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A FORMULA FOR THE NORM OF GENERALIZED
SPHERICAL AVERAGING OPERATOR ON WEIGHTED

LEBESGUE SPACE

M. DZIRI

Abstract. The subject of this work is to define an averaging integral
transform and its dual associated with a system of partial differential
operators. These operators generalize the spherical average operator
and its dual which are investigated by many authors in different points
of view. Here we investigate wether or not the generalized spherical
operator and its dual are bounded on the weighted Lebesgue space.
The operator norms are given precisely.

îâäæñéâ. êŽöîëéöæ àŽêýæèñèæŽ àŽäëàŽáâĲñèæ æêðâàîŽèñîæ ïŽ-
öñŽèë áŽ éæïæ áñŽèñîæ, îëéâèæù áŽçŽãöæîâĲñèæŽ àŽîçãâñè çâ-
îúëûŽîéëâĲñèâĲæŽê áæòâîâêùæŽèñî àŽêðëèâĲŽåŽ ïæïðâéŽïåŽê.
âï ëìâîŽðëîâĲæ àŽêŽäëàŽáâĲâê ïòâîñè àŽïŽöñŽèëâĲæï ëìâîŽ-
ðëîï áŽ éæï áñŽèñîï. áŽéðçæùâĲñèæŽ ýïâêâĲñèæ ëìâîŽðëîâ-
Ĳæï öâéëïŽäôãîñèëĲŽ èâĲâàæï ûëêæŽê ïæãîùââĲöæ. ùýŽáæ ïŽýæå
êŽìëãêæŽ ëìâîŽðëîâĲæï êëîéâĲæ.

1. Introduction

Consider function f : Rn+1 → R which are even in the first variable that
is f(r, x) = f(−r, x) r ∈ R, x ∈ Rn. Define the mapping

f → Rn−1
2 ,n(f) = g

by letting g(r, x) be the average of f over a sphere with radius r and center
at the point (0, x). Consequently

g(r, x) =
∫

Sn

f(rη, x + rξ)dσn(η, ξ), (r, x) ∈ R× Rn,

where Sn is the unit sphere {(η, ξ) ∈ R× Rn, η2 + ‖ξ‖2 = 1}in Rn+1 and
dσn is the surface measure on Sn normalized to have total measure one.

These operators have been extensively studied in [1,8]. In [1] Anderson
studied the inverting problem of the mapping Rn−1

2 ,n that is to determine
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the function f when g is known, he also extended the domain of the mapping
Rn−1

2 ,n to the class of tempered distributions. In [8] the authors defined
and characterized spaces of functions and distributions on which the spher-
ical average is bijective. They also gave inversion formula for the transform
Rn−1

2 ,n. They arise in connection with the following system of partial dif-
ferential operators

Dj =
∂

∂xj
, 1 ≤ j ≤ n,

Ln−1
2

=
∂2

∂r2 +
n

r

∂

∂r
−

n∑

j=1

∂2

∂xj
2 , (r, x) ∈]0,∞[×Rn.

The first aim of this note is to define and study a weighted average
integral transform and its dual which generalize the operator Rn−1

2 ,n. and
its dual. Precisely, we consider the system of partial differential operators

Dj =
∂

∂xj
, 1 ≤ j ≤ n,

Lα =
∂2

∂r2 +
2α + 1

r

∂

∂r
−

n∑

j=1

∂2

∂xj
2 , (r, x) ∈]0,∞[×Rn.

We prove that the system of differential equations




Dju(r, x1, . . . , xn) = −iλju(r, x1, . . . , xn),
Lαu(r, x1, . . . , xn) = −µ2u(r, x1, . . . , xn),

u(0, x1, x2, . . . xn) = 1;
∂u

∂r
(0, x1, . . . , xn) = 0.

admits a unique solution denoted ϕµ,λ We associate to this solution an
integral transform Rα,n defined on the space of continuous functions on
Rn+1, even with respect to the first variable by

Rα,n(f)(r, x) =





Cα,nr−2α

∫

B+
r (0,x)

f(u, v)
(
r2 − u2 − ‖v − x‖2)α−n+1

2 du dv

if α >
n− 1

2
,∫

Sn

f(rη, x + rξ)dσn(η, ξ) if α =
n− 1

2
,

where
• B+

r (0, x) =
{
(u, v), u > 0; u2 + ‖v − x‖2 < r2

}
and
• Cα,n, Sn and dσn are defined in section 2.

The dual of the generalized spherical operator tRα,n is defined on S∗(Rn+1)
(the space of infinitely differentiable function on Rn+1, rapidly decreasing
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together with all their derivatives, even with respect to the first variable),
by

tRα,n(g)(r, x)=





Cα,n

∞∫

r

∫

B+√
u2−r2

(0,0)

g(u, v+x)
(
u2−r2−‖v‖2)α−n+1

2 u du dv

if α >
n− 1

2
,

kα,n

∞∫

r

∫

Sn−1

g
(
u, x+

√
u2−r2

)(
u2−r2

)n−2
2 u du dσn−1(v)

if α =
n− 1

2
,

where the kα,n is a constant defined in section 2.
In this work we consider the boundedness of the operator Rα,n, α ≥

(n−1)/2, on weighted Lebesgue spaces Lp
(
[0,∞[×Rn, rβdrdx1dx2 . . . dxn

)
.

For convenience we refer to this space as Lp
β and denote its norm by

‖f‖p,β =
( ∫

Rn

∞∫

0

|f(r, x)|prβdr dx1 . . . dxn

) 1
p

, 1 ≤ p < ∞.

Here β can be any real number. The space L∞β ≡ L∞ does not depend on
β and

‖f‖∞,β ≡ ‖f‖∞ = esssup
{|f(r, x)|; (r, x) ∈ [0,∞[×Rn

}
for p = ∞.

The second aim is to investigate whether or not Rα,n is a bounded opera-
tor on Lp

β , that is whether or not there exists a constant C such that the
inequality

‖Rα,nf‖p,β ≤ C‖f‖p,β

holds for all f ∈ Lp
β . By using the same technical as [2], this question is

completely answered. In addition we provide a formula for the least possible
constant C for which the last inequality holds. This is called the operator
norm of Rα,n on weighted Lebesgue spaces Lp

β .

As usual, for p ∈ [1,∞] we define p′ by 1
p + 1

p′ = 1.

2. Generalized Spherical Average Operator

Consider the system of partial differential operators

Dj =
∂

∂xj
, 1 ≤ j ≤ n,

Lα =
∂2

∂r2 +
2α + 1

r

∂

∂r
−

n∑

j=1

∂2

∂xj
2 , (r, x) ∈]0,∞[×Rn.

(2.1)
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In this section we define an integral operators which are in connection with
the system (2.1).

Theorem 2.1. For (µ, λ) ∈ C× Cn, the following system of equations





Dju(r, x1, . . . , xn) = −iλju(r, x1, . . . , xn),
Lαu(r, x1, . . . , xn) = −µ2u(r, x1, . . . , xn),

u(0, . . . , 0) = 1;
∂u

∂r
(0, x1, . . . , xn) = 0.

(2.2)

has a unique infinitely differentiable solution on R × Rn, even with respect
to the first variable given by

ϕµ,λ(r, x) = jα

(
r
√

µ2 + λ2
1 + . . . λ2

n

)
e−i<λ,x>, (2.3)

where
• < λ, x >=

∑n
1 λixi.

and

• jα(s) =





2αΓ(α + 1)Jα(s)
sα

if s 6= 0,

1 if s = 0.

with Jα is the Bessel function of first kind and order α.

Proof. Let u be the solution of the system (2.2) and let’s put v(r, x) =
u(r, x)ei<λ/x>, (r, x) ∈ [0,∞[×Rn. Since for all 1 ≤ i ≤ n, ∂v

∂xi
(r, x) = 0

then we have u(r, x) = h(r)e−i<λ/x> where h is the solution of the cauchy
problem

{
lαh(r) = −(µ2 + λ2

1 · · ·+ λ2
n)h(r)

h(0) = 1; h
′
(0) = 0.

with lα is the Bessel differential operator defined by

lα =
∂2

∂2r
+

2α + 1
r

∂

∂r
.

So by [9],

h(r) = jα

(
r
√

µ2 + λ2
1 + · · ·+ λ2

n

)
.

This completes the proof of theorem 2.1. ¤

Theorem 2.2. The function ϕ(µ,λ) given by relation (2.3) has the fol-
lowing Mehler type integral representation: for (µ, λ) ∈ C×Cn and (r, x) ∈
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[0,∞[×Rn,

ϕ(µ,λ)(r, x) =





Cα,n

1∫

0

∫

[−π
2 , π

2 ]n

cos(µrsψ(θ)) exp (−i < λ, x + rΦ(θ) >)×

×(1−s2)α−n+1
2 ϑ(θ)ds dθ if α>

n− 1
2

,∫

Sn

cos(µrη) exp(−i < λ, x + rξ >)dσn(η, ξ) if α=
n− 1

2
,

where

• Cα,n =
2Γ(α + 1)

π(n+1)/2Γ(α− (n− 1)/2)
, (2.4)

•





ψ(θ) =
n∏

k=1

(cos θk),

Φ(θ) = (sin θ1, cos θ2 sin θ2, . . . , cos θ1 . . . cos θn−1 sin θn),

ϑ(θ) =
n∏

k=1

(cos θk)2α+1−k,

(2.5)

• Sn is the unit sphere in Rn+1 defined by

Sn = {(η, ξ) ∈ (R× Rn, η2 + ‖ξ‖2 = 1},
• dσn is the surface measure on Sn normalized to have total measure

one, defined by

∫

Sn

f(w)dσn(w)=
Γ(n+1

2 )

2π
n+1
2

2π∫

0

∫

[0,π]n−1

f(sin θ1. . . sin θn, sin θ1. . . sin θn−1 cos θn,

. . . sin θ1 cos θ2, cos θ1)
n−1∏

k=1

(sin θk)n−kdθ1dθ2 . . . dθn. (2.6)

Proof. We recall that the modified Bessel function jα has the Mehler
integral representation (we refer to [7,9])

jα(s) =
Γ(α + 1)√

π Γ(α + 1/2)

1∫

−1

(1− t2)α−1/2 exp(−ist)dt =

=
Γ(α + 1)√

π Γ(α + 1/2)

π/2∫

−π/2

exp(−is sin θ)(cos θ)2αdθ. (2.7)
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On the other hand from the following expansions of the function jα

jα(s) =
2αΓ(α + 1)Jα(s)

sα
= Γ(α + 1)

∞∑

k=1

(−1)k

k!Γ(α + k + 1)

(s

2

)2k

,

where Jα is the Bessel function of first kind and order α, we deduce that
for all (µ, ν) ∈ C× C

jα

(
r
√

µ2 + ν2
)

= Γ(α + 1)
∞∑

k=1

(−1)k

k!Γ(α + k + 1)

(rµ

2

)2k

jα+k(rν).

Therefore, from relation (2.7) we get

jα

(
r
√

µ2 + ν2
)

=
Γ(α + 1)√

πΓ(α + 1/2)

1∫

−1

jα−1/2

(
rµ

√
1− t2

)×

× exp(−irνt)(1− t2)α−1/2dt =

=
Γ(α + 1)√

πΓ(α + 1/2)

1∫

−1

jα−1/2(rµ cos θ) exp(−irν sin θ)(cos θ)2αdθ. (2.8)

By using a gain relation (2.7) we obtain

jα(r
√

µ2 + ν2) =
Γ(α + 1)
πΓ(α)

1∫

−1

π/2∫

−π/2

cos(µrs cos θ)×

× exp(−irν sin θ)(cos θ)2α(1− s2)α−1dθds.

So, to complete the proof it suffices to see that for all (µ, λ) ∈ C× Cn

jα

(
r

√
µ2 + λ2

1 + λ2
2 · · ·+ λ2

n

)
=

Γ(α + 1)√
πΓ(α + 1/2)

×
π/2∫

−π/2

jα−1/2

(
r cos θ1

√
µ2+λ2

2+· · ·+λ2
n

)
exp(−irλ1 sin θ1)(cos θ1)2αdθ1. ¤

Definition 2.3. The generalized spherical average operator Rα,n associ-
ated with ϕµ,λ is the mapping defined on C∗(Rn+1) (the space of continuous
functions on Rn+1 even with respect to the first variable) by the following

Rα,n(f)(r, x)=





Cα,nr−2α

∫

B+
r (0,x)

f(u, v)(r2 − u2 − ‖v − x‖2)α−n+1
2 du dv

if α >
n− 1

2
,∫

Sn

f(rη, x + rξ)dσn(η, ξ) if α =
n− 1

2
,
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where

• B+
r (0, x) =

{
(u, v) ∈ R× Rn, u > 0; u2 + ‖v − x‖2 < r2

}
(2.9)

and
• Cα,n is the positive constant given by relation (2.4).

The operator Rα,n arise in connection with the solution ϕµ,λ of the sys-
tem (2.2). To see this connection, we make the change of variables

(s, θ) −→ (u, v) = (rsψ(θ), x + rΦ(θ)),

where ψ, Φ are the functions given by (2.5). The Jacobian determinant is

∣∣∂(u, v)/∂(s, θ)
∣∣ = rn+1

n∏

k=1

(cos θk)n+2−k,

and the map
(s, θ) −→ (u, v),

takes the open set (0, 1)× (−π/2, π/2)n one-to-one and onto the open half
ball B+

r (0, x) given by (2.9). So it follows

R(α,n)(f)(r, x) =





Cα,n

1∫

0

∫

[−π
2 , π

2 ]n

f(rsψ(θ), x + rΦ(θ))×

×(1− s2)α−n+1
2 ϑ(θ)ds dθ if α >

n− 1
2

,∫

Sn

f(rη, x + rξ)dσn(η, ξ) if α =
n− 1

2
.

2.10

Then we have

ϕµ,λ(r, x) = Rα,n

(
cos(µ.) exp(−i < λ, . >)

)
(r, x), α ≥ (n− 1)/2. (2.11)

Remark 2.4. 1. By relation (2.11) it is obvious to see that the trans-
form Rα,n is continuous and injective from ξ∗(Rn+1) (the space of infinitely
differentiable function on Rn+1 even with respect to the first variable) into
itself.

2. For α = n−1
2 , it is clear from its form that the operator Rα,n is the

average of f over the right semi-sphere of radius r, centred at (0, x).
For α > n−1

2 , an easy calculation gives

2Γ(α + 1)r−2α

πn+1/2Γ(α− (n− 1)/2)

∫

B+
r

(
r2 − u2 −

n∑

k=1

(vk − xk)2
)α−(n+1)/2

du dv = 1.

Showing that Rα,n is an averaging operator. Indeed, Rα,n(f)(r, x) is the
weighted averaging of f over B+

r (0, x), where the weight
(
r2−u2−∑n

k=1(vk−
xk)2

)α−(n+1)/2 is a power of the distance to the boundary of the ball.
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Proposition 2.5. For f ∈ C∗(Rn+1), f bounded and g ∈ S∗(Rn+1)
(the space of infinitely differentiable function on Rn+1, rapidly decreasing
together with all their derivatives, even with respect to the first variable),

∫

Rn

∞∫

0

Rα,n(f)(r, x)g(r, x)r2α+1dr dx =
∫

Rn

∞∫

0

f(r, x)tRα,n(g)(r, x)dr dx,

where tRα,n is the dual operator defined by

tRα,n(g)(r, x)=





Cα,n

∞∫

r

∫

B+√
u2−r2

(0,0)

g(u, v+x)
(
u2−r2−‖v‖2)α−n+1

2 u du dv

if α >
n− 1

2
,

kα,n

∞∫

r

∫

Sn−1

g(u, x+
√

u2−r2)(u2−r2)
n−2
2 u du dσn−1(v)

if α =
n− 1

2
,

where
Cα,n is the constant given by relation (2.4) and kα,n = 2Γ( n+1

2 )√
πΓ( n

2 )
.

Proof. The result follows by using Fubini’s theorem and adequate change
of variables. ¤

In the sequel of this paper we use the expression (2.10) for technical
reasons.

3. Determining the Generalized Spherical Average Norm

In this section we will show that the generalized spherical average oper-
ator is bounded on the Lebesgue space and we will determine its norm.

Theorem 3.1. If α ≥ (n − 1)/2, then Rα,n is a bounded oper-
ator on L∞β with the operator norm equal to 1. That is, the inequality
‖Rα,n(f)‖∞,β ≤ ‖f‖∞,β holds for all bounded f and when C < 1 the in-
equality ‖Rα,n(f)‖∞,β ≤ C‖f‖∞,β fails to hold for some bounded f.

Proof. Let f be a bounded function and view ‖f‖∞,β as a constant function.
Certainly, f ≤ ‖f‖∞,β almost every where. Since the transform Rα,n is an
average operator, for each (r, x) we have

∣∣Rα,n(f)(r, x)
∣∣ ≤ Rα,n(‖f‖∞,β)(r, x) = ‖f‖∞,β .

Taking the essential supremum over all (r, x) proves that
∥∥Rα,n(f)

∥∥
∞,β

≤ ‖f‖∞,β



A FORMULA FOR THE NORM 33

and shows that the operator norm of Rα,n is at most 1. To complete the
proof it sufficient to take f to be a non zero constant. ¤

The case p = 1 is also treated separately both for technical reasons and
because the operator norm is achieved for all non negative function f.

Theorem 3.2. If α ≥ n−1
2 , and β < 0, then Rα,n is a bounded operator

on L1
β with operator norm equal to

Γ(α + 1)Γ(−β
2 )

Γ( 1
2 )Γ(α + 1

2 − β
2 )

.

If β ≥ 0, then Rα,n is not a bounded operator on L1
β .

Proof. Suppose f ∈ L1
β . Then

∥∥Rn−1
2 ,n(f)

∥∥
1,β

=
∫

Rn

∞∫

0

|Rn−1
2 ,n(f)(r, x)|rβdr dx ≤

≤
∫

Rn

∞∫

0

∫

Sn

|f(r|η|, x + rξ)|dσn(η, ξ)rβdr dx.

Interchanging the order of integration and making the change of variable
t = r|η|, y = x + rξ. yields

∥∥Rn−1
2 ,n(f)

∥∥
1,β

≤
∫

Sn

|η|−(β+1)

∫

Rn

∞∫

0

|f(t, y)|tβdt dy dσn(η, ξ) ≤

≤ ‖f‖1,β

∫

Sn

|η|−(β+1) dσn(η, ξ). (3.1)

On the other hand from relation (2.6) we deduce

∫

Sn

|η|−(β+1)dσn(η, ξ) =
Γ(n+1

2 )

2π
n+1

2

( n∏

k=1

π
2∫

−π
2

(cos θk)n−k−β−1dθk

)
=

=
Γ(n+1

2 )Γ(−β
2 )

Γ( 1
2 )Γ(n−β

2 )
,

provided that β < 0. The last integral diverges when β ≥ 0. It follows

∥∥Rn−1
2 ,n(f)

∥∥
1,β

≤ Γ(n+1
2 )Γ(−β

2 )

Γ( 1
2 )Γ(n−β

2 )
‖f‖1,β

provided that β < 0.
Since this inequality reduces to equality when f is non negative, the

constant is best possible. In particular when β ≥ 0 the best constant is
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infinite so the spherical average Rn−1
2 ,n is not a bounded operator on L1

β .

This completes the proof in the case α = n−1
2 . When α > n−1

2 we proceed
similarly,

‖Rα,n(f)‖1,β =
∫

Rn

∞∫

0

|Rα,n(f)(r, x)|rβdr dx ≤

≤ Cα,n

∫

Rn

∞∫

0

1∫

0

∫

[−π/2,π/2]n

∣∣f(rsψ(θ), x + rφ(θ))
∣∣×

× ϑ(θ)(1− s2)α−(n+1)/2dθ ds rβdr dx,

where the constant Cα,n, the functions ψ, φ and ϑ are given by relation (2.4)
respectively (2.5).

Interchanging again and making the change of variable

(r, x) −→ (t, y) = (rsψ(θ), x + rφ(θ))

yields

∥∥Rα,n(f)
∥∥

1,β
≤ Cα,n‖f‖1,β

( 1∫

0

s−β−1(1− s2)α−(n+1)/2ds

)
×

×
n∏

k=1

( π/2∫

−π/2

(cos θk)2α−β−kdθk

)
≤ Cα,n‖f‖1,β×

× 1
2

Γ(−β/2)Γ(α− (n− 1)/2)
Γ(α + 1/2− (β + n)/2)

×
n∏

k=1

Γ(α + 1/2− (β + k)/2)Γ(1/2)
Γ(α + 1/2− (β + k − 1)/2)

,

provided β < 0. Once we cancel out the repeated terms on the top and the
bottom we get

‖Rα,n(f)‖1,β ≤
Γ(α + 1)Γ(−β

2 )

Γ( 1
2 )Γ(α + 1

2 − β
2 )
‖f‖1,β .

The “ds” integral above diverges when β ≥ 0.
Since this inequality reduces to equality when f is non negative, the

constant is best possible. In particular when β ≥ 0 the best constant is
infinite so the spherical average Rα,n is not a bounded operator on L1

β .
This completes the proof. ¤

In the following we give the values of β for which the generalized spherical
average is a bounded transform on Lp

β when 1 < p < ∞. We begin by looking
at the case α = n−1

2 .
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Theorem 3.3. Suppose 1 < p < ∞. Then Rn−1
2 ,n is a bounded operator

on Lp
β if and only if β < p − 1. Moreover, if β < p − 1 then the operator

norm is

Γ(n+1
2 )Γ(1

2 − β+1
2p )

Γ( 1
2 )Γ(n+1

2 − β+1
2p )

.

Proof. Suppose that β > p−1 and define the function f by setting f(t, x)=
1
t when (t, x) ∈ (0, 1) × Ω(n,2) and f(t, x) = 0 otherwise. Where Ω(n,2) is
a ball of Rn at center (0, 0) and radius 2. This means that Ω(n,2) = {x ∈
Rn/ ‖x‖ =

( ∑n
k=1 x2

k

) 1
2

< 2 }. Then we have

‖f‖p
p,β =

∫

Ω(n,2)

1∫

0

tβ−pdtdx =
2n+1π

n
2

(β − p + 1)nΓ(n
2 )

< ∞.

So f ∈ Lp
β . On the other hand from identity (2.6) we deduce that if 0 < r < 1

and ‖x‖ < 1 then

Rn−1
2 ,n(f)(r, x) =

∫

Sn

f(rη, x + rξ)dσn(η, ξ) =
∫

Sn

1
r|η|dσn(η, ξ) = ∞.

So Rn−1
2 ,n(f) 6∈ Lp

β . Thus Rn−1
2 ,n is not a map from Lp

β to Lp
β .

When β = p − 1, let f(t, x) = 1
t(1−log t) when (t, x) ∈ (0, 1) × Ω(n,2) and

f(t, x) = 0 otherwise. We have

‖f‖p
p,β =

∫

Ω(n,2)

1∫

0

1
t(1− log t)p

dt dx =
2n+1π

n
2

nΓ(n
2 )

1∫

0

1
t(1− log t)p

dt < ∞

so f ∈ Lp
β . But, if 0 < r < 1 and ‖x‖ < 1 and by relation (2.6) then we have

Rn−1
2 ,n(f)(r, x) =

Γ(n+1
2 )

π
n+1

2

n−1∏

k=1

( π
2∫

−π
2

(cos θk)n−k−1dθk

)
×

×
( π

2∫

−π
2

dθn

cos rθn(1− log(r
∏n

k=1 cos θk)

)
.

This integral is infinite. That is Rn−1
2 ,n(f) 6∈ Lp

β .
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Now, suppose that β < p− 1 and fix f ∈ Lp
β . Let γ be a real constant to

be determined later. Then by Hölder inequality we have

∣∣Rn−1
2 ,n(f)(r, x)

∣∣p ≤
( ∫

Sn

|f(r|η|, x + rξ)|p|η|pγdσn(η, ξ)
)
×

×
( ∫

Sn

|η|−p
′
γdσn(η, ξ)

) p

p
′

= C
p

p
′

1

∫

Sn

∣∣f(r|η|, x + rξ)
∣∣pηpγdσn(η, ξ),

where

C1 =
∫

Sn

|η|−γp
′
dσn(η, ξ). (3.2)

Using this estimate we get

∥∥Rn−1
2 ,n(f)

∥∥p

p,β
≤ C

p

p
′

1

∫

Rn

∞∫

0

∫

Sn

∣∣f(rη, x + rξ)
∣∣p|η|pγdσn(η, ξ)rβdr dx.

Interchanging the order of integration and making the change of variable
t = r|η| and y = x + rξ yields

∥∥Rn−1
2 ,n(f)

∥∥p

p,β
≤ C

p

p
′

1

∫

Sn

ηpγ−β−1
( ∫

Rn

∞∫

0

|f(t, y)|ptβdtdx
)
dσn(η, ξ) =

= C
p

p
′

1 C2‖f‖p
p,β ,

where

C2 =
∫

Sn

|η|pγ−β−1dσn(η, ξ). (3.3)

If there there exists a γ that makes both the integrals (3.2) and (3.3) finite,
then the spherical average Rn−1

2 ,n is a bounded operator on Lp
β .

Studying the integral C1

C1 =
∫

Sn

η−γp
′
dσn(η, ξ) =

Γ(n+1
2 )

π
n+1

2

( 2π∫

0

1
(|sinθn|)p′γ dθn

)
×

×
( n−1∏

k=1

π∫

0

(sin θk)n−k−p′γdθk

)
.
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This integral to be finite requires that −p′γ > −1, furthermore

C1 =
Γ
(

n+1
2

)

π
n+1

2

n∏

k=1

π/2∫

−π/2

(cos θk)(n−k−p′γ+1)−1dθk =

=
Γ
(

n+1
2

)

π
n+1

2

n∏
1

(
Γ
(

n−k−p′γ+1
2

)
Γ(1/2)

Γ
(

n−k−p′γ+2
2

)
)

.

Studying the integral C2. A similar calculus as the above gives that the
integral C2 to be finite requires that pγ − β − 1 > −1. Furthermore

C2 =
Γ
(

n+1
2

)

π
n+1

2

n∏
1

(
Γ
(

n−k+pγ−β
2

)
Γ(1/2)

Γ
(

n−k+pγ−β+1
2

)
)

.

The above conditions for the constant γ requirement that γ ∈ (β
p , 1

p′ ), which
is non-empty interval because we have assumed that β < p− 1.
To obtain a specific upper bound to the operator norm let γ = β + 1/(pp′).
The upper bound obtained is

C
1
p′
1 C

1
p

2 =
Γ
(

n+1
2

)

Γ(1/2)

n∏
1

(Γ
(

n−k+1
2 − β+1

2p

)

Γ
(

n−k+2
2 − β+1

2p

)
)

=
Γ
(

n+1
2

)
Γ
(

1
2 − β+1

2p

)

Γ
(

1
2

)
Γ
(

n+1
2 − β+1

2p

) .

To get a lower bound for the spherical average operator norm, we fix κ a
positive and odd real and a > 1 and fix f by setting f(t, y) = t

κ−β−1
p when

(t, y) ∈ (0, 1)× Ω(n,a) and f(t, y) = 0 otherwise. The norm of f in Lp
βgis

‖f‖p,β =
( ∫

Ω(n,a)

1∫

0

(
t

κ−β−1
p

)p
tβdtdy

)1/p

=
( ∫

Ω(n,a)

( 1∫

0

tκ−1dt

)
dy

)1/p

=

=
(

2πn/2an

nΓ(n/2)κ

)1/p

.
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On the other hand, if 0 < r < 1 and ‖x‖ < a− 1, then for ω = (η, ξ) ∈ Sn,
we have |rη| < |η| < 1 and ‖x + rξ‖ < ‖x‖+ |r| ‖ξ‖ < a− 1 + 1 = a. So

Rn−1
2 ,n(f)(r, x) =

∫

Sn

f(rη, x + rξ)dσn(η, ξ) = r
κ−β−1

p

∫

Sn

t
κ−β−1

p dσn(t, ξ) =

=
Γ
(

n+1
2

)

π
n+1

2

r
κ−β−1

p

n∏

k=1

( π/2∫

−π/2

(cos θ)n−k+ κ−β−1
p dθk

)
=

=
Γ
(

n+1
2

)

π
n+1

2

r
κ−β−1

p

n∏

k=1

(Γ
(

n−k
2 + κ−β−1

2p + 1
2

)
Γ
(

1
2

)

Γ
(

n−k
2 + κ−β−1

2p + 1)

)
=

=
Γ
(

n+1
2

)

Γ
(

1
2

) r
κ−β−1

p

n∏

k=1

(Γ
(

n−k
2 + κ−β−1

2p + 1
2

)

Γ
(

n−k
2 + κ−β−1

2p + 1
)
)

.

It follows that

∥∥Rn−1
2 ,n(f)

∥∥
p,β

≥ Γ(n+1
2 )

Γ
(

1
2

)
n∏

k=1

(
Γ
(

n−k
2 + κ−β−1

2 + 1
2

)

Γ
(

n−k
2 + κ−β−1

2 + 1
)
)
×

×
( ∫

Ω(n,a−1)

1∫

0

(
r

κ−β−1
p

)p
rβdrdx

)1/p

=

=
Γ
(

n+1
2

)

Γ
(

1
2

)
n∏

k=1

(
Γ
(

n−k
2 + κ−β−1

2 + 1
2

)

Γ
(

n−k
2 + κ−β−1

2 + 1
)
)(

2πn/2(a− 1)n

nΓ(n/2)κ

)1/p

.

For each κ and a the ratio
‖Rn−1

2 ,n
(f)‖p,β

‖f‖p,β
is a lower bound for the spherical

average operator norm. Canceling out the repeated terms of the top and
the bottom and Letting a →∞ first and then κ −→ 0 gives the lower bound

Γ
(

n+1
2

)
Γ
(

1
2 − β+1

2p

)

Γ
(

1
2

)
Γ
(

n+1
2 − β+1

2p

)

as required. The upper and lower bounds coincide so the operator norm is
determined. ¤

Theorem 3.4. Suppose 1 < p < ∞, and α > n−1
2 . Then Rα,n is a

bounded operator on Lp
β if and only if β < p − 1. Moreover, if β < p − 1

then the operator norm is

Γ(α + 1)Γ
(

1
2 − β+1

2p

)

Γ
(

1
2

)
Γ
(
α + 1− β+1

2p

) .
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Proof. Suppose that β > p − 1 and define the function f by setting
f(t, y) = 1

t when (t, y) ∈ (0, 1)× Ω(n, 2) and f(t, y) = 0 otherwise,

‖f‖p
p,β =

∫

Rn

∞∫

0

|f(t, y)|ptβdt dy =
∫

Ω(n,2)

( 1∫

0

tβ−pdt

)
dy =

=
( 1∫

0

tβ−pdt

) ∫

Ω(n,2)

dy < ∞

provided β > p−1. So f ∈ Lp
β . On the other hand if 0 < r < 1, and ‖x‖ < 1,

then

Rα,n(f)(r, x) = Cα,n

( 1∫

0

(1− s2)α−n+1
2

1
s
ds

) n∏

k=1

∫

[−π/2,π/2]n

(cos θk)2α−kdθ.

Since the “ds” integral diverges then Rα,n(f) 6∈ Lp
β .

When β = p − 1 a similar argument shows that Rα,n does not map
Lp

β to Lp
β . This time, f(t, y) = 1

t(1−log t) when (t, y) ∈ (0, 1) × Ω(n, 2) and
f(t, y) = 0 otherwise. A similar calculus as above shows that, ‖f‖p,β is
finite and Rα(f) 6∈ Lp

β .

Now suppose β < p − 1 and fix f ∈ Lp
β . Let γk, 1 ≤ k ≤ n, δ and ε be

real constants to be determined later. Clearly,

|Rαf(r, x1, . . . xn)| ≤ Rα|f |(r, x1, . . . xn)

and by Hölder inequality this is no greater then

Cα,n × C
1
p′
1

1∫

0

∫

[−π/2,π/2]n

∣∣∣f(rs cos θ1 . . . cos θn, x1 + r sin θ1, x2+

+r cos θ2 sin θ2, . . . xn + r cos θ1 . . . cos θn−1 sin θn)
∣∣∣
p

×

×
n∏

k=1

(cos θk)pγk(1− s2)pεdθ1 . . . dθnds,

where

C1 =
( 1∫

0

(1− s2)(α−
n+1

2 −ε)p′s−δp′ds

) n∏

k=1

( π
2∫

−π
2

(cos θk)(2α+1−k−γk)p′dθk

)
.
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Using this estimate and by using the adequate change of variables as
above we obtain

‖Rα,n‖p
p,β ≤ (Cα,n)pC

p
p′
1

( 1∫

0

(1− s2)pεspδ−β−1ds

)
×

×
( n∏

k=1

π
2∫

−π
2

(cos θk)pγk−β−1dθk

)
‖f‖p

p,β = (Cα,n)pC
p
p′
1 C2 ‖f‖p

p,β ,

where C2 is the constant defined by

C2 =
( 1∫

0

(1− s2)pεspδ−β−1ds

)
×

( n∏

k=1

π
2∫

−π
2

(cos θk)pγk−β−1dθk

)
.

If there exist γk, δ, and ε that make C1 and C2 finite, then Rα,n is a
bounded operator on Lp

β . The requirements are that

(2α + 1− k − γk)p′, −δp′, (α− n + 1
2

− ε)p′, δp− β − 1, γkp− β − 1, εp

all be greater then −1. These conditions reduce to

γk ∈
(β

p
, 2α + 1− k +

1
p′

)
, δ ∈

(β

p
,

1
p′

)
, ε ∈

(
− 1

p
,−1

p
+ α− n− 1

2

)
.

Since α > n−1
2 , 1 ≤ k ≤ n and β < p − 1 then all three intervals are non

empty so it is possible to choose γk, δ and ε that makes C1 and C2 finite.
Thus Rα,n is a bounded operator on Lp

β .
To obtain a specific upper bound for the operator norm let

γk =
β + (2α− k)p′ + 1

pp′
, δ =

β + 1
pp′

, ε =
α− (n + 1)/2

p
.

Then

C1 = C2 =
( 1∫

0

(1− s2)α−n+1
2 s

−β−1
p ds

)
×

×
( n∏

k=1

π
2∫

−π
2

(cos θk)2α+1−k− β+1
p dθk

)
=

=
Γ
(
α− n−1

2

)
Γ
(

1
2 − β+1

2p

)

2Γ
(
α + 1− n

2 − β+1
2p

) π
n
2

n∏

k=1

Γ
(
α + 1− k

2 − β+1
2p

)

Γ
(
α + 1− k−1

2 − β+1
2p

) .
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Once we cancel out the repeated terms on the top and the bottom, the
upper bound obtained is

Cα,nC
1
p

1 C
1
p′
2 =

Γ(α + 1)Γ
(

1
2 − β+1

2p

)

Γ
(
α + 1− β+1

2p

)
Γ
(

1
2

) .

To get a lower bound for the operator norm we fix η > 0 and a > 1
and define f by setting f(t, y) = t

η−β−1
p where (t, y) ∈ (0, 1) × Ω(n,a) and

f(t, y) = 0 otherwise. The norm of f in Lp
β is

‖f‖p,β =
( ∫

Ω(n,a)

1∫

0

tη−β−1tβdt dy

) 1
p

=
(

2πn/2an

ηnΓ(n/2)

) 1
p

.

On the other hand, if 0 < r < 1 and ‖x‖ < a− 1 then for any s ∈ (0, 1) and
θ ∈ (−π/2, π/2) |rs cos θ1 . . . cos θn| < 1 and if y = x + rξ, ‖y‖ < a. So we
complete the proof in the same way as Theorem 3.3. ¤

In is important to point out the operator norm calculated in the previous
four theorems are all related. We do this in the following summary.

Theorem 3.5. Suppose 1 ≤ p ≤ ∞. and α ≥ n−1
2 . The operator Rα,n is

a bounded operator on Lp
β if and only if β < p− 1. In this case the operator

norm is
Γ(α + 1)Γ

(
1
2 − β+1

2p

)

Γ
(

1
2

)
Γ
(
α + 1− β+1

2p

) .

Earlier work suggest that Lp
2α+1 is a naturel space for the spherical

average operator. In the following we restrict our attention to the case
β = 2α + 1,

Corollary 3.6. Suppose 1 ≤ p ≤ ∞. The generalized spherical average
operator is a bounded map on Lp

2α+1 if and only if 2α + 2 < p. In this case
the operator norm is

Γ(α + 1)Γ
(

1
2 − α+1

p

)

Γ
(

1
2

)
Γ
(

α+1
p′

) .

Remark 3.7. The boundedness of the dual operator tRα,n is obtained by
duality.
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