremal prob-
lems in the class of analytic functions defined in bounded regions, and ob-
tained very remarkable results (see [16], [17], [18]).

2. In [11], the following classes were defined in order to solve the problem
in the class Bσ (see also [10]).

(1) We denote by Hσ the class of entire functions of finite degree ≤ σ.

(2) V [−σ, σ] :=
{

(v : var(v : [−σ, σ])) ≡
σ

V
−σ

(v) =
σ∫
−σ

|dv| < +∞
}

is the

class of functions v(t) with bounded variation on [−σ, σ]. In the case of
V (−∞,∞) we shall use the notation V ≡ VR.

(3) Mσ = {f ∈ Hσ : f(z) =
∫ σ

−σ
eiztϕ(t)dt, for all ϕ ∈ L1(−σ, σ)}.

(4) Nσ := {f ∈ Hσ : f(z) =
∫ σ

−σ
eiztdv(t), for all v ∈ V (−σ, σ)}.

(5) N+
σ := {f ∈ Nσ : where v is increasing }.

(6) Nσ,0 := {f ∈ Nσ : f(x) → 0 as |x| → 0}.
(7) Wσ,p := {f ∈ Hσ : ‖f‖p

p =
∫

R
|f(t)|pdt < ∞, p ≥ 1}.

Let us note the obvious embedding

Wσ,p(1 < p < 2) ⊂ Wσ,2 ⊂ Mσ ⊂ Nσ,0 ⊂ Nσ ⊂ Bσ, wσ,p(p ≥ 1) ⊂ Bσ,

where Mσ 6= Nσ,0 is a nontrivial fact ([11], p.46).
3. Our approach is based on a description of annihilators of those classes,

which enable us to establish the duality relations, to discover a series of pe-
culiarities of the problems under investigation, and to establish a connection
between extremal problems and the best approximation problem.

Definition 1. Let E be a certain linear space and F ⊂ E, E∗ is the
conjugate space of E. The set of all linear functionals e ⊂ E, each of them
vanishing on each element x ∈ F is called the annihilator of the class F and
is denoted by F⊥.

In [11], a) The best approximation by entire functions in the uniform
metric of continuous functions on the real axis is associated with a linear
extremal problem defined in the classes of entire functions, and
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b) an extremal problem in the classes Bσ is related to the best approxi-
mation problem of functions of finite varation (measure) and all of them are
expressed in the form of duality relations. These kinds of duality relations
in classes of entire functions have not been investigated previously. We will
investigate the current problem for the first time with particular attention.

In [11] it was proved that (see also [10])

M⊥
σ = N⊥

σ,0 :=
{

µ ∈ V : µ̂(x) =

∞∫

−∞
eiztdµ(t) = 0 for |x| ≤ σ

}
,

and using the last fact, the following duality relations were proved:
1) Let Eσ be one of the classes Mσ or Nσ,0 and E⊥

σ be the annihilator of
the class of Eσ. If Bσ is the class of entire function in the class sup

x∈R
|f(x)| ≤ 1

such that supx∈R |f(x)| ≤ 1, then the duality relation

sup
f∈B1

σ

∣∣∣∣
∞∫

−∞
f(t)dµ0(t)

∣∣∣∣ =
µ∈E⊥σ
inf

∞∫

−∞
|d(µ0 − µ)(t)| (1.1)

is valid for each µσ(t) ∈ VR.
Furthermore, the extremal elements f∗(t) ∈ B1

σ and µ∗(t) ∈ E⊥
σ,1 in (1.1)

exist.
2) Let C0 denote the class of continues functions on R1 = (−infty, +∞)

such that for every f in C0, f(x) → 0 at |x| → ∞. Then for ∀w(t) ∈ C0/Bσ

the duality relation

Aσ(w, C) = inf
ϕσ∈Bσ

‖w − ϕσ‖C
= inf

ϕσ∈Bσ

{max
t∈R

|w(t)− ϕσ(t)|} =

=
µ∈E⊥σ1,1

sup
∣∣∣∣
∞∫

−∞
w(t)dµ(t)

∣∣∣∣ (1.2)

is valid. Furthermore, the extremal elements f∗(t) ∈ B1
σ and µ∗ ∈ E⊥

σ,1

exist, where

E⊥
σ,1 ≡

{
µ ∈ E⊥

σ :
∫

R1

|dµ(t) ≤ 1|
}

.

3) The property µ⊥Bσ for ∀µ ∈ E>
σ is valid. Here µ⊥Bσ (∀µ ∈ E⊥

σ )
means that

(f, µ) =

∞∫

−∞
f(t)dµ(t) = 0 for every f ∈ Bσ and every µ ∈ E⊥

σ .

However, the uniqueness of extremal elements has not hitherto been stud-
ied. In this paper, we will investigate the uniqueness problem of extremal
elements in duality relations (1.1) and (1.2).
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We also note that since Lp(⊃ Wσ,p) with 1 < p < ∞ are the strongly
normed spaces, such a uniqueness theorem for the classes Wσ,p (1 < p < ∞)
can be easily obtained.

Tchebyshev’s criteria and their various generalizations related to the ap-
proximation by polynomials problems are well-known. Recently, these kinds
of theorems have been proved on the basis on formulas similar to formulas
(1.1) and (1.2) (for example, see [14]).

In the case of the approximation by entire functions, S.N. Bernstein’s
theorem exists ([1], [2], [4], [6] and [13]), but it does not seem to be any
remarkable result on this subject in the literature, except this theorem.

There are only a few results relevant to integral norms and no essential
results in the uniform norm on this matter at all. We investigate this prob-
lem based on formula (1.2) and obtain some results. However, the main
difficulty consists in the non-existence of the general form of linear contin-
uous functional in the space of continuous functions defined on R. For this
reason, we consider the class C0 and then solve the problem.

In Section 2, we first attempt to consider the uniqueness problem of
extremal functions for the left-hand side of formula (1.1) and then in Section
3, the uniqueness problem of extremal functions for the left-hand side of
formula (1.2).

2. On the Uniqueness Problem of the Extremal Function in
Formula (1.1)

2.1. If f∗(t) ∈ B1
σ and µ∗(t) ∈ E⊥

σ are the extremal elements in formula
(1.1), then we have

∣∣∣∣
∞∫

−∞
f∗(t)dµ0(t)

∣∣∣∣ =

∞∫

−∞
|dµ0(t)− dµ∗(t)| =

∞∫

−∞
|d(µ0 − µ∗)(t)|. (2.1)

If µ∗(t) ∈ E⊥
σ , then we have µ∗(t)⊥Bσ by item 3) in the previous section.

Hence we have the following inequalities:

∣∣∣∣
∞∫

−∞
f∗(t)dµ0(t)

∣∣∣∣ =
∣∣∣∣
∫

R

f∗(t)[dµ0(t)− dµ∗(t)]
∣∣∣∣ ≤

≤ ‖f∗‖
C(R1)

∫

R

|d(µ0 − µ∗)(t)|,

∣∣∣∣
∞∫

−∞
f∗(t)dµ0(t)

∣∣∣∣ ≤
∫

R

|d(µ0 − µ∗)(t)|.
(2.2)
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Comparing equalities (2.1) and (2.2), we can see that the inequality (2.2)
transforms to equality (2.1), if and only if the following conditions are sat-
isfied:

1) arg[f∗(t)d(µ0 − µ∗(t))] = β = const;

2) ‖f∗‖
C(R1) = max

t∈R1
|f∗(t)| = 1;

3) |f∗(t)| = 1∀t ∈ Sv, where Sv denotes the set of points of growth of
measure v(t) = µ0(t)− µ∗(t);

4) Sv ⊂ Rf∗ and Rf∗ = {t ∈ R : |f∗(t)| = ‖f∗‖
C(R) = 1}.

Considering these conditions, it is obviously seen that the formula

f∗(t)[d(µ0 − µ∗)(t)] = f∗(t)dv(t) = eiβ |dv(t)|, for ∀t ∈ S (2.3)

is valid and hence it is clear that the condition (2.3) is satisfied for ∀t ∈
R/Sv. Thus we have proved the following theorem.

Theorem 1. f∗(t) ∈ B1
σ(‖f∗‖c = 1) and µ∗(t) ∈ E⊥

σ are the extremal
elements in formula (1.1), if and only if the condition (2.3) is satisfied for
all t ∈ R. Furthermore, we have

f∗(t) = eiβ |d(µ0 − µ∗)(t)|
d(µ0 − µ∗)(t)

(for some β ∈ [0, 2)). (2.4)

Note. Since the extremal function is of the form (2.4), where β is ar-
bitary, it can be chosen such that

∫

R1

f∗(t)dµ0(t) > 0.

2.2. By Theorem 1, we can investigate the uniqueness problem for ex-
tremal f ∗ (t).

Suppose that we have two extremal functions f∗1 , f∗2 . In this case, equality
(2.3) is valid for both functions. Therefore, we have

f∗1 (t)[dµ0(t)− dµ∗(t)] = eiβ |dµ0(t)− dµ∗(t)| (2.5)

and
f∗2 (t)[dµ0(t)− dµ∗(t)] = eiα|dµ0(t)− dµ∗(t)|. (2.6)

We obtain
f∗1 (t) = eiγf∗2 (t) (2.7)

for ∀t ∈ Sv (v = µ0 = µ∗).
This means that all extremal functions are completely distinct with the

factor of eiγ (γ ∈ [0, 2π)) at all points t of Sv, and |f∗1 (t)| = |f∗2 (t)| = 1 for
all t ∈ Sv.

By formula (2.7), we can see that the structure of Sv determines the
dependence of the functions f∗1 (t) and f∗2 (t).
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Consequently, the uniqueness theorem of extremal functions can be pro-
vided using the structure of Sv. Hence, the uniqueness problems of the
extremal functions transform to the identity properties of entire transcen-
dental functions. Here two cases may exist.

a) The set Sv (v = µ0 − µ∗) has at least one limit point at t0 6= ±∞.
Therefore we can use the property of the uniqueness of analytical functions.

b) The set Sv may have no limit point at t0 6= ±∞.
In [11], it was proved that for each L > 0, µ∗(t) has the growth point t0

such that |t0| > L if µ∗(t) ∈ E⊥
σ is not constant. This means that the set Sv

is not bounded whenever µ∗(t) ∈ E⊥
σ is not constant. In the meantime, the

existence of measure µ(t) ∈ E⊥
σ which is concentrated on a certain sequence

{tk}, i.e. is a pure jump function with an infinite number of points of
growth {tk}, was show in [11]. Therefore it is possible to choose a sequence
τ = {tn} in the set Sv (v = µ0 − µ∗) for µ∗ ∈ E⊥

σ satisfying tn → +∞ (or
−∞). Then the condition (2.7) holds at all points {tn} = τ .

Suppose now that

f∗(tf∗1 (t)− f∗2 (t) and γ = 0.

In this case, the condition (2.7) means that f∗(tn) = 0 at all points τ{tn}.
Therefore we have to find the conditions which provide that ∀t : f∗(t) = 0
follows from f∗(tn) = 0 (see Theorem 2).

Consequently, we now are in a position where the uniqueness theorems
for entire transcendental functions can be used. This kind of condition
exists in the literature ([5], [7]). Let us now describe some of them. First,
we present some required notations we use throughout the paper.

Let τ = {tn} be a sequence with

t1 ≤ t2 ≤ · · · ≤ tn ≤ · · · .

Let n(R) and N(R) denote the density function of the sequence τ and
the Nevanlinne function, respectively. Then

N(R) =

R∫

0

n(t)
t

dt =
∑

|tn|<R

ln
R

|tn| .

Also, we will use the following notation:

M(R) = Mf (R) = max
|Z|=R

|f(z)| = max
0≤t≤2π

|f(Reit)|;

Sf (R) =
1
2π

2π∫

0

ln |f(Reit)|dt, hf (t) = lim
R→∞

ln |f(RReit)|
R

.

Theorem 2. The extremal function f∗(t) for the left-hand side of formula
(1.1) is unique in the following cases:
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1) Sv, the set of growth points with measure v(t) = µ0(t) − µ∗(t) has at
least one limit point at t0 6= ±∞.

2) Let τ = {tn} ⊂v v = µ0 − µ∗ (in the particular case τ = {Sv}) and
|tn| → ∞ (n →∞). Therewith, for the sequence τ is valid anyone from the
conditions the properties identity for entire transcendental functions.

For example, such conditions are presented below.
Let f∗1 (t) and f∗2 (t) be two extremal functions and f∗(t) = f∗1 (t)− f∗2 (t),

τ = {tn} ⊂ Sv (v = µ0−µ∗) and in the particular case τ = Sv for |tn| → ∞.
1) f∗(tn) = 0 n = 1, 2, . . . and lim

R→∞
[Mf∗(R)−N(R)] = −∞;

2) f∗(tn) = 0 n = 1, 2, . . . and σ ≤ limR→∞
n(R)
e,R (”e− σ” conditions);

3) if tn = n (n = 0, 1, 2, . . . ) and ∀n : f∗(tn) = 0, hf∗
(
−π
2

)
+ hf∗

(
π
2

)
<

2π;
4) if tn = n (n = 0, 1, 2, . . . ) and ∀n : f∗(tn) = 0, besides for |t| < π

2
the inequality hf (t) ≤ K(t) = const . ln(2 cos t) + t. sin t, (min K(t) = ln 2)
is valid;

5) for the same constant θ and c (0 < θ < 1) the condition M(R) <
N(θR) + c(R > R0) is valid; 6) limR→∞[Sf∗(R) − N(R)] = −∞. Then
f∗(t) ≡ 0, i.e. f∗1 (t) = f∗2 (t).

2.3. Let now f∗(t) be any extremal function. Then for each point t ∈ Sv

we have
f∗(t) = eiϕ(t)|f∗(t)| = eiϕ(t).

On the other hand, f∗(t) must be an element of Bσ. This implies that in
the nontrivial cases ϕ(t) = ±σt + γ.

Therefore the extremal functions can be written as

f∗1 (t) = eiσt+iγ or f∗2 (t) = e−iσt+iγ ,

where γ ∈ [0, 2π). On the other hand, in this case, each function in the
form

f∗(t) = λ1e
iσt + λ2e

−iσt (|λ1|+ |λ2| = 1) (2.8)

is extremal.
The function f∗(t) in (2.8) becomes f∗(t) = sin σt if λ1 = 1

2i , λ2 = − 1
2i ,

(|λ1|+ |λ2| = 1) and f∗(t) = const σt, when λ1 = 1
2 = λ2.

We can write f∗(t) = sin(σt + γ) by combining them. Consequently, if
Sv v = µ0 − µ∗ satisfies one of the conditions of Theorem 2, the extremal
function f∗(t) can be written just as in (2.8).

2.4. Mention now that µ0(t) in(1.1) and (1.2) is actually a linear func-
tional in the space C0, and if the measure µ0(t) is chosen appropriately,
the functional l(f) determined by µ0(t) has a form which was studied
by several mathematicians before. For example, L(f) = f ′(x0), L(f) =
Af(x) + Bf ′(x), L(f) = f (k)(x0), L(f)f(x0 + h)− f(x0 − h) etc. We now
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focus on one of them and show how the proper solution can be found in the
appropriate extremal problem.

Let µ0(t) be a pure jump function with jumps

dj =
4σ

π2

(−1)j

(2j + 1)2
(±j = 0, 1, 2, . . .)

at each points tj = (2j + 1) π
2σ (±j = 0, 1, 2, . . .). Then we have

l(f) =

∞∫

−∞
f(t)dµ0(t) =

4σ

π2

∞∑

j=−∞

(−1)j

(2j + 1)2
f
[
(2j + 1)

π

2σ

]
f ′(0).

If we write t∗j = tj +x0 x0 ∈ R instead of tj , then we obtain l(f) = f ′(x0).
Hence we may use the interpolation formula

f ′(x0) =
4σ

π2

∞∑

j=−∞

(−1)j

(2j + 1)2
f
[
(2j + 1)

π

2σ
+ x0

]

which is valid for all f ∈ Bσ (see[1]and [4]).
On the other hand, each of eiσt, eiσt, sin σt, cos σt are in the class B1

σ.
Since l(f) = f ′(0), we have

l(e±iσt) =

∞∫

−∞
e±iσtdµ0(t) = µ̂0(±σ) = ±σ;

l(sin σt) = l(cos σt) = σ;

and consequently¡

|l(eiσt)| = |l(e−iσt)| = |l(sinσt)| = |l(cos σt)| = |µ̂0(±σ)| = σ,

that is,
|l(f∗)| = |µ̂0(±σ)| = |[f∗(x)]′x=0| = σ.

This proves that the theorem due S.N. Bernstein on sup
f∈B1

σ

|f ′(0)| = σ can be

obtained by using our method.
In addition, the extremal function in S.N. Bernestein’s theorem is of the

form in (2.8) or
f∗(t) = sin(σt + γ).

To summarize, if the set Sv of growth points for measure v = µ0 − µ∗

satisfies one of the conditions of Theorem 2, then the extremal function is
unique for the problem

‖l‖ = sup
f∈B1

σ

|l(f)| = sup
f∈B1

σ

|l(f)|
∣∣∣∣
∫

R

f(tdµ0(t))
∣∣∣∣.

It can be written as in formula (2.8), and also

‖l‖ = |µ̂0(±σ)| (2.9)
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is satisfied.
Consequently, in order to find the norm of ‖l‖, it is sufficient to find the

modulus (absolute value) at the points ±σ, of the Fourier transformation
of measure µ0(t) which determines the functional l.

3. On the Uniqueness Problem for Entire Function Giving the
Best Approximation to a Continuous Function under the

Uniform Metric

3.1. Let E be a linear normed space, and G be a nonempty subspace
of E. In this case, there is a criterion which determines the element giving
the best approximation to a given element w(t) ∈ E/G by means of the E
norm-metric in the subspace G.

Theorem 3 ([14], p.18, Theorem 4.2). The element x ∈ G gives the
best approximation to an element w(t) ∈ E/G, if and only if there exists a
functional f0 ∈ E∗ satisfying the following conditions:

1) ‖f0‖ = 1;
2) f0(w) = f0(w − x∗) = ‖w − x∗‖E;
3) f0 ∈ G⊥, that is f0(x) = 0 for all x ∈ G.

In this theorem we suppose E = C0 = C0(R), G = Bσ. Then Theorem 3
means that ϕ∗σ(t) ∈ Bσ is the function which gives the best approximation
to a given w ∈ C0/Bσ, if and only if there is a functional l0 ∈ C∗0 satisfying
the following conditions. In other words, µ0(t) is a measure corresponding
to l0 and determines it as a linear functional, if and only if:

1) ‖l0‖ = 1, that is
∫

R
|dµ0| = 1;

2) l0(ϕσ) = 0 for ∀ϕσ(t) ∈ Bσ, that is
∫

R
ϕσ(t)dµ0(t) = 0 for ϕσ(t) ∈ Bσ

which means that µ0(t) ∈ E⊥
σ ;

3) l0(w) = l0(w − ϕ∗σ) = ‖w − ϕ∗σ‖C(R) . On the other hand, we have

l0(w) =
∣∣∣∣
∫

R

w(t)dµ0(t)
∣∣∣∣ =

∣∣∣∣
∫

R

[w(t)− ϕ∗σ(t)]dµ0(t)
∣∣∣∣ ≤

≤
∫

R

|w(t)− ϕ∗σ(t)| |dµ0(t)| ≤ ‖w − ϕ∗σ‖C(R) = M (3.1)

It can be seen that all inequalities should be transformed to equalities by
1) - 3). This is the case, if and only if the following conditions are satisfied:

a)
∫
R

|dµ0(t)| = 1;

b) arg{|w(t)− ϕ∗σ(t)|dµ0(t)} = β = const;

c) For ∀t ∈ Sµ0 , |w(t)− ϕ∗σ(t)| = ‖w − ϕ∗σ‖C(R) = M ;

d) Sµ0 ⊂ Rw−ϕσ ;
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e)
∫
R

ϕσ(t)dµ0(t) = 0, ∀ϕσ ∈ Bσ.

Hence we have

‖l0‖ = 1, [w(t)− ϕ∗σ]dµ0(t) = eiβ |w(t)− ϕ∗σ| |dµ0(t)|
and

[w(t)− ϕ∗σ]dµ0(t) = eiβM |dµ0(t)| for ∀t ∈ Sµ0 (3.2)

The last equality holds obviously for all t ∈ R\Sµ0 .
By formula (3.2), taking β = 0, it follows that

∫

R

[w(t)− ϕ∗σ]dµ0(t) = M

∫

R

|dµ0(t)| = M = ‖w − ϕ∗σ‖C(R),

that is,

l0(w) =

∞∫

−∞
w(t)dµ0(t) = ‖w − ϕ∗σ‖C(R) . (3.3)

This equality means that µ0(t) is an extremal element for the right-
hand side of formula (1.2). Consequently, the element µ∗(t) ∈ E⊥

σ,1 can
be employed instead of µ0(t) determining the functional l0 as explained in
Theorem 3 (or we can replace µ∗(t) by µ0(t)) for all t ∈ R (in particular,
t ∈ Sµ ). Then

[w(t)− ϕ∗σ(t)]dµ∗(t) = eiβM |dµ∗(t)| (∀β ∈ [0, 2π)). (3.4)

The extremal elements ϕ∗σ(t) and µ∗(t) in formula (1.2) are related to
equality (3.4). It is necessary that the condition (3.4) satisfied for ϕ∗σ(t) ∈
Bσ and µ∗(t) ∈ E⊥

σ,1 to be extremal elements in formula (1.2). It can be
easily shown that this condition is sufficient for ϕ∗σ(t) ∈ Bσ to be an entire
function, which gives the best approximation to w(t).

Actually, we have for ∀ϕσ(t) ∈ Bσ,

M =

∞∫

−∞
[w(t)− ϕ∗σ(t)]dµ∗(t) =

∞∫

−∞
[w(t)− ϕσ(t)]dµ∗(t) ≤

≤ ‖w − ϕσ‖C

∞∫

−∞
|dµ∗(t)| = ‖w − ϕσ‖C

,

that is,

‖w − ϕ∗σ‖C
≤ ‖w − ϕσ‖C

.

Thus we have proved the following theorem.
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Theorem 4. The elements ϕ∗σ(t) ∈ Bσ and µ∗(t) ∈ E⊥
σ,1 are extremal

for the duality expressions (1.2), if and only if these elements satisfy the
conditions (3, 4) (in particular, for all t ∈ Sµ∗) at all points t ∈ R and

w(t)− ϕ∗σ(t) = eiβM
|dµ∗(t)|
dµ∗(t)

(3.5)

3.2. Consider the uniqueness problem for an entire function ϕ∗σ(t) which
gives the best approximation based on Theorem 4.

Assume that we have two extremal functions ϕ∗1(t) and ϕ∗2(t) with the
extremal measure µ(t) ∈ E⊥

σ,1. Then both of them satisfy the condition
(3.4), when β = 0. Then we have

[w(t)− ϕ∗1(t)]dµ∗(t) = M |dµ∗(t)|
[w(t)− ϕ∗2(t)]dµ∗(t) = M |dµ∗(t)|.

From these two conditions it is seen that

[ϕ∗2(t)− ϕ∗1(t)]dµ∗(t) = 0.

But since the point growths of µ∗ satisfies dµ∗(t) 6= 0 at each t, the equality

ϕ∗2(t) = ϕ∗1(t)

holds for all t ∈ Smu∗ .
Thus we have proved the following theorem.

Theorem 5. All entire functions ϕ∗σ(t) which give the best approximation
to the given function w(t) ∈ C0\Bσ are identical to S∗µ.

If
1) the set S∗µ has at least one limit point t0 6= ±∞ or
2) one of the conditions of the uniqueness theorem (for example, see

Theorem 2, 10-60) required for entire transcendent al functions is satisfied,
then ϕ∗σ ∈ Bσ which gives the best approximation to w(t) ∈ C0\Bσ is unique.

3.3. Consider now separately the uniqueness problems of entire functions
that give the best approximation to w(t) and have real values on R1.

In this case, condition b)(given in the previous conditions (a-e) before
formula (3.2)) can be expressed in the form

b) If τ = {tj} ⊂ Sµ, then [w(tj)− ϕ∗σ(tj)] = sign dµ∗(tj) for all tj ∈ Sµ,
where dµ∗(tj) = dj denotes the jump of µ∗(t) at the point tj .

On the other hand,for all ϕσ ∈ Bσ,
∞∫

−∞
ϕσ(t)dµ∗(t) = 0,

which means that ∑

j

ϕσ(tj)µ∗(tj) =
∑

j

ϕσ(tj)dj = 0. (3.6)
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Let
[w(tj)− ϕ∗σ(tj)] = (−1)jM = (−1)j‖w − ϕsg

∗‖
C
.

Then dj = (−1)j |dj | = (−1)jλj for j = 1, 2, . . . , and the condition in (3.6)
becomes ∑

j

ϕσ(tj)λj sign[w(tj)− ϕ∗σ(tj)] = 0

and ∑

j

ϕσ(tj)λj

w(tj)− ϕ∗σ(tj)
= 0, ∀ϕσ ∈ Bσ. (3.7)

Therefore if ϕ∗σ(t) is an entire function giving the best approximation to
w(t), then the condition (3.7) is necessarily satisfied. In order to show that
this condition is sufficient for ϕ∗σ(tj) being an entire function giving the
best approximation to w(t), we show that the conditions of a well-known
theorem of S. N. Bernstein (see: [2], p. 371-379) can be deduced from the
condition (3.7). So we have to show that each sequence τ = {tj} satisfying
the condition in (3.7) in the meaning of Bernstein, is an entire sequence of
degree σ.

Note. The sequence τ = {tj} is said to be an entire sequence of degree σ,
if there does not exist an entire function ϕσ(t) ∈ Bσ such that (−1)jϕσ(tj) ≤
1 (j = 1, 2, . . . ).

Assume that there exists a function ϕ0
σ ∈ Bσ such that (−1)jϕ0

σ(tj) ≤ 1
j = 1, 2, . . . , although the condition in (3.7) for ∀ϕσ ∈ Bσ is satisfied.Then

0 <
λj

M
=

λj

|w(tj)− ϕ∗σ(tj)| =
(−1)jλj

w(tj)− ϕ∗σ(tj)
, λj = |dj |.

It follows that for j = 1, 2, . . . ,

(−1)jϕ
)
σ(tj)λj(−1)j

w(tj)− ϕ∗σ(tj)
≥ λj

M
.

Then we have ∑

j

ϕ0
σ(tj)λj

w(tj)− ϕ∗σ(tj)
≥ 1

M
> 0.

But this contradicts (3.7).
Thus we have proved the following theorem.

Theorem 6. Let τ = {tj} ⊂ Sµ∗ , µ∗ ∈ E⊥
σ and let the difference

w(t) − ϕ∗σ(t) take the value M = ‖w − ϕ∗σ‖C by changing the sign at the
points τ = {tj}, respectively. Then the function ϕ∗σ(t) ∈ Bσ gives the best
approximation to the function w(t) ∈ C0\Bσ, if and only if the condition
(3.7) is satisfied for all ϕσ ∈ Bσ. Furthermore, the condition (3.7) is suffi-
cient for order there to be an entire set of the sequence τ ={tj} of degree σ.
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