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A FORMULA FOR THE NORM OF GENERALIZED
SPHERICAL AVERAGING OPERATOR ON WEIGHTED
LEBESGUE SPACE

M. DZIRI

ABSTRACT. The subject of this work is to define an averaging integral
transform and its dual associated with a system of partial differential
operators. These operators generalize the spherical average operator
and its dual which are investigated by many authors in different points
of view. Here we investigate wether or not the generalized spherical
operator and its dual are bounded on the weighted Lebesgue space.
The operator norms are given precisely.
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1. INTRODUCTION

Consider function f : R"*! — R which are even in the first variable that
is f(r,z) = f(—r,z) r € R, a € R™. Define the mapping

f=Rua () =19

by letting g(r, z) be the average of f over a sphere with radius r and center
at the point (0, ). Consequently

g(r,x) = /f(rn,x +r&)don(n,€), (r,x) € R xR,
S"’L
where S™ is the unit sphere {(n,&) € R x R", n?+ ||¢[|*> = 1}in R"*! and
do, is the surface measure on S™ normalized to have total measure one.
These operators have been extensively studied in [1,8]. In [1] Anderson
studied the inverting problem of the mapping R . that is to determine
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the function f when g is known, he also extended the domain of the mapping
RnT—l . to the class of tempered distributions. In [8] the authors defined
and characterized spaces of functions and distributions on which the spher-
ical average is bijective. They also gave inversion formula for the transform
R EE They arise in connection with the following system of partial dif-

ferential operators

0
Dj a. ]-Sjgna

:633]-
9? n 0 2L 92
Lni =—= _— = E _— R™.
= gr2 + r Or = 8xj2’ (r,) €]0, ool

The first aim of this note is to define and study a weighted average
integral transform and its dual which generalize the operator RnT—l - and

its dual. Precisely, we consider the system of partial differential operators

)

D=, 1<j<

j aaﬁj’ SN,
9 20+10 < 0°

Lo=2_ 422729 N~ 9 (1,2) €]0, co[xR".
o T T o ;axf () €]0, 0ol

We prove that the system of differential equations

Dju(r,z1,...,xn) = —iNju(r,z1,...,Tp),
Lou(ryzy, ..., x,) = —p2u(r, xq, . .. s Ty
Ju

w(0, 21, Ta,...2,) = 1; (0,21,...,2,) =0.

or
admits a unique solution denoted ¢, » We associate to this solution an
integral transform R, , defined on the space of continuous functions on
R™*!, even with respect to the first variable by

q_nil
Conr ™2 / fluv)(r? —u? = lv—2|?)" * dudv

B} (0,z)
-1
Ran(f)(r,z) = if a> n ,
2
[ fona v rgdnmne it a="3%
Sn
where
e BT (0,2) = {(u,v), u>0; w4+ |lv—z|?< 1"2}
and

o C, pn, 5" and do,, are defined in section 2.
The dual of the generalized spherical operator 'R, ,, is defined on S, (R" 1)
(the space of infinitely differentiable function on R™*!  rapidly decreasing
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together with all their derivatives, even with respect to the first variable),
by

oo
antl
Ca,n/ / glu,v+z) (WP —r*—|[v[|*)" % ududv
TBj/m(o,o)
” S n—1
if « ,
tRa,n(g)(rv l‘): oo 2
n—2
kan// g(u, z+vVu2—r2) (v —r?) % ududo,_1(v)
r Sn—1
-1
if a=" ,
2

where the £, ,, is a constant defined in section 2.

In this work we consider the boundedness of the operator Ry n, o >
(n—1)/2, on weighted Lebesgue spaces LP ([0, co[xR", rPdrdz dzxs . . . dz,,).
For convenience we refer to this space as Lg and denote its norm by

o0 1
I £llps = (//|f(r,x)|prﬂdrdx1...d:rn> , 1<p<oo.
R 0

Here 8 can be any real number. The space L3” = L> does not depend on
£ and

[ flloo,8 = I flloc = esssup{|f(r,z)|; (r,x) € [0,00[xR"} for p=oo.
The second aim is to investigate whether or not R, is a bounded opera-
tor on Lg, that is whether or not there exists a constant C' such that the
inequality

||Ra,nf||p,,8 < C”f”pﬁ
holds for all f € Lj. By using the same technical as [2], this question is
completely answered. In addition we provide a formula for the least possible
constant C' for which the last inequality holds. This is called the operator
norm of R, on weighted Lebesgue spaces Lg.

As usual, for p € [1, 00] we define p’ by % + ; =1

2. GENERALIZED SPHERICAL AVERAGE OPERATOR

Consider the system of partial differential operators

D.=— 1<3<
J 01']’ =J=n,
2 20+10 I~ O (21)
Ly = —— Z_ 0 R".
“or? r  Or = ijz’ (r, z) €]0, 00[x
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In this section we define an integral operators which are in connection with
the system (2.1).

Theorem 2.1. For (u,\) € C x C™, the following system of equations

Dju(r,z1, ..., x,) = —iNju(r, 1, ..., Zy),
Lou(r,xq, ... ,xn)a: —pPu(r,zy, ... 1), (2.2)
w(0,...,0) = 1; %(O,xl,...,xn) —0.

has a unique infinitely differentiable solution on R x R™, even with respect
to the first variable given by

Ou(r,z) = ja (m/,uQ +A2 4002 )eii<)"z>, (2.3)

where
e <\ >= ZT i
i 2°T(a + 1)Ju(s)
‘T(a + (s .
o jals) = ° s
1 if s=0.

with Jo is the Bessel function of first kind and order .

Proof. Let u be the solution of the system (2.2) and let’s put v(r,z) =
u(r,z)e"<M@>_ (r,z) € [0,00[xR". Since for all 1 < i < n, 22 (r,z) =0

—i<A x>

then we have u(r,x) = h(r)e where h is the solution of the cauchy

problem

loh(r) = =(p + AT -+ + M%) h(r)
{ h(0) = 1;h(0) = 0.

with [, is the Bessel differential operator defined by

L = 872 20 +1 2
9%r r  or
So by [9],
h(r) :ja(r\//ﬁ + A2 +-~~+)\%).
This completes the proof of theorem 2.1. O

Theorem 2.2. The function p(, ) given by relation (2.3) has the fol-
lowing Mehler type integral representation: for (u,\) € C x C™ and (r,x) €
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[0, co[xR™,
1
Ca)n/ / cos(ursy(0)) exp (—i < A,z + r®(0) >)x
0 [-5.5 )
Py (12) = x(1—s2)* " 9(0)dsdo if o> ”%
-1
[ costurn) exp(—i < A+ 16 2o (1.6) if =",
Sﬂ.
where
(o + 1)
a,n — 5 2.4
* Ca, a(+D/20 (o — (n — 1)/2) (24)
¥(0) = H(cos Or),
k=1
. ®(0) = (sinby,coshysinf, ..., cos6; ...cosb,_1sinb,), (2.5)

(COS ek)2a+17k’

=

9(0) =
k

e S™ is the unit sphere in R"1 defined by
S" = {(n,€) € RxR",n* +[[¢]* =1},

e do, is the surface measure on S™ normalized to have total measure
one, defined by

I
-

F(Lﬂ) 2m
/f(w)dan(w): ; / / f(sinb...sinb,,sinb;...sinb,_1 cosl,,
Sn 2mz 0 [0,x]7—1
n—1
...8in 6 cos by, cos ;) H (sin Gk)"_kd91d92 ...do,. (2.6)
k=1

Proof.  We recall that the modified Bessel function j, has the Mehler
integral representation (we refer to [7,9])

o Dla+1) / 2\a—1/2 ~ _
Jal(s) = \/M/l(l — 12)2 Y2 exp(—ist)dt =
/2
__Lla+l) —issin 6)(cos §)**
= T 11/2) / exp( 0)(cos 0)=“de. (2.7)

—m/2
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On the other hand from the following expansions of the function j,

. 29T (a + 1) Jo(8) e (—1)F s\ 2k
) = == =T Y e (3)

where .J, is the Bessel function of first kind and order «, we deduce that
for all (u,v) e Cx C

o0 1)k i 2k
) = Dl )Y gt (5) st
k=1

(a+k+1) \2

Therefore, from relation (2.7) we get

1
I'(«
o V) = i oo/ =)

1
x exp(—irvt)(1 — t2)* 124t =

MNa+1) . Lo 20
= —————" [ ja—1/2(rpcos®)exp(—irvsinf)(cos0)=“df.  (2.8)
Val(a+1/2) /1

By using a gain relation (2.7) we obtain

1 w/2
T 1
ja(r\/u2+uz)=(al_‘(_;))/ / cos(urs cos 0) x
T
—1—7/2

x exp(—irv sin 0)(cos 0)>*(1 — s*)*~dfds.
So, to complete the proof it suffices to see that for all (u, A) € C x C*
T(a+1)

o 2002 0)2...4002) =
J (r\/’”‘ T A ”) V(o + 1/2)
w/2

X / Jo/2 (r cos Oy \/ 2+ A2+ ~+)\%) exp(—irA; sin 6;)(cos 61)%*df,. O

—m/2

Definition 2.3. The generalized spherical average operator R, associ-
ated with ¢, ) is the mapping defined on C,(R™*!) (the space of continuous
functions on R"*! even with respect to the first variable) by the following

Canr™ / )2 —u? — o — 2>+ dudo
B (0,2)
Roz,n(f)(ra z): if o> i L s
2
/ Flrn, e+ r€)don(n,€) if o ="

Sn
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where
. B (0,2) = {(u,v) ERxR" u>0;u” + lv — 2| <r’}  (2.9)
and

e C,, is the positive constant given by relation (2.4).

The operator R,y arise in connection with the solution ¢,  of the sys-
tem (2.2). To see this connection, we make the change of variables
(s,0) — (u,v) = (rsyp(0),x 4+ r®(h)),

where 1, ® are the functions given by (2.5). The Jacobian determinant is

la(u, v)/0(s, 9)| =yl H(cos Gk)”+2_k,
k=1
and the map
(s,0) — (u,v),
takes the open set (0,1) x (—7/2,7/2)" one-to-one and onto the open half
ball B (0, z) given by (2.9). So it follows

1
Com / / f(rsib(0), 3+ r(8))x
0 [_ 7%]”
R(a,n)(f)(ﬁ CL’) = X(l _ 32)a7nTH19(0)d$ de lf a > n ; 1’ 210

/f(rn,x+r§)dan(n,§) ifa=""1
STI,

(M)

2

Then we have
Qur(r, ) = Ran(cos(p.) exp(—i < A,. >))(r,z), a>(n—1)/2. (2.11)

Remark 2.4. 1. By relation (2.11) it is obvious to see that the trans-
form R, , is continuous and injective from &, (R™*1) (the space of infinitely
differentiable function on R"*! even with respect to the first variable) into
itself.

2. For a = "T’l, it is clear from its form that the operator R, , is the
average of f over the right semi-sphere of radius r, centred at (0, z).

For o > "T_l, an easy calculation gives

20 (a + 1)r—22 9 S S\ o= (n+1)/2 B
7r"+1/2f‘(a _ (n — 1)/2) / (’I“ —u = ;(Uk - -'L'k:) ) dudv = 1.
B =

Showing that R, is an averaging operator. Indeed, Ry, (f)(r,z) is the
weighted averaging of f over B, (0,z), where the weight (r?—u?—Y"}_; (vp—

:rk)z)af(nﬂ)/2 is a power of the distance to the boundary of the ball.



32 M. DZIRI

Proposition 2.5. For f € C.(R"Y), f bounded and g € S.(R"H1)
(the space of infinitely differentiable function on R"*1, rapidly decreasing
together with all their derivatives, even with respect to the first variable),

//OORa,n(f)(r, x)g(r, x)r**Tdr de = //Dof(r,z)tR%n(g)(r, x)dr de,
R 0 R" 0

where "Ry, is the dual operator defined by

2 ot
Can/ / g(u,v+2) (2 —r?—|v]|*)* = ududv
== (00)
if a> n-l
Ronlg)r)={ >
ka,n/ / g(u, v+ u2—r2)(u2—r2)n772ududan,1(v)
r Sn—1
n— 1
if a= >
where s
Co,n is the constant given by relation (2.4) and ke n = ?;E(F({t))
2
Proof. The result follows by using Fubini’s theorem and adequate change
of variables. O

In the sequel of this paper we use the expression (2.10) for technical
reasons.

3. DETERMINING THE GENERALIZED SPHERICAL AVERAGE NORM

In this section we will show that the generalized spherical average oper-
ator is bounded on the Lebesgue space and we will determine its norm.

Theorem 3.1. If « > (n —1)/2, then Ra,n is a bounded oper-
ator on L7 with the operator morm equal to 1. That is, the inequality
I1Ra.n(f)lloo,g < | flloco,s holds for all bounded f and when C < 1 the in-
equality | Ran(f)lloo,s < Cllflloo,p fails to hold for some bounded f.

Proof. Let f be a bounded function and view || f||oc g as a constant function.
Certainly, f < ||f|lc,s almost every where. Since the transform R, . is an
average operator, for each (r,z) we have

[Ran(H)(r2)| < Ranllfllce,s)(r,2) = [ flloo,s-

Taking the essential supremum over all (r,z) proves that

[Ran(P)loo g < 1F oo
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and shows that the operator norm of R, , is at most 1. To complete the
proof it sufficient to take f to be a non zero constant. O

The case p = 1 is also treated separately both for technical reasons and
because the operator norm is achieved for all non negative function f.

Theorem 3.2. Ifa > "T_l, and B < 0, then Rq.,n is a bounded operator

on Lé with operator norm equal to
I(a+1)I(-52)
I(LO(a+1-54)
If B> 0, then Ry, is not a bounded operator on L}g.

Proof. Suppose f € Lé. Then

[Roce Dl = [ [ R ()l o <

R™ 0

</ 7 [ 1561l 4 r9)ldo . drda.

R 0 Sn
Interchanging the order of integration and making the change of variable
t=rln|, y=x+rf yields

[Repsn Dl < [ [ [1reledtdydonin.e) <
sn 0

R

< flhs / ]~ do(n,€). (3.1)

Sn
On the other hand from relation (2.6) we deduce

ntly o no 7
/|77‘_(ﬁ+1)d0n(7775) = F( n2+1)( H /(COSGk)n_k_ﬁ_ldek) =
& 22 ko1
_r(HI(=5)
r(3rs2)

provided that § < 0. The last integral diverges when 3 > 0. It follows

L(Hr(-9)

L(5)0("%3%)

1Rz ()l 6 <

2

(RARWE

provided that g < 0.
Since this inequality reduces to equality when f is non negative, the
constant is best possible. In particular when 8 > 0 the best constant is
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infinite so the spherical average R a1, is not a bounded operator on L},.

This completes the proof in the case a = %‘1 When o > "7_1 we proceed
similarly,

RS >||1,5_//mm £ 2) [P dr d <

R"

oo 1
<Con [ [[ ] Irsv).2 o))
R* 0 O [—m/2,7/2]™
x 0(0)(1 — %)~ +V/24dg ds rPdr du,
where the constant Cy, ,,, the functions ¢, ¢ and ¥ are given by relation (2.4)

respectively (2.5).
Interchanging again and making the change of variable

(r,x) — (t,y) = (rsp(6), 2 + r¢(0))

yields
1
HRa,n(f)HLg = Oa,n|f||1ﬂ</3 yom oy /2d5>
0
" 71'/2
H ( / (cos )2 P~ kd@k) < Conllflli,px
k=1 —m/2

><71“( B/2)T (o — (n —1)/2) Xﬁ (a+1/2 = (B+Ek)/2)T(1/2)
2 T(a+1/2—(8+n)/2) Da+1/2—(B+k—1)/2) °

provided 8 < 0. Once we cancel out the repeated terms on the top and the
bottom we get

o+ 1I(-2
r(z)(a+ 3 -

The “ds” integral above diverges when § > 0.

Since this inequality reduces to equality when f is non negative, the
constant is best possible. In particular when 3 > 0 the best constant is
infinite so the spherical average R, , is not a bounded operator on Lb.
This completes the proof. O

”Ra,n( )Hl B <

Sl
2

In the following we give the values of 3 for which the generalized spherical

average is a bounded transform on Lg when 1 < p < co. We begin by looking

at the case o = "T’l
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Theorem 3.3. Suppose 1 < p < oo. Then Ranl . 15 a bounded operator

on Lg if and only if B < p — 1. Moreover, if 3 < p — 1 then the operator
norm s

L0 - 55
D(3)T("5H = %50)

Proof. Suppose that 5 > p—1 and define the function f by setting f(¢,z)=

1 when (t,2) € (0,1) x Q(,2) and f(t,z) = 0 otherwise. Where Q(, 2 is
a ball of R at center (0,0) and radius 2. This means that Q, o) = {z €

1

R™/ ||lz| = (ZZ=1 xi)i < 2}. Then we have

1
ontlps
fIP 5 = / /tﬁ”’dtdz: ~ < 0.
Wlos= | CEFESILeY

Q(n,2)

So f € Lj. On the other hand from identity (2.6) we deduce that if 0 < r < 1
and ||z|| < 1 then

1
Rogs (1)) = [ fna+ 1o, 1.€) = [ do(0.6) = o0
Sn Sn
So Ruzs o (f) & L. Thus Ru_s . is not a map from L to L.
When 8 =p—1, let f(t,z) = when (t,2) € (0,1) x Q) and
f(t,x) = 0 otherwise. We have

__ 1
t(1—logt)

1

|WP—‘//‘1ﬁm—Wﬂm/) L <o
pB t(1 —logt)P -~ nl(%) J t(1 —logt)P

Qn,2) 0

so f € Lj. But, if 0 <7 < 1 and [|z[| < 1 and by relation (2.6) then we have

(cosOp)"~ k= 1d9k)

\\a

Rus o, (f)(r,2) H (

db,,
x ( / cos 70, (1 —log(r [Tr_, cos@k))

S
2

[SE]

[ME]

This integral is infinite. That is Rann(f) ¢ LY.
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Now, suppose that 3 < p—1 and fix f € Lg. Let v be a real constant to
be determined later. Then by Hélder inequality we have

Ree (DD < ([l 1P don.6))
STI,

S

( / Inlpl”dan(??,ﬁ))p =o' [1iteinha+ 9 o)
Sn Sn

where
Cr= [ ol dow (). (3:2)
Sn

Using this estimate we get

1R DIy €8 [ [ [ 15600+ 0Pl don 0. da

R 0 S»

Interchanging the order of integration and making the change of variable
t=r|n| and y = z + r¢ yields

1R s <l [ ([ [ ar)aona.¢) =
0

Sn R
v p
=Cr Gl 1l 6
where

Cy = / 0[PP o (1, 6). (3.3)
Sn

If there there exists a v that makes both the integrals (3.2) and (3.3) finite,
then the spherical average R no1 is a bounded operator on Lg.
Studying the integral Cy

n

2

C /*W/d (.6) = "2 / L)~
= On\1, = T . 7 n
L= 7 T (|sind, )"

0

Sn

n—1 T

x <kH1 / (sin&k)”kp/7d0k>.
=10
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This integral to be finite requires that —p’y > —1, furthermore

F(nJrl) " /2
C) = —% H / (cos F)k)("*k*p'“/“)*ldek =
T k:1—7r/2

F n;rl n n k— p’y—i—l) (1/2)
E=E gy )
1

R 2

Studying the integral C5. A similar calculus as the above gives that the
integral Cs to be finite requires that py —  — 1 > —1. Furthermore

o, =TT <F(’W)r<1/2>>'

(=B

The above conditions for the constant v requirement that v € (%,
is non-empty interval because we have assumed that § < p — 1.
To obtain a specific upper bound to the operator norm let v = 3+ 1/(pp’).
The upper bound obtained is

i,), which
P

cici ~ TSI (F<”§“ B>> _eRrG - 5)
LU T AR - 5 r)r(t - 5

To get a lower bound for the spherical average operator norm, we fix k a

positive and odd real and a > 1 and fix f by setting f(¢,y) = £“5— when
(t,y) € (0,1) X Q. 0y and f(t,y) = 0 otherwise. The norm of f in Ligis

||f|pﬁ—( // tﬁdtdy)””:< / (/t “ar)ay) " -

2,n_n/2an 1/p
B <nr<n/2>f~e) '
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On the other hand, if 0 < r < 1 and ||z|| < @ — 1, then for w = (n,&) € S,
we have |rn| < |n| <1 and ||z +7&|| < ||lz|| + || |€]l <a—1+1=a. So

k—B—1 r—fB—
Rus ((N0) = [ Fma+1€)don(n.€) =57 [ do (1) =
Sn Sn
41 /2
r(atl) s &~ K—B—1
= (nil )7" ; H ( / (COSH)”_k+§d9k> =
T2 b1 a2

CD() e (T +3)0()\
= PES H( F(n k+ _|_1) >_

r(ntly » /p(nzk 4 s=p-1 1
[Rocs (Al 5= (i) ( Qﬁk i J)x
F(2) k=1 F( 7 73 +1)
1 1/p
><< / /(rmié3 l)prﬁdrdw) =
Q(n,a—1) 0

n n r—0B—1 n n\ 1
% H( ’“+§+é))<2w Pa—1) > "
r(y) U k1) )\ al(n/2)x

HRTLT—lm(f)”p,B

For each k and a the ratio s is a lower bound for the spherical
D,

average operator norm. Canceling out the repeated terms of the top and
the bottom and Letting a — oo first and then kK — 0 gives the lower bound

rerd - 42

2 2 2p
D(3)D ("3~ %)

as required. The upper and lower bounds coincide so the operator norm is
determined. (]

Theorem 3.4. Suppose 1 < p < oo, and o > "T_l Then Ran 5 a

bounded operator on Lg if and only if B < p— 1. Moreover, if 3 < p—1
then the operator norm is

Pa+1)I(5 - 55)
I(H(a+1- Qipl)
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Proof. Suppose that § > p — 1 and define the function f by setting
f(t,y) = 1 when (t,y) € (0, ) x Q(n,2) and f(¢,y) = 0 otherwise,

1150 = | 7|f<t,y>|Ptﬂdtdy= / ( / tﬁpdt)dyz
Br 0

Q(n,2)
1

:(O/tﬁ—pdt) / dy < oo

Q(n,2)

provided 8 > p—1. So f € Lj;. On the other hand if 0 < 7 < 1, and |[z|| < 1,
then

n

Reom(f)(r, (/1 1— g2 "5 1ds> I1 / (cos 0,)2* % dp.
0

F=1n/2,m /2

Since the “ds” integral diverges then R (f) € Lj.

When 3 = p — 1 a similar argument shows that R, , does not map
L% to Li. This time, f(t,y) = m when (¢,y) € (0,1) x Q(n,2) and
f(t,y) = 0 otherwise. A similar calculus as above shows that, ||f||, g is
finite and R (f) & Lj-

Now suppose 8 < p—1 and fix f € Lg. Let v¢, 1 <k <mn, § and € be
real constants to be determined later. Clearly,

‘Raf(raxlv'”xn)‘ < Ra|f\(7’,z1,...xn)

and by Holder inequality this is no greater then

1
1
A .
Con X CY ‘f(rscos@l...cos@n,x1+r51n91,x2+

0 [—m/2,m/2]™

+rcosbysinbs,...x, +7rcosby...cos6,_1sinb,)| x

x [ (cos 0x)P7 (1 = s%)P%dby . .. dB,ds,
k=1
where

Cy = (0/1(1 L L ds> kﬁl (

(cos ) (at1—k—i)p’ d@k)

\\a

[SE]
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Using this estimate and by using the adequate change of variables as
above we obtain
1

IRanl 5 < (Can)’CY ( Ja- s2>mw1ds) .

0

(H / (cos B, )Pre—P= 1d9k> ||prﬂ = (Ca,n)pCfTCZ ||f||§,;37

where C is the constant defined by

1 n Z
= (/(1—32)p€sp‘5—ﬁ_1ds> (H / (cos B, )Pe—P~ 1d9;€>
5 k=1

If there exist g, d, and € that make C; and C» finite, then R, , is a
bounded operator on Lg. The requirements are that

n+1
(2a+1—k—y)p', —6p, (a—T—e)P/, dp—B—1, p—B—1, ep

all be greater then —1. These conditions reduce to
1 1 1 1 -1
’}/ke(é,Qa—i—l—k—i——/),(Se(é,j),ee(—f,—f—l-a—n )
p pp p 2

Since @ > 2521 < k < mn and § < p — 1 then all three intervals are non
empty so it 1S posmble to choose 7k, d and e that makes C7 and Cs finite.
Thus R, is a bounded operator on Lg.

To obtain a specific upper bound for the operator norm let

B+ (2a—k)p +1 B+1 a—(n+1)/2
Ve = 7 76: pp, , €= .

Then

n
X(H /(cosﬂk)ZaJrl_k_Mdﬂk) =

ooy Fe i)
Wla+l-5-57)  5T(e+1-55-57)
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Once we cancel out the repeated terms on the top and the bottom, the
upper bound obtained is

T(a+ DT(5 - 55

Mo 1= 50 (4)

1 1
»r
CoanCyCy =

To get a lower bound for the operator norm we fix n > 0 and a > 1
n—B—1
and define f by setting f(t,y) =t 7 where (t,y) € (0,1) x Qo) and
f(t,y) = 0 otherwise. The norm of f in L} is

I 1 2 n/2 . n :
— th=P=1Bat d v — sma p.

On the other hand, if 0 < r < 1 and ||z|| < a — 1 then for any s € (0,1) and
0 € (—7m/2,7/2) |rscosf;...cos0,| <1and if y =z +7E, ||ly|| < a. So we
complete the proof in the same way as Theorem 3.3. O

In is important to point out the operator norm calculated in the previous
four theorems are all related. We do this in the following summary.

Theorem 3.5. Suppose 1 < p < oco. and o > ”7_1 The operator Ro,n 15
a bounded operator on Lg if and only if B < p—1. In this case the operator
norm is

I'(a+1)I(3 - 2H)

2 2p
P(3)0(a+1-57)

Earlier work suggest that L5, , is a naturel space for the spherical
average operator. In the following we restrict our attention to the case
08 =2a+1,

Corollary 3.6. Suppose 1 < p < oco. The generalized spherical average
operator is a bounded map on L’Q)a+1 if and only if 2a + 2 < p. In this case
the operator norm is

P(a+ (L - 251)
(T (=)
Remark 3.7. The boundedness of the dual operator tRa,n is obtained by
duality.
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