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ALEXANDER-SPANIER COHOMOLOGY OF A WALLMEN
COMPACTIFICATION

A. BERIDZE

Abstract. The Alexander-Spanier type cohomology groups based
on finite cozero coverings are defined. It is shown that these groups
describe classical Alexander-Spanier cohomology groups of Wallmen
compactifications. It is proved that cohomology groups based on all
proximity coverings and all finite cozero (with respect to proximity
maps) coverings are nonisomorphic proximity invariants.

îâäæñéâ. êŽöîëéöæ àŽêéŽîðâĲñèæŽ ïŽïîñèë çëêñè áŽòŽîãâĲäâ
áŽòñúêâĲñèæ ŽèâóïŽêáâî-ïìâêæâîæï ðæìæï çëßëéëèëàææï þàñòâ-
Ĳæ. êŽøãâêâĲæŽ, îëé âï þàñòâĲæ Žôûâîï ãëèéâêæï çëéìŽóðæòæ-
çŽùææï ŽèâóïŽêáâî-ïìâêæâîæï çèŽïæçñî çëßëéëèëàææï þàñòâĲï.
áŽéðçæùâĲñèæŽ, îëé õãâèŽ çëêñè (éŽýèëĲèñîæ ŽïŽýãâĲæï éæéŽîå)
áŽòŽîãâĲäâ áŽ õãâèŽ éŽýèëĲèñî áŽòŽîãâĲäâ áŽòñúêâĲñèæ çëßë-
éëèëàææï þàñòâĲæ ŽîŽæäëéëîòñèæ æêãŽîæŽêðâĲæŽ.

Introduction

The present paper is motivated by the following general problem: find
the necessary and sufficient conditions under which the spaces of a given
class have extensions with the given (co)homology groups.

This problem was studied by many authors ([1], [2], [3], [5], [11], [12], [13],
[15]). In [2], the Alexander-Spanier cohomology theory is constructed for
the category of pairs of uniform spaces and uniform maps. This theory gives
an intrinsic characterization of the Alexander-Spanier classical cohomology
groups of compactifications of pairs of completely regular spaces in terms
of uniform structures of the given pairs of completely regular spaces.

The main aim of this paper is to study the above formulated problem
when the class of spaces is that of the completely regular spaces, while the
extensions are the Wallmen compactifications.

All the spaces considered in the paper are assumed to be completely
regular and Hausdorff ones.
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ification, Stone-Čech compactification, proximity space, cozero covering, proximity
covering.



12 A. BERIDZE

Throughout the paper, the following notation is used.
The symbol C(X), (C∗(X)), denotes a ring of all continuous (bounded)

functions from a topological space X to the real straight line R [10]. The set
of all (co)zero-sets of X is denoted by Z(X) (CZ(X)), i.e., Z(X) = {F =
f−1(0) | f ∈ C∗(X)} (CZ(X) = {U = X\F |F ∈ Z(X)}) [6]. Let Z(X, Y )
(CZ(X, Y )) be the trace of the system Z(Y ) (CZ(Y )) on the space X, i.e.,
Z(X,Y ) = {F ∩ X |F ∈ Z(Y )} (CZ(X,Y ) = {U ∩ X |U ∈ CZ(Y )}) [6].
For each proximity space T with proximity δ let Zδ(T ) (CZδ(T )) denote
the set of all (co)zero-sets [14].

We denote by βX the Stone-Čech compactification of the space X [18].
The symbols H

∗
(−,−;G), H

∗
f (−,−; G) and

∨
H

∗
f (−,−;G) denote the Ale-

xander-Spanier classical cohomology [16], the finitely defined Alexander-
Spanier cohomology [4] and the Čech cohomology [9], respectively.

Let Top be the category of topological spaces and continuous maps. By
Prox we denote the category of proximity spaces and proximity maps. Let
Top2 and Prox2 denote the category of pairs of topological and proximity
spaces, respectively. Let Y ∈ Top be a topological space and (X,A) be
a pair of subspaces of Y such that A ∈ Z(X, Y ). Then we say that the
pair of topological spaces with respect to Y is a given one and we denote it
by (X, A)Y . A continuous map f : (X1, A1)Y1 −→ (X2, A2)Y2 of two pairs
of this type is called a continuous map f : (X1, A1) −→ (X2, A2) of the
pairs from the category Top2, for which there exists a continuous extension
F : Y1 −→ Y2 of the map f [6].

Let Top2
r be the category whose objects are the pairs (X,A)Y with

respect to Y ∈ Top, and let the morphisms be their continuous maps
f : (X1, A1)Y1 −→ (X2, A2)Y2 .

For each pair (X,A)Y ∈Top2
r we consider the pair (i, j) :AY −→ XY −→

(X, A)Y of the inclusion maps i : AY −→ XY and j : XY −→ (X, A)Y .
Thus the category Top2

r is a c–category [9].
As is known [14], a proximity space is completely regular and generates a

fixed compactification. Moreover, every proximity map of proximity spaces
is a continuous map of completely regular spaces which has a continuous
extension to the corresponding compactification. Therefore the category
Prox2 of pairs of proximity spaces is isomorphically embedded into the cat-
egory Top2

r. Consequently, we consider the category Prox2 as a subcategory
of the category Top2

r .
The idea of defining (co)homology groups for a pair of spaces with respect

to a space by cozero coverings belongs to Professor V. Baladze.
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1. The Alexander-Spanier Cozero Cohomological δ–Functor

Let X be an arbitrary topological space and G be an abelian group. We
will use the cochain complex C∗(X;G) = {Cq(X; G), δ} constructed in [16]
in the manner as follows. Let Cq(X;G) be the abelian group of all functions
ϕ : Xq+1 −→ G of a q + 1-fold product Xq+1 of the topological space X to
G. Here δ : Cq(X;G) −→ Cq+1(X; G) is the coboundary operator defined
by

δ ϕ(x0, . . . , xi, . . . , xq+1) =
q+1∑

i=0

(−1)iϕ(x0, . . . , x̂i, . . . , xq+1),

where the symbol “ x̂i ” means the omission of the coordinate xi.
Let X be a subspace of a topological space Y . The family α = {Ui}n

i=1

is called the CZ(X,Y )–covering of the space X if X =
n∪

i=1
Ui and Ui ∈

CZ(X,Y ), i = 1, . . . , n [6].

Definition 1.1. A function ϕ : Xq+1 −→ G is called a CZ(X, Y )–locally
zero function if there exists a CZ(X, Y )–covering α = {Ui}n

i=1 of the space

X such that ϕ|αq+1 = 0, where αq+1 =
n⋃

i=1

Uq+1
i .

For each integer q ≥ 0, we denote by Cq
Y (X;G) a subset of the group

Cq(X, G) of all CZ(X,Y )–locally zero functions.

Lemma 1.2. For each integer q ≥ 0, Cq
Y (X; G) is a subgroup of the

group Cq(X;G).

Proof. Let ϕ1, ϕ2 ∈ Cq
Y (X;G). Then there exist CZ(X, Y )–coverings α1 =

{Ui}n
i=1 and α2 = {Vj}m

j=1 of the space X such that ϕ1|αq+1
1

= 0 and
ϕ2|αq+1

2
= 0. Let α = α ∧ α2 = {Wij = Ui ∩ Vj}n,m

i,j=1. It is clear that α is a

CZ(X,Y )–covering and αq+1 ⊂ αq+2
1 ∩αq+1

2 . Therefore (ϕ1−ϕ2)|αq+1 = 0,
which implies that ϕ1 − ϕ2 ∈ Cq

Y (X;G). ¤

Lemma 1.3. For each integer q ≥ 0, δ
(
Cq

Y (X; G)
) ⊂ Cq+1

Y (X;G).

Proof. Let ϕ ∈ Cq
Y (X;G). Then there exists a CZ(X, Y )–covering α =

{Ui}n
i=1 of the space X such that ϕ|αq+1 = 0. By the definition of a cobound-

ary operator, we have δϕ|αq+2 = 0 and hence δϕ ∈ Cq+1
Y (X; G). ¤

By Lemmas 1.2 and 1.3 we have that the cochain complex C∗Y (X; G) ={
Cq

Y (X;G), δ
}

is a subcomplex of the complex C∗(X;G) =
{
Cq(X; G), δ

}
.

The q–dimensional cohomology group of the quotient complex C
∗
Y (X;G) =

C∗(X; G)/C∗Y (X; G) we denote by H q
Y (X;G) and call it the Alexander-

Spanier q–dimensional cozero cohomology group of the space X with respect
to Y .
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It is known that a continuous function f : X1 −→ X2 induces a cochain
map f# : C∗(X2; G) −→ C∗(X1;G). By definition,

f#(ϕ)(x0, x1, . . . , xq) = ϕ
(
f(x0), f(x1), . . . , f(xq)

)
, ∀ ϕ ∈ Cq(X2; G).

For each continuous map f : X1Y1 −→ X2Y2 from the category Top2
r the

inverse image f−1(α) =
{
f−1(Ui)

}n

i=1
of the CZ(X2, Y2)–covering α =

{Ui}n
i=1 of the space X2 is the CZ(X1, Y1)–covering of the space X1. The

cochain map f# : C∗(X2; G) −→ C∗(X1;G) satisfies the condition
f#(Cq

Y2
(X2; G) ⊂ Cq

Y1
(X1;G) and therefore induces a cochain map f# :

C
∗
Y2

(X2;G) −→ C
∗
Y1

(X1; G) and a homomorphism f∗ : H
∗
Y2

(X2; G) −→
H
∗
Y1

(X1;G).

Lemma 1.4. For each pair (X,A)Y ∈ Top2
r the inclusion map i : AY −→

XY induces an epimorphism

i# : C
∗
Y (X;G) −→ C

∗
Y (A;G).

Proof. Let ϕ ∈ C q
Y (A; G) and ϕ ∈ ϕ. It is clear that the function ϕ :

Aq+1 −→ G can be extended to the function ψ : Xq+1 −→ G, where

ψ(x0, x1, . . . , xq) =

{
ϕ(x0, x1, . . . , xq) if (x0, x1, . . . , xq) ∈ Aq+1,

0, otherwise.

Consider the equivalent class ψ ∈ C q
Y (X;G) of ψ and show that it does

not depend on the representatives of ϕ. Indeed, let ϕ1, ϕ2 ∈ ϕ be arbitrary
representatives of ϕ. Then there exists a CZ(A, Y )–covering α = {Ui}n

i=1 of
the space A such that ϕ1|αq+1 = ϕ2|αq+1 . By the definition of a CZ(A, Y )–
covering, for each element Ui ∈ α there exists a cozero set Vi ∈ CZ(Y ) such
that Ui = Vi ∩ A. Note that in this case α̃ = {X\A} ∪ {

Ũi = Vi ∩X
}n

i=1
is a CZ(X,Y )–covering of the space X such that ψ1|α̃ q+1 = ψ2|α̃ q+1 and
therefore ψ1 = ψ2. Note that i#(ψ) = ϕ and hence i# is an epimorphism.

¤
For each pair (X, A)Y ∈ Top2

r, we denote the kernel of the cochain
map i# : C

∗
Y (X; G) −→ C

∗
Y (A; G) by the symbol C

∗
Y (X,A; G). The q–

dimensional homology group of the resulting complex is denoted by
H q

Y (X,A; G) and we call it the Alexander-Spanier q–dimensional cozero
cohomology group of the pair (X, A) with respect to Y .

Let f : (X1, A1)Y1 −→ (X2, A2)Y2 be a continuous map of pairs. Then
the homomorphism f# : C

∗
Y2

(X2; G)−→C
∗
Y1

(X1; G) satisfies the condition
f#

(
C
∗
Y2

(X2, A2;G)
) ⊂ C

∗
Y1

(X1, A1;G) and thus induces a homomorphism

f∗ : H
∗
Y2

(X2, A2; G) −→ H
∗
Y1

(X1, A1;G).

Theorem 1.5. H
∗
−(−,−;G) is a δ–functor from the category Top2

r to
the category of the graded abelian group A B.
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Proof. I. It is clear that each identity map id(X,A)Y
: (X,A)Y −→ (X, A)Y

induces the identity cochain map id#

C
∗
Y (X,A;G)

: C
∗
Y (X, A; G) −→

C
∗
Y (X, A; G) and hence the identity homomorphism id∗

H
∗
Y (X,A;G)

:

H
∗
Y (X,A; G) −→ H

∗
Y (X, A; G).

II. Let f1 : (X1, A1)Y1 −→ (X2, A2)Y2 and f2 : (X2, A2)Y2 −→ (X3, A3)Y3

be continuous maps. Consider the cochain maps:

f#
1 : C

∗
Y2

(X2, A2; G) −→ C
∗
Y1

(X1, A1; G),

f#
2 : C

∗
Y3

(X3, A3; G) −→ C
∗
Y2

(X2, A2; G),

(f1 ◦ f2)# : C
∗
Y3

(X3, A3; G) −→ C
∗
Y1

(X1, A1;G).

According to the definition of an induced map, for each integer q ≥ 0, ϕ ∈
C
∗
Y3

(X3, A3; G) and (x0, x1, . . . , xq) ∈ Xq+1
1 we have

(f2 ◦ f1)#(ϕ)(x0, x1, . . . ,xq) =

= ϕ
(
(f2 ◦ f1)(x0), (f2 ◦ f1)(x1), . . . , (f2 ◦ f1)(xq)

)
=

= ϕ
(
f2(f1(x0)), f2(f1(x1)), . . . , f2(f1(xq))

)
;

(f#
1 ◦ f#

2 )(ϕ)(x0, x1, . . . , xq) = f#
1

(
f#
2 (ϕ)(x0, x1, . . . , xq)

)
=

= f#
2 (ϕ)

(
f1(x0), f1(x1), . . . , f1(xq)

)
=

= ϕ
(
f2(f1(x0)), f2(f1)(x1)), . . . , f2(f1)(xq))

)
.

Therefore (f2 ◦ f1)# = f#
1 ◦ f#

2 and hence (f2 ◦ f1)∗ = f∗1 ◦ f∗2 .
III. It is clear that each continuous map f : (X1, A1)Y1 −→ (X2, A2)Y2

induces the following commutative diagram:

0 // C
∗
Y2(X2, A2; G) //

f#

²²

C
∗
Y2(X2; G) //

f#

²²

C
∗
Y2(A2; G) //

f#
|A1

²²

0

0 // C
∗
Y1(X1, A1; G) // C

∗
Y1(X1; G) // C

∗
Y1(A1; G) // 0 .

Thus for each integer q ≥ 0 there exist coboundary operators δq
i : H q

Yi
(Ai; G)

−→ H q+1
Yi

(Xi, Ai; G), i = 1, 2 such that the diagram

H q
Y2

(A2; G)
δ2 //

f∗

²²

H q+1
Y2

(X2, A2; G)

f∗

²²
H q

Y1
(A1; G)

δ2 // H q+1
Y1

(X1, A1; G)

is commutative. ¤
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Note that if for a pair (X, A)Y , CZ(X, Y ) = CZ(X), then the group
H
∗
Y (X,A; G) does not depend on Y , and in this case we use the notation

H
∗
CZ(X,A; G) instead of H

∗
Y (X,A;G).

Let T be a proximity space. Consider T as a topological space with
a topological structure induced by the proximity δ on T . Let δT be the
compactification of T . It is clear that TδT ∈ Top2

r and CZ(T, δT ) = CZδ(T ).
So, the group H

∗
δT (T ; G) depends only on the proximity space T . That is

why we sometimes use the notation H
∗
δ(T ; G) instead of H

∗
δT (T ;G), where

the subscript δ indicates that T is considered as a proximity space.

2. Cohomology of Wallmen Compactification

A family F of closed subsets of a topological space X is called separating
if for each closed set H ⊂ X and each point x 6∈ H there are disjoint sets in
F , one containing H and the other containing x. The family F is called a
ring if it is closed under a finite union and finite intersections. A sequence
{Fi}n

i=1 of the sets in F is called a nest in F if there is a sequences {Hi}n
i=1

such that X\Hi+1 ⊂ Fi+1 ⊂ X\Hi ⊂ Fi for all i = 1, 2, . . . . A family of
closed sets is a nest generated if for each member F of the family F there

is a nest {Fi}n
i=1 in F such that F =

n⋂
i=1

Fi [17].

Let L (X) denote the family of all separating, nest generated intersection
rings on the topological space X. It is known that if F is a separating nor-
mal ring on the space X, then the Wallmen space w(X, F ) of all ultrafilters
on F is the Hausdorff compactification of the space X [17].

In the paper we use the following statements:

1. If F ∈ L (X), then F is precisely the trace on X of all zero-sets in
the Wallmen compactification w(X, F ) [17].

2. If F ∈ L (Y ) and X ⊂ Y , then {F ∩X |F ∈ F} ∈ L (X) [17].
3. For each topological space X, Z(X) ∈ L (X) [17].

Let X be a topological space and A be a family of subspaces. The trace
of the family A on the subspace A of the space X is denoted by AA.

Let F ∈ L (X) and A be a filter on FA. Denote by A X a maximal
subfamily of the family F such that the trace of A X on the subspace A
coincides with the family A .

Lemma 2.1. Let X be a complete regular space, F ∈ L (X), A be a
filter on the family F and A ∈ A , then AA is a filter on FA.

Proof. 1. The subspace A is an element of the filter A , therefore ∅ 6∈ AA.
2. Let A1, A2 ∈ AA, then there exist A′1, A

′
2 ∈ A such that A1 = A′1∩A,

A2 = A′2 ∩ A. The family A is a filter and hence A′1 ∩ A′2 ∈ A . Therefore
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A1 ∩ A2 = (A′1 ∩ A) ∩ (A′2 ∩ A) = (A′1 ∩ A′2) ∩ A, which implies that
A1 ∩A2 ∈ AA;

3. Suppose that for an element A1 ∈ FA there exists A2 ∈ AA such that
A2 ⊂ A1. It is clear that in this case A1 ∈ F and A2 ∈ A . We know that
the family A is a filter and hence A1 ∈ A . On the other hand, A1 = A1∩A
and therefore A1 ∈ AA. ¤

Lemma 2.2. If X is a complete regular space, F ∈ L (X), A ∈ F , and
A is a filter on the family FA, then A X is a filter on the family F .

Proof. 1. We know that ∅ 6∈ A and therefore ∅ 6∈ A X .
2. For each elements A1, A2 ∈ A X there exist elements A′1, A

′
2 ∈ A such

that A′1 = A1 ∩ A and A′2 = A2 ∩ A. The family A is a filter and hence
A′1∩A′2 ∈ A . Note that (A1∩A2)∩A = (A1∩A)∩(A2∩A) = A′1∩A′2 ∈ A
and therefore A1 ∩A2 ∈ A X .

3. Suppose that for an element A1 ∈ F there exists A2 ∈ A X such that
A2 ⊂ A1. Let us show that A1 ∈ A X . Indeed, for the element A2 there
exists A′2 ∈ A such that A′2 = A2 ∩ A. It is clear that A′2 ⊂ A1 ∩ A and
hence A1 ∩A ∈ A . Therefore A1 ∈ A X . ¤

Lemma 2.3. If X is a complete regular space, F ∈ L (X), A is an
ultrafilter on the family F and A ∈ A , then AA is an ultrafilter on the
family FA.

Proof. By Lemma 2.1, AA is a filter. Our goal is to show that AA is an
ultrafilter. Indeed, let A ′ be a filter on the family FA such that AA ⊂ A ′.
Then A ⊂ A

′X . On the other hand, A is an ultrafilter and since by
Lemma 2.2 A

′X is a filter, we have A = A
′X , from which it follows that

AA = A ′. ¤

Lemma 2.4. If X is a complete regular space, F ∈ L (X), A ∈ F , A is
an ultrafilter on the family FA, then A X is an ultrafilter on the family F .

Proof. By Lemma 2.2, A X is a filter. Let A ′ be a filter on the family
F such that A ⊂ A ′. Then A ⊂ A ′

A. On the other hand, A is an
ultrafilter and since by Lemma 2.1 A ′

A ia a filter, we have A = A ′
A and

hence A X = A ′. ¤

Let X be a complete regular space, F ∈ L (X), and A be a subspace
of the space X. Denote by A w the closure of the subspace A in the space
w(F ). Let OwA = w(F )\X\A w

. If A ∈ F and U = X\A, then the
sets {A ∈ w(F ) |A ∈ A } and {A ∈ w(F )|X\U 6∈ A } are denoted by
A∗ and U∗, respectively. Note that if B(X) = {U = X\A |A ∈ F}, then
B∗(X) = {U∗ |U ∈ B(X)} is the basis of the space w(F ).
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Lemma 2.5. If X is a complete regular space, F ∈ L (X), A ∈ F ,
then w(FA) is homeomorphic to the closure A w of the subspace A in the
space w(F ).

Proof. Let a function f : w(FA) −→ w(F ) be given by the formula f(A ) =
A X , ∀A ∈ w(FA). Let us show that f is an injunction. Indeed, let
A1 6= A2, then there exist elements A1, A2 ∈ FA such that A1 ∈ A1,
A2 ∈ A2, and A1 ∩ A2 = ∅. It is easy to show that A1 ∈ A X

1 , A2 ∈ A X
2

and that is why A X
1 6= A X

2 . Thus we obtain f(A1) 6= f(A2).
Let us show that A w = f(w(FA)):
1) A ∈ A w ⇒ A ∈ A , A ∈ w(F ) ⇒ A ∈ AA, AA ∈ w(FA) ⇒

(AA)X = A ⇒ f(AA) = A ⇒ A ∈ f(w(FA));
2) A X ∈ f(w(AA)) ⇒ ∃A ∈ w(FA), f(A ) = A X ⇒ A ∈ A X (because

A ∈ F and A ∈ A ) ⇒ A X ∈ A w.
Thus it remains to show that the function f : w(FA) −→ w(F ) is an

open one. Indeed, let B∗(A) = {U∗ |A\U ∈ FA} be the basis of the space
w(FA) and let us show that f(U∗) is an open subspace of the space A w.
We actually have f(U∗) = U ′

∗ ∩A w, where U ′ = X\(A\U). Indeed:
1) f(A ) = A X ∈ f(U∗) ⇒ A ∈ U∗ ⇒ A ∈ {A ∈ w(FA) |A\U 6∈ A }

⇒ A\U 6∈ A ⇒ A\U 6∈ A X (because A ∈ F , A\U ∈ FA ⇒ A\U ∈ F )
⇒ A X ∈ {A ∈ w(F ) |A\U 6∈ A } ⇒ A X ∈ {A ∈ w(F ) |X\U ′ 6∈ A } ⇒
A X ∈ U ′

∗ ⇒ A X ∈ U ′
∗ ∩A w.

2) A ′ ∈ U ′
∗ ∩ A w ⇒ ∃ A ∈ w(FA) (because A w = f(w(FA)), f(A ) =

A X = A ′ ∈ U ′
∗ ∩ A w ⇒ A X ∈ {A ∈ w(F ) |X\U ′ 6∈ A } ⇒ X\U ′ 6∈ A X

⇒ A\U 66∈ A ⇒ A ∈ {A ∈ w(FA) |A\U 6∈ A } ⇒ A ∈ U∗ ⇒ f(A ) =
A X = A ′ ∈ f(U∗). ¤

Lemma 2.6. Let X be a complete regular space, F ∈ L (X) and Ai ∈
F , i = 1, 2, . . . , n, then

n⋂
i=1

Ai

w

=
n⋂

i=1

Ai

w

.

Proof. It is clear that
n⋂

i=1

Ai

w

⊂
n⋂

i=1

Ai

w

. Let us show that
n⋂

i=1

Ai

w

⊂
n⋂

i=1

Ai

w

. Indeed, let A ∈
n⋂

i=1

Ai

w

, then Ai ∈ A for all i = 1, 2, . . . , n. Since

A is an ultrafilter, we have
n⋂

i=1

Ai ∈ A , which means that A ∈
n⋂

i=1

Ai

w

. ¤

Lemma 2.6 and the equation CZ(X, w(F )) = {U = X\A |A ∈ F} give
rise to

Corollary 2.7. For any elements U1, U2 ∈ CZ(X,w(F )) we have
Ow(U1 ∪ U2) = OwU1 ∪OwU2.
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Let X be a complete regular space, F ∈ L (X) and A ∈ F . Suppose
(w(F ), w(FA)) is the compactificacion of the pair (X, A) and i : (X, A)w(F)

−→ (w(F ), w(FA))w(F) is the inclusion map. Thus we obtain the map

i−1 : CovCZ
w(F)(w(F ), w(FA)) −→ CovCZ

w(F)(X,A).

Lemma 2.8. Let X be a complete regular space, F ∈ L (X) and A ∈ F ,
then the image of the map i−1 : CovCZ

w(F)(w(F ), w(FA))−→CovCZ
w(F)(X,A)

is a cofinite subspace of the direct set CovCZ
w(F)(X,A).

Proof. Suppose (α, α′) ∈ CovCZ
w(F)(X,A) is a CZ(X,w(F ))–covering. Let

β = {OwUα |Uα ∈ α} and β′ = {OwUα′ |U ′
α ∈ α′}. By Corollary 2.7, (β, β′)

is a finite covering of the pair (w(F ), w(FA)). Since (w(F ), w(FA)) is a
pair of compact spaces, there exists a CZ(w(F ), w(F ))–covering (µ, µ′) ∈
CovCZ

w(F)(w(F ), w(FA)) such that (µ, µ′)≥(β, β′) and therefore i−1(µ, µ′) ≥
(α, α′). ¤

Let (α, α′) be a covering of the pair (X, A). Denote by (X(α), A(α′)) the
pair of simplicial complexes defined as follows: X(α) = {s = {s0, s1, . . . , sn}
⊂ X |n ∈ N, ∃ Uα ∈ α, s ⊂ Uα}, A(α′) = {s ∈ X(α) | ∃ Uα ∈ α′, s ⊂
Uα ∩A}. Let C(α, α′;G) be the cochain complex of the pair (X(α), A(α′)).
For each pair (X, A)Y ∈ Top2

r consider the direct set CovCZ
Y (X,A) and the

corresponding limit complex

lim→
(α,α′)∈CovCZ

Y (X,A)

C(α, α′;G).

Lemma 2.9. For each pair (X,A)Y ∈ Top2
r there is an isomorphism

τ̃ : C q
Y (X,A; G) ≈ lim→

(α,α′)∈CovCZ
Y (X,A)

Cq(α, α′;G).

Proof. Let Cq
Y (X, A;G) be a subgroup of the group Cq(X;G) of all

ϕ : Xq+1 → G functions such that ϕ|Aq+1 : Aq+1 → G is a CZ(A;Y )–locally
zero function. It is clear that C∗Y (X, A; G) = {C∗Y (X, A;G), δ} is a subcom-
plex of the complex C∗(X; G) and there is an isomorphism C ∗

Y (X,A;G) ≈
C∗Y (X, A; G)/C∗Y (X; G).

For each element ϕ ∈ Cq
Y (X, A; G) there exists a CZ(A, Y )–covering

α′′ = {Uα′1 , Uα′2 , . . . , Uα′n} of the subspace A such that ϕ|(α′′)q+1 = 0. The
covering α′′ is a CZ(A, Y )–covering, therefore for each U ′′

αi
∈ α′′ there

exists a cozero subspace U ′
αi
∈ CZ(X, Y ) such that U ′

αi
∩ A = U ′′

αi
. Let

α′ = {U ′
αi
} and α = α′∪{X\A}, then it is clear that (α, α′) ∈ CovCZ

Y (X,A)
and therefore ϕα = ϕ|αq+1 ∈ Cq(α, α′; G). Suppose that the map

τ : Cq
Y (X, A;G) −→ lim→

(α,α′)∈CovCZ
Y (X,A)

Cq(α, α′;G)
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is defined by the formula

τ(ϕ) = πα(ϕα), ∀ ϕ ∈ Cq
Y (X, A; G),

where πα : Cq(α, α′; G) −→ lim→
(α,α′)∈CovCZ

Y (X,A)

Cq(α, α′; G) is a natural pro-

jection.
Now we are to show that the map τ induces the isomorphism

τ̃ : C q
Y (X,A; G) ≈ lim→

(α,α′)∈CovCZ
Y (X,A)

Cq(α, α′;G).

To verify this fact it suffices to show that τ is a surjection and Ker τ =
Cq

Y (X;G). Indeed, for each element ϕ ∈ lim→
(α,α′)∈CovCZ

Y (X,A)

Cq(α, α′; G) there

exists (a, a′) ∈ CovCZ
Y (X, A) such that ϕα ∈ Cq(α, α′; G) and πα(ϕα) = ϕ.

Define the map ϕ : Xq+1 −→ G by the formula

ϕ(x0, x1, . . . , xn)=

{
ϕα(x0, x1, . . . , xn), ∀ x0, x1, . . . , xn ∈ Uα, Uα ∈ α,

0, otherwise.

Then ϕ|(α′)q+1∩Aq+1 = 0, ϕα =ϕ|αq+1 . Thus ϕ∈CCZ
Y (X, A;G) and τ(ϕ)=ϕ.

It remains to show that Ker τ = Cq
Y (X;G). Let ϕ ∈ Cq

Y (X;G), then,
by the definition, we have τ(ϕ) = 0 and therefore ϕ ∈ Ker τ . On the
other hand, if ϕ ∈ Ker τ , then there exists (α, α′) ∈ CovCZ

Y (X, A) such
that τ(ϕ) = πα(ϕα) = 0. In this case there exists (β, β′) ∈ CovCZ

Y (X,A)
such that (α, α′) < (β, β′) and παβ(ϕα) = ϕ|βq+1 = 0. Therefore ϕ ∈
Cq

Y (X;G). ¤
Theorem 2.10. Let X be a complete regular space, F ∈ L (X) and

A ∈ F , then

H q
w(F)(X,A; G) ≈ H q

(
w(F ), w(FA); G

)
.

Proof. Let (α, α′) ∈ CovCZ
w(F)(X,A). Consider the pairs (X,A) and (α, α′)

as the pairs of sets. Define the pair of relations (R,R′) in the following
manner:

(x,Uα) ∈ R if and only if x ∈ X, Uα ∈ α and x ∈ Uα.
(x,Uα) ∈ R′ if and only if x ∈ A, Uα ∈ α′ and x ∈ Uα.

Following [7], the pair (R,R′) defines the pairs of the simplicial complexes
(X(α), A(α′)) and (Xα, Aα′) and these complexes have isomorphic coho-
mology groups, where (Xα, Aα′) is the nerve of the covering (α, α′). On the
other hand, if (β, β′) ∈ CovCZ

w(F)(w(F ), w(FA)) and (α, α′) = i−1(β, β′) ∈
CovCZ

w(F)(X, A), then (w(F )β , w(FA)β′) ≈ (Xα, Aα′). By virtue of the
above facts and Lemmas 2.8 and 2.9, we obtain

H q
(
w(F ), w(FA); G

) ≈ lim→
(β,β′)∈CovCZ

w(F)(w(F),w(FA))

Hq(C∗(β, β′; G)) ≈
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≈ lim→
(β,β′)∈CovCZ

w(F)(w(F),w(FA))

Hq(C∗(w(F )β , w(FA)β′ ; G) ≈

≈ lim→
(α,α′)∈CovCZ

w(F)(X,A)

Hq(C∗(Xα, Aα′ ; G)) ≈

≈ lim→
(α,α′)∈CovCZ

w(F)(X,A)

Hq(C∗(α, α′; G)) ≈ H q
w(F)(X,A;G). ¤

Corollary 2.11. Let A be a completely closed subspace of a completely
regular space X, then

H
∗
CZ(X,A; G) ≈ H

∗
(βX, βA; G).

Corollary 2.12. Let A be a closed subspace of a normal space X, then

H
∗
CZ(X, A; G) ≈ H

∗
f (X, A; G) ≈ H

∗
(βX, βA; G).

3. Application of the Cozero Cohomology

Let T be a proximity space whose corresponding proximity is δ. It is
clear that the proximity δ precisely defines the extension (compactification)
δT . If we consider T as a completely regular space induced by δ, then δT is
the compactification of the topological space T . Let Covδ(T ) be the direct
set of all proximity coverings of the proximity space T and let Covδ

CZ(T ) be
the direct set of all finite cozero (with respect to proximity maps) coverings
of the proximity space. There arise the following questions:

1. How can the proximity space T be described by the direct sets Covδ(T )
and Covδ

CZ(T )?
2. Do the direct sets Covδ(T ) and Covδ

CZ(T ) generate the same coho-
mology or other proximity invariants?

Below we will prove the theorem that provides answers to the above
questions.

Let h
∗
δ(−; G) be an Alexander-Spanier type cohomology defined by the

direct set Covδ(T ) [2]. It is clear that then we obtain an isomorphism
h
∗
δ(T ; G) ≈ H

∗
(δT ; G). Note that an Alexander-Spaniers type cohomology

defined by the direct set Covδ
CZ(T ) is precisely the H

∗
δT(T ; G), where T is

considered as a topological space and δT as its compactification.

Theorem 3.1. For a proximity space T the groups h
∗
δ(T ; G) and

H
∗
δT (T ; G) are not isomorphic in general.

Proof. To prove the theorem it suffices to find at least one proximity space
T such that h

∗
δ(T ; G) 6= H

∗
δT (T ; G).

Let R be the real line. Consider R with the corresponding maximal
β and minimal α proximity. It is clear that the proximity β gives the
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Stone-Čech compactification and the proximity α gives a one-point com-
pactification. According to [8], the group H 1(βR; Z) 6= Z and therefore
H 1(βR;Z) 6= H 1(αR; Z). Thus we obtain that h 1

β(R;Z) 6= h 1
α(R; Z).

Since the topological space R is a Lindeloff space, by virtue of [17] we have
CZ(R, βR) = CZ(R, αR) and therefore Covβ

CZ(R) = Covα
CZ(R), which

implies H
∗
βR(R; Z) ≈ H

∗
αR(R;Z). On the other hand, H

∗
CZ(R;Z) =

H
∗
βR(R;Z) ≈ H

∗
(βR;Z) and thus

H
∗
αR(R;Z) ≈ H

∗
βR(R;Z) ≈ h

∗
β(R; G) 6= h

∗
α(R;G). ¤

Corollary 3.2. For a proximity space T the direct sets Covδ(T ) and
Covδ

CZ(T ) does not generate the same cohomology invariants in general.
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Gen. Tpology Appl. 9 (1978), 1–8.

14. Yu. M. Smirnov, On proximity spaces. (Russian) Mat. Sbornik N. S. 31(73) (1952),
543–574.



ALEXANDER-SPANIER COHOMOLOGY 23

15. Yu. M. Smirnov, On the dimention of remainders of bicompact extentions of prox-
imity space and topological spaces. Mat. Sb. 69 (1966), 141–160.

16. E. Spanier, Algebraic Topology. McGraw-Hill, New-York, 1966.
17. A. K. Steiner and E. F. Steiner, Nest generated intersection rings in Tychonoff spaces.

Trans. Amer. Math. Soc. 148 (1970), 589–601.
18. R. C. Walker, The Stone-Cech compactification. Ergebnisse der Mathematik und

ihrer Grenzgebiete, Band 83. Springer-Verlag, New York-Berlin, 1974.

(Received 15.08.2008)

Author’s address:

Department of Mathematics of
Shota Rustavely State University
35, Ninoshvili St., Batumi 6010
Georgia


