
Proceedings of A. Razmadze
Mathematical Institute
Vol. 151 (2009), 43–54

CAUCHY MEANS INVOLVING CHEBYSHEV
FUNCTIONAL

J. JAKŠETIĆ, J. PEČARIĆ AND ATIQ UR REHMAN

Abstract. We give exponential convexity for Chebyshev functional.
We introduce related means of Cauchy type and give its monotonicity
property. Related mean value theorems of Cauchy type are also given.

îâäæñéâ. øâĲæöâãæï òñêóùæëêŽèæïŽåãæï öâéëôâĲñèæŽ âóïìëêâê-
ùæŽèñîæ ŽéëäêâóæèëĲæï ùêâĲŽ áŽ éŽïåŽê áŽçŽãöæîâĲñèæ çëöæï
ðæìæï ïŽöñŽèëâĲæ. Žôêæöêñèæ ïŽöñŽèëâĲæïŽåãæï áŽéðçæùâĲñèæŽ
éëêëðëêñîëĲæï åãæïâĲŽ áŽ çëöæï ïŽöñŽèë éêæöãêâèëĲæï åâëîâ-
éŽ.

1. Introduction and Preliminaries

A classic result due to Chebyshev (1882, 1883) is stated in the following
theorem [1, page 195].

Theorem 1.1. Let f, g : [a, b] → R and w : [a, b] → R+ be integrable
functions. We denote by

T (f, g;w) =

b∫

a

w(x)dx

b∫

a

w(x)f(x)g(x)dx−
b∫

a

w(x)f(x)dx

b∫

a

w(x)g(x)dx.

If f and g are monotonic in the same direction, then

T (f, g; w) ≥ 0 (1)

provided that the integrals exist.
If f and g are monotonic in opposite directions, then the reverse of the

inequality in (1) is valid. In both cases, equality in (1) holds if and only if
either f or g is constant almost everywhere.

Remark 1.2 ([1], page 199). (i) Above theorem is also valid when g
is an increasing function on [a, b] and for all x ∈ (a, b), f satisfies
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the condition

1
W (x)

x∫

a

w(t)f(t)dt ≤ 1
W (b)

b∫

a

w(t)f(t)dt, where W (x) =

x∫

a

w(t)dt. (2)

(ii) The condition that w(t) > 0 can be replaced by

0 ≤ W (x) ≤ W (b) for a ≤ x ≤ b. (3)

In this paper we give exponential convexity of T (f, g;w) and related
Cauchy means as in [2]. We prove monotonicity property of newly defined
mean. Also we give mean value theorems of Cauchy type for Chebyshev
functional and its generalized form.

Let us recall the following.

Definition 1. A function f : (a, b) → R is exponentially convex if it is
continuous and

n∑

i,j=1

vivjf(xi + xj) ≥ 0

for all n ∈ Z+ and all choices vi ∈ R, i = 1, . . . , n such that xi + xj ∈ (a, b),
1 ≤ i, j ≤ n.

Proposition 1.3. Let f : (a, b) → R. The following propositions are
equivalent

(i) f is exponentially convex
(ii) f is continuous and

n∑

i,j=1

vivjf

(
xi + xj

2

)
≥ 0

for every vi ∈ R and for every xi ∈ (a, b), 1 ≤ i ≤ n.

Corollary 1.4. If f : (a, b) → R+ is exponentially convex function then
f is a log-convex function:

f

(
x + y

2

)
≤

√
f(x)f(y) for all x, y ∈ (a, b).

2. Main Results

Lemma 2.1. Let x > 0

hp(x) =
{

xp

p , p 6= 0,

ln x, p = 0.

Then hp(x) is a strictly increasing function.
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Proof. Since
h′p(x) = xp−1 > 0,

therefore hp(x) is a strictly increasing function. ¤

Theorem 2.2. Let f : [a, b] → R and g, w : [a, b] → R+ be integrable
functions, where 0 < a < b, such that f and g are increasing functions.

(a) Let r1, . . . , rm be arbitrary positive real numbers. Then a matrix
A =

[
T

(
f, h ri+rj

2
◦ g;w

)]
, where 1 ≤ i, j ≤ m, is a positive semi-

definite matrix. Particularly

det
[
T

(
f, h ri+rj

2
◦ g; w

)]k

i,j=1
≥ 0 ∀ k = 1, . . . , m.

(b) A function p 7→ T (f, hp ◦ g; w), where t ∈ R+ is an exponentially
convex function.

(c) Let T (f, hp ◦ g; w) > 0 (i.e. f and g are not constant almost every-
where), then T (f, hp ◦ g;w) is log-convex function.

Proof. (a) Define a m×m matrix M =
[
h ri+rj

2

]
, where i, j = 1, . . . , m, and

let v = (v1, . . . , vm) be a nonzero arbitrary vector from Rm.
Consider a function

φ(t) = vMvτ =
m∑

i,j=1

vivjh ri+rj
2

(t).

Now we have

φ′(t) =
m∑

i,j=1

vivjt
ri+rj

2 −1 =

(
m∑

i=1

vit
ri−1

2

)2

≥ 0

concluding φ(t) is an increasing function. Now we apply Theorem 1.1 for
increasing function ψ := φ ◦ g

0 ≤ T (f, ψ; w) =
n∑

i,j=1

vivjT
(
f, h ri+rj

2
◦ g; w

)
.

Therefore matrix A is positive semidefinite matrix.

Specially, we get
∣∣∣∣∣∣∣∣∣

T (f, hr1 ◦ g;w) · · · T
(
f, h r1+rk

2
◦ g; w

)

...
. . .

...
T

(
f, h rk+r1

2
◦ g; w

)
· · · T (f, hrk

◦ g; w)

∣∣∣∣∣∣∣∣∣
≥ 0 (4)

for all k = 1, . . . , m.
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(b) Since limp→0 T (f, hp ◦ g; w) = T (f, h0 ◦ g; w), it follows that p 7→
T (f, hp ◦ g; w) is continuous on R. Now using Proposition 1.3 we have
exponential convexity of the function p 7→ T (f, hp ◦ g; w).

(c) It follows from the Corollary 1.4. ¤

Theorem 2.3. Let f : [a, b] → R and g, w : [a, b] → R+ be integrable
functions, where 0 < a < b, such that (2) is valid and g is an increasing
function. Then (a), (b) and (c) of Theorem 2.2 are valid.

Theorem 2.4. Let f, w : [a, b] → R and g : [a, b] → R+ be integrable
functions, where 0 < a < b, such that f and g are increasing function and
condition (3) is valid. Then (a), (b) and (c) of Theorem 2.2 are valid.

If f is a decreasing and g is an increasing function, then we can consider:

U(f, g;w) := −T (f, g;w) ≥ 0.

So we have a following theorem similar to Theorem 2.2.

Theorem 2.5. Let f : [a, b] → R and g, w : [a, b] → R+ be integrable
functions, where 0 < a < b, such that f is a decreasing and g is an increasing
functions.

(a) Let r1, . . . , rm be arbitrary positive real numbers. Then a matrix
A =

[
U

(
f, h ri+rj

2
◦ g;w

)]
, where 1 ≤ i, j ≤ m, is a positive semi-

definite matrix. Particularly

det
[
U

(
f, h ri+rj

2
◦ g; w

)]k

i,j=1
≥ 0 ∀ k = 1, . . . ,m.

(b) A function p 7→ U(f, hp ◦ g; w), where t ∈ R+ is an exponential
convex function.

(c) Let U(f, hp ◦ g; w) > 0 (i.e. f and g are not constant almost every-
where), then U(f, hp ◦ g; w) is log-convex function.

Let us introduce the following:

Definition 2. Let f : [a, b] → R and g : [a, b] → R+ be almost every-
where nonconstant, integrable functions and w : [a, b] → R+ be integrable
function where 0 < a < b. Also let f be monotonic and g be an increasing
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functions. Then for s, p ∈ R, we define

Is,p (f, g; w) =





(
p T (f, gs; w)
s T (f, gp; w)

) 1
s−p

, sp(s− p) 6= 0;
(

T (f, gp;w)
pT (f, ln g; w)

) 1
p

, s = 0, p 6= 0;

exp
(
−1

s
+

T (f, gs ln g; w)
T (f, gs;w)

)
, s = p 6= 0;

exp

(
T

(
f, (ln g)2;w

)

2T (f, ln g;w)

)
, s = p = 0.

Remark 2.6. Note that lim
p→s

Is,p(f, g; w) = Is,s(f, g; w), lim
s→0

Is,p(f, g; w) =

I0,p(f, g;w) = Ip,0(f, g;w) and lim
s→0

Is,s(f, g; w) = I0,0(f, g;w).

We shall use a following lemma to prove the monotonicity of Is,p (f, g;w).

Lemma 2.7. Let f be a log-convex function and assume that if x1 ≤
y1, x2 ≤ y2, x1 6= x2, y1 6= y2. Then the following inequality is valid:

(f(x2)
f(x1)

) 1
x2−x1 ≤

(f(y2)
f(y1)

) 1
y2−y1

. (5)

Proof. This follows from [1], Remark 1.2. ¤

Theorem 2.8. Let f : [a, b] → R and g : [a, b] → R+ be almost ev-
erywhere nonconstant, integrable functions which are monotonic and w :
[a, b] → R+, (0 < a < b), be integrable function. Let s, p, u, v ∈ R such that
s ≤ v, p ≤ u. Then we have

Is,p(f, g; w) ≤ Iv,u(f, g; w). (6)

Proof. Let f and g be monotonically increasing functions.
Taking x1 = p, x2 = s, y1 = u, y2 = v and f(p) = T (f, hp ◦ g; w), where
p 6= s and u 6= v (p, s, u, v 6= 0) in Lemma 2.7, we have

(
p T (f, gs;w)
s T (f, gp;w)

) 1
s−p

≤
(

uT (f, gv; w)
v T (f, gu; w)

) 1
v−u

. (7)

If f be a decreasing function and g be an increasing function, then we
consider f(p) = U(f, hp ◦ g;w) and apply Lemma 2.7 to get

(
pU(f, gs;w)
sU(f, gp;w)

) 1
s−p

≤
(

uU(f, gv;w)
v U(f, gu;w)

) 1
v−u

.

It follows (7).
From Remark 2.6, we get (7) is also valid for p = 0 or s = 0 or u = 0 or

v = 0 or p = s or u = v. ¤
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Remark 2.9. Theorem 2.8 can be also proved under assumption (2) on
functions f and g or assumption (3) on a function w.

3. Mean Value Theorems

Lemma 3.1. Let h ∈ C1[a, b], such that

m ≤ h′(x) ≤ M, x ∈ [a, b]. (8)

Consider the functions h̃1, h̃2 : [a, b] → R defined as,

h̃1(x) = Mx− h(x)

and
h̃2(x) = h(x)−mx.

Then h̃i(x) for i = 1, 2 are monotonically increasing.

Proof. Since
h̃′1(x) = M − h′(x) ≥ 0

and
h̃′2(x) = h′(x)−m ≥ 0.

i.e. h̃i for i = 1, 2 are monotonically increasing. ¤

Theorem 3.2. Let f, g : [a, b] → R be monotonically increasing, inte-
grable functions such that f and g are nonconstant almost everywhere, g ∈
C1[a, b] and let w : [a, b] → R+ be integrable function. If h ∈ C1[g(a), g(b)]
is an integrable function then there exists η ∈ [g(a), g(b)] such that

T (f, h ◦ g; w) = h′ (η)T (f, g; w) . (9)

Proof. Let m = min h′, M = max h′ and let h̃1(x) = Mx − h(x), h̃2(x) =
h(x)−mx. Since h̃1 and g are monotonically increasing functions, h̃1 ◦ g is
monotonically increasing. Setting g = h̃1 ◦ g in Theorem 1.1 we get

T (f, Mg − h ◦ g; w) ≥ 0,

i.e.
T (f, h ◦ g; w) ≤ MT (f, g; w) . (10)

Similarly, setting g = h̃2 ◦ g in Theorem 1.1 gives us

T (f, h ◦ g; w) ≥ mT (f, g; w) . (11)

Combining (10) and (11), we get,

m ≤ T (f, h ◦ g; w)
T (f, g; w)

≤ M. (12)

By Lemma 3.1, there exists η ∈ [g(a), g(b)] such that

T (f, h ◦ g; w)
T (f, g; w)

= g′ (η) .
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This implies (9).
Moreover (10) is valid if (for example) h′ is bounded from above and

hence (9) is valid.
Of course (9) is obvious if h′ is not bounded. ¤

If h = id (i.e. h(x) = x), then we have a following result.

Corollary 3.3. Let f, g : [a, b] → R and w : [a, b] → R+ be integrable
functions. If f is monotonically increasing such that f is not constant
almost everywhere and g ∈ C1[a, b], then there exists η ∈ [a, b] such that

T (f, g; w) = g′ (η)T (f, id;w) . (13)

Corollary 3.4. Let w : [a, b] → R+ be an integrable function and f, g ∈
C1[a, b]. If f is monotonically increasing such that f is not constant almost
everywhere and f, g ∈ C1[a, b], then there exists ξ, η ∈ [a, b] such that

T (f, g; w) = f ′(ξ)g′(η)T (id, id; w). (14)

Proof. For f ∈ C1[a, b], there exists ξ ∈ [a, b] such that

T (f, id; w) = f ′(ξ)T (id, id;w). (15)

Now using (13) and (15), we have (14). ¤

A. M. Ostrowski [4] obtained some very interesting generalization of (1).
For example, from the general result which is given in [4], we have the
following result.

Corollary 3.5. Let f and g be two monotonically increasing and differ-
entiable functions on [a, b]. Let w be a positive integrable function on [a, b].
If

f ′(x) ≥ m, g′(x) ≥ r (∀ x ∈ [a, b], m, r > 0),

then
T (f, g; w) ≥ rT (f, id; w) ≥ mrT (id, id, w) > 0. (16)

Proof. Since f and g are monotonically increasing and differentiable, there-
fore (13) implies

T (f, g;w) ≥ rT (f, id; w) (17)

and
T (f, id; w) ≥ mT (id, id;w) > 0. (18)

Combining (17) and (18) we have (16). ¤

Remark 3.6. The above result is an improvement of the result given in
[3].
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Theorem 3.7. Let f, g1, g2 : [a, b] → R and w : [a, b] → R+ be integrable
functions. If f is monotonically increasing such that f is nonconstant al-
most everywhere and g1, g2 ∈ C1[a, b], then there exists η ∈ [a, b] such that

T (f, g1; w)
T (f, g2; w)

=
g′1(η)
g′2(η)

(19)

provided that denominators are non-zero.

Proof. We define function k ∈ C1[a, b] with

k = c1g1 − c2g2,

where c1 = T (f, g2; w) and c2 = T (f, g1; w).
Then, using Theorem 3.2 for g = k, we have

T (f, k; w) = 0 = (c1g
′
1(η)− c2g

′
2(η)) T (f, id; w). (20)

Since T (f, id;w) > 0 , we have

c2

c1
=

g′1(η)
g′2(η)

and our proof is done. ¤

Remark 3.8. Note that

η =
(

g′1
g′2

)−1(
T (f, g1; w)
T (f, g2; w)

)
. (21)

This implies η is a mean of numbers a and b. Especially, when g is a mono-
tonically increasing function and g1 = gs and g2 = gp, we conclude that
expression Is,p(f, g;w), introduced in Definition 2, represents a mean be-
tween positive numbers a and b.

Remark 3.9. (i) Theorem 3.2 and 3.7 are also valid if f satisfy con-
dition (2) and g is an increasing function.

(ii) Theorem 3.2 and 3.7 are also valid if the condition w(t) > 0 is
replaced by (3).

Corollary 3.10. Let fi, gi : [a, b] → R for i = 1, 2 and w : [a, b] → R+

be integrable functions, where 0 < a < b. If f1 and f2 are monotoni-
cally increasing such that f1 and f2 are not constant almost everywhere and
fi, gi ∈ C1[a, b] for i = 1, 2, then there exist ξ, η ∈ [a, b] such that

T (f1, g1;w)
T (f2, g2;w)

=
f ′1(ξ)g

′
1(η)

f ′2(ξ)g
′
2(η)

(22)

provided that non-zero denominators.
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Proof. Since
T (f1, g1; w)
T (f2, g2; w)

=
T (f1, g1;w)
T (f2, g1;w)

· T (f2, g1;w)
T (f2, g2;w)

.

Now applying Theorem 3.7 two times we get (22). ¤
Let us note that we can use ideas of previous proofs to obtain similar

results for generalized form of Chebyshev inequality.
First recall that a real valued function f : I × J → R, where I × J =

[a, b] × [c, d], is said to be (1, 1)−convex function if for all distinct points
x0, x1 ∈ I and y0, y1 ∈ J , the divided difference [x0, x1] ([y0, y1]f) is non-
negative or alternatively for (x1 − x0)(y1 − y0) > 0, we have

(x1 − x0)(y1 − y0) ≤ f(x0, y0) + f(x1, y1)− f(x0, y1)− f(x1, y0).

If the partial derivative f21 of f exists, then f is (1, 1)−convex iff f21(x, y) ≥
0 for all (x, y) ∈ I × J .

In [5] (see also [1, page 204-205]), the following generalized form of Cheby-
shev inequality is given for (1, 1)−convex function.

Theorem 3.11. Let p : I2 → R and q : I → R, where I = [a, b], be two
integrable functions. Then for every (1,1)-convex function f : I2 → R the
inequality

K(f, p, q) :=

b∫

a

q(x)f(x, x)dx−
b∫

a

b∫

a

p(x, y)f(x, y)dxdy ≥ 0 (23)

holds iff for every x, y ∈ [a, b], we have

P (a, y) = Q(y), P (x, a) = Q(x), P (x, y) ≤ Q (max{x, y}) (24)

where Q(x) =
∫ b

x
q(t)dt and P (x, y) =

∫ b

x

∫ b

y
p(s, t)dtds.

Lemma 3.12. Let f : I2 → R (I = [a, b]) has continuous partial deriva-
tives f1, f2 and f21 such that

m ≤ f21(x, y) ≤ M, (x, y) ∈ I2. (25)

Consider the functions F and G defined as

F (x, y) = M(x− a)(y − a)− f(x, y)

and
G(x, y) = f(x, y)−m(x− a)(y − a),

then F (x, y) and G(x, y) are (1− 1)-convex functions.

Proof. Since
F21(x, y) = M − f21(x, y) ≥ 0

and
G21(x, y) = f21(x, y)−m ≥ 0,
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therefore F (x, y) and G(x, y) are (1-1)-convex functions. ¤

Theorem 3.13. Let p : I2 → R and q : I → R, where I = [a, b], be
two integrable functions such that (24) is satisfied and K (i, p, q) > 0, where
i(x, y) = (x−a)(y−a). If f : I2 → R has continuous partial derivatives f1,
f2 and f21, then there exists ξ, η ∈ I such that

K(f, p, q) = f21(ξ, η)K (i, p, q) , (26)

Proof. Let m = min f21, M = max f21 and let F , G defined in Lemma 3.12.
Setting f = F in Theorem 3.11, we get

K (Mi− f, p, q) ≥ 0,

i.e.
K (f, p, q) ≤ MK (i, p, q) . (27)

Similarly, setting f = G in Theorem 3.11 gives us

K (f, p, q) ≥ mK (i, p, q) . (28)

Combining (27)and (28), we get,

m ≤ K (f, p, q)
K (i, p, q)

≤ M. (29)

Now by Lemma 3.12, there exists ξ, η ∈ I such that

K(f, p, q)
K (i, p, q)

= f21(ξ, η).

This implies (26).
Moreover (27) is valid if (for example) f21 is bounded from above and

hence (26) is valid.
Of course (26) is obvious if f21 is not bounded. ¤

Theorem 3.14. Let p : I2 → R and q : I → R, where I = [a, b], be
two integrable functions such that (24) is satisfied. If f, g : I2 → R have
continuous partial derivatives f1, f2, f21, g1, g2 and g21, then there exists
ξ, η ∈ I such that

K(f, p, q)
K (g, p, q)

=
f21(ξ, η)
g21(ξ, η)

(30)

provided that the denomirators are non-zero.

Proof. We define function h, such that

h = c1f − c2g,

where c1 = K(g, p, q) and c2 = K(f, p, q).
Then, using Theorem 3.13 with f = h, we have

K(h, p, q) = 0 = (c1f21(ξ, η)− c2g21(ξ, η)) K (i, p, q) . (31)
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Since K (i, p, q) > 0, we have

c2

c1
=

f21(ξ, η)
g21(ξ, η)

;

and our proof is complete. ¤

Theorem 3.15. Let p : I2 → R and q : I → R, where I = [a, b], be
two integrable functions such that (24) is satisfied and K (i, p, q) > 0, where
i(x, y) = (x−a)(y−a). If f : I2 → R has continuous partial derivatives f1,
f2 and f12 such that

|f21(x, y)| ≤ M, (32)

then
|K(f, p, q)| ≤ MK (i, p, q) . (33)

Proof. Since
−M ≤ f21(x, y) ≤ M,

therefore (27) and (28) implies

K(f, p, q) ≤ MK (i, p, q) , (34)

K(f, p, q) ≥ −MK (i, p, q) . (35)

Combining above two inequalities gives us the required result. ¤

The following result, given in [3], can be derived from above theorem.

Corollary 3.16. Let f and g be two differentiable and integrable func-
tions on [a, b] and let w be a positive integrable function on [a, b] such that
(3) holds and

|f ′(x)| ≤ M, |g′(x)| ≤ N (∀ x ∈ [a, b]). (36)

Then
|T (f, g;w)| ≤ MNT (j, j; w), where j(x) = x− a. (37)

Proof. Setting

q(x) = w(x)
∫ b

a

w(t)dt, p(x, y) = w(x)w(y) and f(x, y) = f(x)g(y)

implies

K(f, p, q) = T (f, g; w), |f21(x, y)| = |f ′(x)g′(y)| ≤ MN

and condition (24) becomes condition (3).
Hence (33) implies (37). ¤
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