
Proceedings of A. Razmadze
Mathematical Institute
Vol. 151 (2009), 1–9

ON THE SEPARABLE DOUBLE HAAR WAVELET

A. AMBROLADZE, V. BUGADZE AND H. WALLIN

Abstract. A property of double Haar wavelet coefficients of com-
posite functions is established.

îâäæñéâ. áŽáàâêæèæŽ òñêóùæŽåŽ çëéìëäæùææï ßŽŽîæï ëîþâîŽáæ
àŽêùŽèâĲŽáæ ãâæãèâðæï éæéŽîå òñîæâï çëâòæùæâêðâĲæï âîåæ åãæ-
ïâĲŽ.

1. Introduction

One of the classes of orthonormal systems of functions well adapted to
image analysis is the class of “separable” wavelets which are formed in the
following way (cf. [4, p. 108])

Let ϕ be a scaling function of some multiresolution analysis (in L2(R))
and ψ be the corresponding wavelet. If we define functions h1, h2 and h3

as follows
h1(x, y) = ϕ(x)ψ(y),

h2(x, y) = ψ(x)ϕ(y), x, y ∈ R,

h1(x, y) = ψ(x)ψ(y),

(1)

then the family

hi,j
k,l(x, y) = 2jhi(2jx− k, 2jy − l), i = 1, 2, 3, j, k ∈ Z, (2)

is an orthonormnal basis in L2(R2),
If the functions ϕ and ψ have compact supports then the supports of

functions from the family (2) are well localized which causes good applica-
bility of such system to image analysis.

The Haar wavelet (see definition in Section 2) has the shortest support
among all orthonormal on R wavelets. Here we consider the system (2)
formed by the Haar scaling function ϕ and Haar wavelet ψ and investigate
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Fourier expansions of functions f ∈ L2(R2) with respect to the system
∞∑

j,k,l=−∞

3∑

i=1

〈 f, hi,j
k,l 〉 hi,j

k,l , (3)

where

〈 f, hi,j
k,l 〉 =

∫

R2

f(x, y)hi,j
k,l(x, y) dx dy, i = 1, 2, 3, j, k, l ∈ Z.

The series (3) converges in L2-norm to f and
∞∑

j,k,l=−∞

3∑

i=1

∣∣∣〈 f, hi,j
k,l 〉

∣∣∣
2

= ‖f‖2L2

because of completeness of the system.
For 0 < q < 2 convergence of the series

∞∑

j,k,l=−∞

3∑

i=1

∣∣∣〈 f, hi,j
k,l 〉

∣∣∣
q

(4)

means that large coefficients are not too many and the system is “well
adapted” to the function f . The sum in (4) is an example of a so called
“information cost function” (see [3, p. 400]).

We represent an image as a function from L2(R2).
In many cases images obtained by various devices are distorted in the

space variable. The problem we investigate gives, in particular, the answer
to the following question: If the above (“separable” Haar) basis is well
adapted to a function will it be well adapted to the deformated function as
well?

The results of this paper are formulated in Theorem 2.3 and Theorem
2.4 at the end of Section 2. These results were announced in [1].

One-dimensional distortion in time of signals is considered in [2].

2. Definitions and Results

The Haar scaling function and the Haal wavelet ψ arc defined on the real
line R as follows (cf. [4, p. 73])

ϕ(x) =

{
1, x ∈ [0, 1),
0, x ∈ R \ [0, 1),

(5)

ψ(x) =





1, x ∈ [
0, 1

2

)
,

−1, x ∈ [
1
2 , 1

)
,

0, x ∈ R \ [0, 1).
(6)

For these functions (1) and (2) give an orthonormal basis in L2(R2).



ON THE SEPARABLE DOUBLE HAAR WAVELET 3

Let

∆1,j
k,l =

[
k · 2−j , (2k + 1)2−j−1

)× [
l · 2−j , (2l + 1)2−j−1

)
,

∆2,j
k,l =

[
(2k + 1)2−j−1, (k + 1)2−j

)× [
l · 2−j , (2l + 1)2−j−1

)
,

∆3,j
k,l =

[
(2k + 1)2−j−1, (k + 1)2−j

)× [
(2l + 1)2−j−1, (l + 1)2−j

)
,

∆4,j
k,l =

[
k · 2−j , (2k + 1)2−j−1

)× [
(2l + 1)2−j−1, (l + 1)2−j

)
,

∆j
k,l =

4⋃

i=1

∆i,j
k,l, j, k, l ∈ Z,

(7)

where “×” stands for the cartesian product of the intervals. We say that j
is the rank of the square ∆j

k,l.
For j, k, l ∈ Z we have (see (1), (2), (5), (6), (7))

h1,j
k,l (x, y) =





2j , (x, y) ∈ ∆1,j
k,l ∪∆2,j

k,l ,

−2j , (x, y) ∈ ∆3,j
k,l ∪∆4,j

k,l ,

0, (x, y) ∈ R2 \∆j
k,l,

(8)

h2,j
k,l (x, y) =





2j , (x, y) ∈ ∆1,j
k,l ∪∆4,j

k,l ,

−2j , (x, y) ∈ ∆2,j
k,l ∪∆3,j

k,l ,

0, (x, y) ∈ R2 \∆j
k,l,

(9)

h3,j
k,l (x, y) =





2j , (x, y) ∈ ∆1,j
k,l ∪∆3,j

k,l ,

−2j , (x, y) ∈ ∆2,j
k,l ∪∆4,j

k,l ,

0, (x, y) ∈ R2 \∆j
k,l.

(10)

It follows that
∫

∆j
k,l

hi,j
k,l(x, y) dx dy = 0, i = 1, 2, 3, j, k, l ∈ Z. (11)

For a function ∈ L2(R2) we introduce the wavelet coefficients

〈 f, hi,j
k,l 〉 =

∫

R2

f(x, y)hi,j
k,l(x, y) dx dy, i = 1, 2, 3, j, k, l ∈ Z.

The Fourier expansion of f with respect to the system has the form

∞∑

j,k,l=−∞

3∑

i=1

〈 f, hi,j
k,l 〉 hi,j

k,l.
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For q > 0 let Aq be the class of all functions f ∈ L2(R2) such that

‖f‖Aq :=
{ ∞∑

j,k,l=−∞

3∑

i=1

∣∣∣〈 f, hi,j
k,l 〉

∣∣∣
q
} 1

q

< ∞.

We denote by d(x; y) Euclidian distance between points x, y ∈ R2.
For a set B ⊂ R2 we introduce

diam B = sup
x,y∈B

d(x; y).

For a measurable set B ⊂ R2 we denote by µ(B) the Lebesque measure
of B.

By Λ(γ) we denote the length of a rectifiable curve γ ⊂ R2.
By LipD 1, where D > 0, we denote the class of functions τ : R2 → R2

satisfying the condition d(τ(x); τ(y)) ≤ Dd(x; y) for all x, y ∈ R2, and by
Lip 1 – the class

⋃
D>0

LipD 1.

We shall use the following lemma

Lemma 2.1. If τ ∈ LipD 1, D > 0, then for every measurable set B ⊂ R2

the image τ(B) is also measurable and µ(τ(B)) ≤ D2µ(B).

A homeomorphism of R2 is a one-to-one continuous mapping of R2 onto
itself.

The fact that f ◦ τ ∈ L2(R2) if f ∈ L2(R2) and τ is a homeomorphism of
R2 with the inverse function τ−1 ∈ Lip 1 follows from the following lemma,
which can be proved using Lemma 1 and the definition of Lebesgue integral.

Lemma 2.2. If τ is a homeomorphism of the plane R2 with τ−1 ∈
LipD 1, then

‖f ◦ τ‖Lp ≤ D
2
p ‖f‖Lp , 1 ≤ p < ∞.

We now formulate our results

Theorem 2.3. Let τ be a homeomorphism of the plane R2 such that
τ−1 ∈ LipD 1. Then, for every function f ∈ A1 and every q > 1, the
composite function f ◦ τ belongs to Aq and

‖f ◦ τ‖Aq ≤ C(D; q)‖f‖A1 ,

where

C(D; q) =
(

3(5D)q

2q − 1
+

9(8D)q

2q−1 − 1

) 1
q

.

Theorem 2.4. There exists a function f ∈ A1 and a homeomorphism τ
of the plane R2 with τ−1 ∈ Lip 1 such that f ◦ τ /∈ A1.
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3. Proofs

3.1. Proof of Lemma 2.1. It is easy to prove the inequality if B is a
circle.

It is easy also to prove that τ maps any set of measure zero onto a set of
measure zero.

An arbitrary open set B can be presented as a disjoint union of a set
of measure zero and an union of a family of pairwise disjoint open circles.
Therefore, the lemma is true for open sets also.

An arbitrary measurable set B can be approximated (in measure) by an
open set C ⊃ B. It is easy to prove that the τ image of difference C \B will
be also of little measure if the measure of C \B is little (because C \B can
be covered by an union of circles of little total sum of measures). Therefore,
it is easy to see that the lemma is true for arbitrary measurable sets.

The lemma is proved.

3.2. Proof of Theorem 2.3. Let τ be any homeomorphism of R2 with
τ−1 ∈ LipD 1, D > 0, and let f ∈ A1. First we suppose

‖f‖A1 = 1. (12)

We have

f =
∞∑

j,k,l=−∞

3∑

i=1

〈 f, hi,j
k,l 〉 hi,j

k,l (13)

in the sense of convergence in L2-norm.
It follows from (13) and Lemma 2.2 that

f ◦ τ =
∞∑

j,k,l=−∞

3∑

i=1

〈 f, hi,j
k,l 〉 hi,j

k,l ◦ τ (14)

in the same sense. For the coefficients of f ◦ τ , we shall have (see (14))

〈 f ◦ τ, hm,n
p,r 〉 =

∞∑

j,k,l=−∞

3∑

i=1

〈 f, hi,j
k,l 〉 · 〈hi,j

k,l ◦ τ, hm,n
p,r 〉.

From this representation and (12) bv Jensen’s inequality

∣∣〈 f ◦ τ, hm,n
p,r 〉∣∣q =

∞∑

j,k,l=−∞

3∑

i=1

∣∣∣〈 f, hi,j
k,l 〉

∣∣∣ ·
∣∣∣〈hi,j

k,l ◦ τ, hm,n
p,r 〉

∣∣∣
q

,

m = 1, 2, 3, n, p, r ∈ Z.

Therefore

‖f ◦ τ‖q
Aq

=
∞∑

j,k,l=−∞

3∑

i=1

∣∣∣〈 f, hi,j
k,l 〉

∣∣∣ ·
∥∥∥hi,j

k,l ◦ τ
∥∥∥

q

Aq

. (15)
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Let j, k, l ∈ Z and 1 ≤ i ≤ 3. We estimate ‖hi,j
k,l ◦ τ‖Aq

.
We denote by Φj

k,l the boundary of τ−1(∆j
k.l). It is equal to the τ−1-

image of the boundary of ∆j
k,l. By Ej

k,l and F j
k,l we denote the intervals

{
(2k + 1)2−j−1

}× [
l · 2−j , (l + 1)2−j

)

and [
k · 2−j , (k + 1)2−j−1

)× {
(2l + 1)2−j−1

}
,

crossing ∆j
k,l in the middle.

Let
Γj

k,l = Φj
k,l

⋃
τ−1(Ej

k,l)
⋃

τ−1(F j
k,l). (16)

It is easy to prove that if a mapping ω of the plane R2 into itself is in LipD 1
and γ is a rectifiable curve then the image ω(γ) also is rectifiable curve and
Λ(ω(γ)) ≤ DΛ(γ). Therefore, Φj

k,l, τ−1(Ej
k,l), τ−1(F j

k,l) are rectifiable and

Λ(τ−1(Ej
k,l)) ≤ D 2−j , Λ(τ−1(F j

k,l)) ≤ D 2−j , (17)

Λ(Φj
k,l) ≤ D 2−j+2. (18)

Let s = s(j, k, l) be an integer such that

2−s−1 ≤ Λ(Φj
k,l) < 2−s. (19)

By (18) and (19) we have

2−s ≤ D 2−j+3. (20)

It follows from (19) that

diam Φj
k,l ≤ 2−s−1. (21)

But diam Φj
k,l(∆

j
k,l) = diam τ−1(∆j

k,l). Because of geometrical argument
and (21) this gives

µ(τ−1(∆j
k,l)) ≤ 1, 25 · 2−2s−2. (22)

First we consider the case n ≤ s. Because of (21) the number of all squares
∆n

p,r which intersect τ−1(∆j
k,l) are at most 4: We can choose pairs of integers

pu = pu(j, k, l), ru = ru(j, k, l) such that

τ−1(∆j
k,l) ⊂

4⋃
u=1

∆n
pu,ru

.

Therefore (see (20), (22))
∞∑

p,r=−∞

∣∣∣〈hi,j
k,l ◦ τ, hm,n

p,r 〉
∣∣∣ =

4∑
u=1

∣∣∣〈hi,j
k,l ◦ τ, hm,n

pu,ru
〉
∣∣∣
q
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≤ 2(n+j)q
4∑

u=1

(
µ

(
∆n

pu,ru

⋂
τ−1(∆j

k,l)
))q

≤ 2(n+j)q
(
µ(τ−1(∆j

k,l))
)q

≤ 2(n+j)q · (1, 25)q · 2q(−2s−2) ≤ (1, 25)q · 2−2q(8 ·D · 2n−s)q

= (2, 5D)q 2nq

2sq
, 1 ≤ m ≤ 3.

Hence
s∑

n=−∞

∞∑
p,r=−∞

3∑
m=1

∣∣∣〈hi,j
k,l ◦ τ, hm,n

p,r 〉
∣∣∣ ≤ 3(5D)q

2q − 1
. (23)

Now we consider the case n > s. If a support of a function hm,n
p,r , 1 ≤ m ≤

3, n, p, r ∈ Z, does not intersect the set Γj
k,l, then the corresponding wavelet

coefficient is equal to zero because of (11), since hi,j
k,l ◦ τ is constant on the

support of hm,n
p,r . So, it remains to estimate the coefficients corresponding

to those squares of rank n which intersect Γj
k.l. It is easy to check that each

of them is less than 2−j−n (see (7)–(10)).
It is easy to prove that if K is a rectifiable curve, then the number of all

dyadic squares of rank v, v ∈ Z, intersecting the curve is at most 4 ·Λ(K)2v.
Hence, the number of all dyadic squares of rank n, intersecting Γj

k.l is at
most 24 ·D · 2n−j (see (16), (17), (18)).

Thus (see, also, (20))
∞∑

n=s+1

∞∑
p,r=−∞

3∑
m=1

∣∣∣〈hi,j
k,l ◦ τ, hm,n

p,r 〉
∣∣∣
q

≤ 3 · 24 ·D ·
∞∑

n=s+1

2n−j(2j−n)q = 72 ·D · 2j(q−1)
∞∑

n=s+1

2−n(q−1)

=
72 ·D · 2j(q−1)

2s(q−1)(2q−1 − 1)
≤ 9(8D)q

2q−1 − 1
. (24)

If we denote

C(D; q) :=
(

3(5D)q

2q − 1
+

9(8D)q

2q−1 − 1

) 1
q

,

then by (12), (15), (23) and (24) we have

‖f · τ‖Aq ≤ C(D; q). (25)

For arbitrary f ∈ A1 with ‖f‖A1 6= 0 (for f = 0 assertion of the theorem
is obvious) we consider the function f1 = f

‖f‖A1
. We have ‖f1‖A1 = 1 and

〈 f1 ◦ τ, hi,j
k,l 〉 =

〈 f ◦ τ, hi,j
k,l 〉

‖f‖A1

, 1 ≤ i ≤ 3, j, k, l ∈ Z.
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Consequently (see (25))

‖f ◦ τ‖Aq = ‖f1 ◦ τ‖Aq · ‖f‖A1 ≤ C(D; q) · ‖f‖A1 .

The theorem is proved.

3.3. Proof of Theorem 2.4. Let

f(x, y) =

{
1, x ∈ [0, 1)2,
0, x ∈ R2 \ [0, 1)2,

and

τ(x, y) =
1√
5

(2x + y,−x + 2y), (x, y) ∈ R2.

It is obvious, that for f we have to estimate only those coefficients sup-
ports of corresponding functions of which intersect the square [0, 1)2. These
supports are squares ∆j

k,l which contain [0, 1)2 or are contained in [0, 1)2.
First are with j < 0 and k, l = 0, second – with j ≥ 0 and 0 ≤ k, l < 2j .

It is easy to check that if j < 0, k, l = 0, then

aj
k,l(f) = bj

k,l(f) = cj
k,l(f) =

√
2j ,

and if j ≥ 0, 0 ≤ k, l < 2j , then

aj
k,l(f) = bj

k,l(f) = cj
k,l(f) = 0.

So f ∈ A1.
Let us now consider the composite function f ◦ τ :

f(τ(x, y)) =

{
1, x, y ∈ τ−1([0, 1)2),
0, x, y ∈ R2 \ τ−1([0, 1)2).

The set τ−1([0, 1)2) is the unit square with vertexes at points (0, 0),(
2√
5
, 1√

5

)
,
(

1√
5
, 3√

5

)
and

(
− 1√

5
, 2√

5

)
.

If j ≥ 2, 0 ≤ l ≤ 2j−2 − 1, k = 2l, then it can be easily calculated that
cj
2l,l(f ◦ τ) = 2−j−3. Consequently

∞∑

j=2

2j−2−1∑

l=0

|cj
2l,l(f ◦ τ)| =

∞∑

j=2

2−5 = ∞.

Thus f ◦ τ /∈ A1.
The theorem is proved.
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