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ON THE APPROXIMATION IN WEIGHTED LEBESGUE

SPACES

V. KOKILASHVILI AND Y. E. YILDIRIR

Abstract. In this paper we deal with the estimation of the best

approximation and generalized modulus of continuity of derivatives
of periodic functions in weighted reflexive Lebesgue spaces.

îâäæñéâ. ê�öîëéöæ ìâîæëáñè òñêóùæ�å� û�îéëâ�ñèâ�æï à�ê-

äëà�áëâ�ñèæ ñûõãâðë�æï éëáñèâ�æïåãæï á�áàâêæèæ� öâò�ïâ�â�æ

ï�ñçâåâïë éæ�ýèëâ�â�æå ûëêæ�ê îâòèâóïñî èâ�âàæï ïæãîùââ�öæ.

1. Introduction and the Main Results

In this paper the approximation problems for periodic functions are in-
vestigated in weighted Lebesgue spaces with the Muckenhoupt weights. For
this case we obtain inverse type inequality for the derivatives of 2π periodic
function in terms of generalized modulus of continuity. The introduction
of such structural characteristic of functions was caused by the failure of
continuity of shift operator in weighted spaces.

In unweighted Lebesgue spaces the inequalities for classical modulus of
continuity and the best approximations of derivatives were derived in the
papers [1], [2]. For the approximation in weighted Lebesgue spaces we refer
to [3], [4], [5].

Let T denote the interval (−π, π). A positive almost everywhere, inte-
grable function w : T → (0,∞) is called as a weight function. With any
given weight w we associate the w-weighted Lebesgue space Lp

w(T) consist-
ing of all measurable functions f on T such that

‖f‖Lp
w(T) = ‖fw‖Lp(T) < ∞.
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Let 1 < p < ∞ and 1/p + 1/q = 1. A weight function w belongs to the
Muckenhoupt class Ap(T) if

(

1

|I|

∫

I

wp(x)dx

)1/p(
1

|I|

∫

I

w−q(x)dx

)1/q

≤ C

with a finite constant C independent of I, where I is any subinterval of T

and |I| denotes the length of I.
Let 1 < p < ∞ and w ∈ Ap(T). We define an operator on Lp

w(T) by

Ah(g)(x) =
1

2h

x+h
∫

x−h

g(t)dt, 0 < h < π

It is known that the operator γh is bounded uniformly with respect to h in
Lp

w(T), when w ∈ Ap(T), 1 < p < ∞. The modulus of continuity Ω(g, ·)Lp
w

of g ∈ Lp
w(T) is defined by

Ω(g, δ)Lp
w

= sup
{

‖g −Ah‖Lp
w

, 0 < h ≤ δ
}

.

It is easily proved that Ω(g, ·)Lp
w

is a continuous, nonnegative, nondecreasing
function satisfying this conditions

lim
δ→0

Ω(g, δ)Lp
w

= 0, Ω(g1 + g2, ·)Lp
w
≤ Ω(g1, ·)Lp

w
+ Ω(g2, ·)Lp

w
.

The best approximation of f ∈ Lp
w(T) in the class Πn of trigonometric

polynomials of degree not exceeding n is defined by

En(f)Lp
w

= inf
{

‖f − Tn‖Lp
w

: Tn ∈ Πn

}

.

Theorem 1. Let f ∈ Lp
w(T), 1 < p < ∞, and w ∈ Ap(T). If

∞
∑

k=1

krγ−1Eγ
k (f)Lp

w
< ∞

for some natural number r and γ = min {2, p} , then there exists the abso-

lutely continuous derivative f (r−1)(x), f (r) ∈ Lp
w(T)and the estimate

En(f (r))Lp
w
≤ c

{

nrEn(f)Lp
w

+

( ∞
∑

k=n+1

krγ−1Eγ
k (f)Lp

w

)1/γ}

holds with a constant c independent of n and f.

Theorem 2. Let f ∈ Lp
w(T),1 < p < ∞, and w ∈ Ap(T). If

∞
∑

k=1

krγ−1Eγ
k (f)Lp

w
< ∞



ON THE APPROXIMATION IN WEIGHTED LEBESGUE SPACES 105

for some natural number r and γ = min {2, p} , then there exists the abso-

lutely continuous derivative f (r−1)(x), f (r) ∈ Lp
w(T)and the estimate

Ω(f (r), 1/n)Lp
w
≤

c

n2

( n
∑

k=1

k(r+2)γ−1Eγ
k−1(f)Lp

w

)1/γ

+

+ c

( ∞
∑

k=n+1

krγ−1Eγ
k (f)Lp

w

)1/γ

holds with a constant c independent of n and f.

Corollary. If

En(f)Lp
w

= O

(

1

nr+2

)

then for γ = min {2, p}

Ω(f (r), 1/n)Lp
w

= O

(

(lnn)
1/γ

n2

)

.

This corollary shows that the smoothness of function in weighted Lebesgue
spaces depends not only on the rate of convergence of the best approxima-
tion but also on the metric of the space. For unweighted case see [1], [2].

2. Auxiliary Results

Lemma 1. Let {fn} be a sequence such that every fn are absolutely

continuous and let w ∈ Ap[a, b]. If the sequence {fn} converges to the func-

tion f in Lp
w[a, b] norm and the sequence of first derivatives {f ′

n}converges

to some function g in Lp
w[a, b]norm, then f is absolutely continuous and

f ′(x) = g(x) almost everywhere.

Proof. Since ‖fn − f‖Lp
w

→ 0 there exists a subsequence {fnk
} of the se-

quence {fn} such that fnk
(x) → f(x) almost everywhere. Let x0 is a point

of convergence. By using Holder’s inequality, we get

∣

∣

∣

∣

∣

x
∫

x0

f ′

nk
(t)dt −

x
∫

x0

g(t)dt

∣

∣

∣

∣

∣

≤
∥

∥f ′

nk
− g
∥

∥

Lp
w

( x
∫

x0

w−
q
p dt

)
1
q

where 1
p + 1

q = 1. Since w ∈ Ap and ‖f ′

n − g‖Lp
w
→ 0 we have

∣

∣

∣

∣

∣

x
∫

x0

f ′

nk
(t)dt −

x
∫

x0

g(t)dt

∣

∣

∣

∣

∣

→ 0.
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Therefore, we obtain
x
∫

x0

g(t)dt = lim
k→∞

x
∫

x0

f ′

nk
(t)dt = lim

k→∞

(fnk
(x) − fnk

(x0)) = f(x) − f(x0)

almost everywhere. This completes the proof. �

Lemma 2. Let 1 < p < ∞ and let w ∈ Ap(T). Suppose that f ∈ Lp
w(T)

and
∞
∑

n=1

nrγ−1Eγ
n(f)Lp

w
< ∞, (1)

where γ = min {2, p}. Then

lim
n→∞

nrEn(f)Lp
w

= 0.

Proof. Since the sequence
{

En(f)Lp
w

}

is decreasing, we have

nrγEγ
n(f)Lp

w
≤ c

n
∑

k=[ n
2
]

krγ−1Eγ
k (f)Lp

w
→ 0. �

Lemma 3. Under the conditions of Lemma 2, the trigonometric series
∞
∑

k=1

krBk,r(x) (2)

converges in Lp
w where Bk,r(x) = ak cos(k + rπ

2 )+ bk sin(k + rπ
2 ) and ak, bk

are the Fourier coefficients of the function f.

Proof. Let n and p be the arbitrary natural numbers, p > n. Suppose
2m−1 < n < 2m and 2s−1 < p < 2s. We have

p
∑

k=n

krBk,r(x) =

2m
−1
∑

k=n

krBk,r(x) +

2s−1

∑

k=2m

krBk,r(x)+

+

p
∑

k=2s−1+1

krBk,r(x). (3)

Applying the weighted version of the Littlewood-Paley’s theorem (see [7]),
we obtain

∥

∥

∥

∥

∥

2s−1

∑

k=2m

krBk,r(x)

∥

∥

∥

∥

∥

Lp
w

≤ c

∥

∥

∥

∥

∥

( s−1
∑

µ=m

∣

∣

∣

∣

2µ+1
−1

∑

k=2µ

krBk,r(x)

∣

∣

∣

∣

2) 1
2

∥

∥

∥

∥

∥

Lp
w

.

For 1 < p ≤ 2 we have
(

∫

T

( s−1
∑

µ=m

∣

∣

∣

∣

2µ+1
−1

∑

k=2µ

krBk,r(x)

∣

∣

∣

∣

2) p
2

w(x)dx

)
1
p

≤
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≤

(

∫

T

( s−1
∑

µ=m

∣

∣

∣

∣

2µ+1
−1

∑

k=2µ

krBk,r(x)

∣

∣

∣

∣

p)

w(x)dx

)
1
p

≤

≤

(

s−1
∑

µ=m

∫

T

∣

∣

∣

∣

2µ+1
−1

∑

k=2µ

krBk,r(x)

∣

∣

∣

∣

p

w(x)dx

)
1
p

=

=

(

s−1
∑

µ=m

∥

∥

∥

∥

2µ+1
−1

∑

k=2µ

krBk,r(x)

∥

∥

∥

∥

p

Lp
w

)
1
p

.

Now suppose that p > 2. Applying Minkowskii’s inequality, we get

(

∫

T

( s−1
∑

µ=m

∣

∣

∣

∣

2µ+1
−1

∑

k=2µ

krBk,r(x)

∣

∣

∣

∣

2) p
2

w(x)dx

)
1
p

≤

≤

(

s−1
∑

µ=m

(
∫

T

(∣

∣

∣

∣

2µ+1
−1

∑

k=2µ

krBk,r(x)

∣

∣

∣

∣

2) p
2

w(x)dx

)
2
p
)

1
2

≤

≤

(

s−1
∑

µ=m

∥

∥

∥

∥

(2µ+1
−1

∑

k=2µ

krBk,r(x)

)2∥
∥

∥

∥

L
p
2
w

)
1
2

≤

≤

(

s−1
∑

µ=m

∥

∥

∥

∥

2µ+1
−1

∑

k=2µ

krBk,r(x)

∥

∥

∥

∥

2

Lp
w

)
1
2

.

Thus
∥

∥

∥

∥

∥

2s
−1
∑

k=2m

krBk,r(x)

∥

∥

∥

∥

∥

Lp
w

≤

(

s−1
∑

µ=m

∥

∥

∥

∥

2µ+1
−1

∑

k=2µ

krBk,r(x)

∥

∥

∥

∥

γ

Lp
w

)
1
γ

. (4)

Using Abel’s transform, we get
∥

∥

∥

∥

∥

2µ+1
−1

∑

k=2µ

krBk,r(x)

∥

∥

∥

∥

∥

Lp
w

≤

2µ+1
−2

∑

k=2µ

((k + 1)
r
− kr) ‖Tk − T2µ+1

−1‖Lp
w

+

+ (2µ − 1)r ‖T2µ
−1 − T2µ−1‖Lp

w

where Tk denotes k − th partial sum of the trigonometric series

∞
∑

k=1

Bk,r(x). (5)

Note that the series (5) is the Fourier trigonometric series or its conjugate
series multiplied by +1 or −1 depending on r. Thanks to the theorem
Hunt-Muckenhoupt-Wheeden [6], we obtain that the best approximation
by trigonometric polynomials in Lp

w(T) with w ∈ Ap(T) has the same order
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as deviation by the partial sum of the Fourier series. It means that for
ϕ ∈ Lp

w
∥

∥ϕ − Sn(ϕ)
∥

∥

Lp
w
≤ cEn(ϕ)Lp

w

with a positive constant c independent on ϕ and n. Note that by the theorem
mentioned above, for the best approximations of the given function and its
conjugate in Lp

w, we have

c1En(f)Lp
w
≤ En(

∼

f )Lp
w
≤ c2En(f)Lp

w

where c1 and c2 don’t depend on n and f.
Taking into account all the mentioned above we get

∥

∥

∥

∥

∥

2µ+1
−1

∑

k=2µ

krBk,r(x)

∥

∥

∥

∥

∥

Lp
w

≤ c2µrE2µ
−1(f)Lp

w

and then from this inequality and (4), we have
∥

∥

∥

∥

∥

2s
−1
∑

k=2m

krBk,r(x)

∥

∥

∥

∥

∥

γ

Lp
w

≤ c
s−1
∑

µ=m

2γµrEγ
2µ

−1(f)Lp
w
.

On the other hand

s
∑

k=[ n
2 ]

krγ−1Eγ
k (f)Lp

w
≥

s−1
∑

µ=m

2µ
−1
∑

k=2µ−1+1

krγ−1Eγ
k (f)Lp

w
≥

≥ c

s
∑

µ=m

2rγµEγ
2µ

−1(f)Lp
w
.

Thus
∥

∥

∥

∥

∥

2s
−1
∑

k=2m

krBk,r(x)

∥

∥

∥

∥

∥

γ

Lp
w

≤

s
∑

k=[n
2 ]

krγ−1Eγ
k (f)Lp

w
.

From the condition (1), we obtain that

lim
s→∞

m→∞

∥

∥

∥

∥

∥

2s
−1
∑

k=2m

krBk,r(x)

∥

∥

∥

∥

∥

Lp
w

= 0.

On the other hand, using Bernstein’s inequality in Lp
w (see [3]), we get

∥

∥

∥

∥

∥

2m
−1
∑

k=n

krBk,r(x)

∥

∥

∥

∥

∥

Lp
w

≤ c 2mr

∥

∥

∥

∥

∥

2m
−1
∑

k=n

Bk,r(x)

∥

∥

∥

∥

∥

Lp
w

≤

≤ c 2mrEn−1(f)Lp
w
≤ c(n − 1)rEn−1(f)Lp

w
.
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By Lemma 2, the right side tends to zero and therefore the left side tends
also to zero when n tends to infinity. By the similar way we can see that

∥

∥

∥

∥

p
∑

k=2s−1+1

krBk,r(x)

∥

∥

∥

∥

Lp
w

tends to zero when p tends to infinity.
Now, from (3) we conclude that the series (2) converges in Lp

w. �

Lemma 4. Under the conditions of Lemma 2 there exists the absolutely

continuous derivative f (r−1), and f (r) ∈ Lp
w and we have the equality

f (r)(x) =

∞
∑

n=1

nrBn,r(x)

almost everywhere.

Proof. By Lemma 3 the series (2) converges in Lp
w to some function g.

From the openness of Ap class it follows that it converges in Lp0 , for some
p, 1 < p0 < p. From the last we obtain that the sequence of norms of partial
sums of the series (2) is bounded and consequently the sequence of norms
of Cesaro means is bounded. Thus, the series (2) is the Fourier series of
function g. Note that by the condition (1)

∞
∑

n=1

nsγ−1Eγ
n(f)Lp

w
< ∞

for arbitrary 1 < s < r. Using Lemma 1 we conclude that f (r−1) is absolutely
continuous and

g(x) = f (r)(x)

almost everywhere. By Hunt-Carleson theorem the series (2) converges
everywhere and so we have

f (r)(x) =
∞
∑

n=1

nrBn,r(x)

almost everywhere. �

3. Proofs of the Theorems

The proof of Theorem 1. Let 2m < n < 2m+1. We have
∥

∥

∥
f (r) − Sn(f (r))

∥

∥

∥

Lp
w

≤
∥

∥

∥
S2m+2(f (r)) − Sn(f (r))

∥

∥

∥

Lp
w

+

+

∞
∑

k=m+2

∥

∥

∥
S2k+1(f (r)) − S2k(f (r))

∥

∥

∥

Lp
w

.
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By the weighted version of Bernstein’s inequality, we have
∥

∥S2m+2(f (r)) − Sn(f (r))
∥

∥

Lp
w

=
∥

∥Sr
2m+2(f) − Sr

n(f)
∥

∥

Lp
w
≤ (6)

≤ c 2(m+2)rE2m+2(f)Lp
w
≤ cnrEn(f)Lp

w
.

Applying the weighted version of Littlewood-Paley’s theorem we obtain
∥

∥

∥

∥

∞
∑

k=m+2

[

S2k+1(f (r)) − S2k(f (r))
]

∥

∥

∥

∥

Lp
w

≤

≤ c

(

∞
∑

k=m+2

∥

∥

∥

∥

2k+1

∑

µ=2k+1

µrBµ,r(x)

∥

∥

∥

∥

γ

Lp
w

)
1
γ

.

Using the estimation of the inside norm derived by Lemma 3, we get
∥

∥

∥

∥

∞
∑

k=m+2

[

S2k+1(f (r)) − S2k(f (r))
]

∥

∥

∥

∥

Lp
w

≤ c

( ∞
∑

k=m+2

2krγEγ
2k−1

(f)Lp
w

)
1
γ

.

Therefore we have
∥

∥

∥

∥

∞
∑

k=m+2

[

S2k+1(f (r)) − S2k(f (r))
]

∥

∥

∥

∥

Lp
w

≤ c

( ∞
∑

k=n+1

krγ−1Eγ
k (f)Lp

w

)
1
γ

. (7)

Summarizing the formulas (6) and (7) we deduce the desired inequality.
�

The proof of Theorem 2. Let 2m−1 ≤ n < 2m, n =
[

1
2h

]

, 1
2m+1 ≤ h < 1

2m .
Let σh = I −Ah We have

σh(f (r))(x) = σh(f (r) − S
(r)
2m )(x) + σh(S

(r)
2m )(x) (8)

Note that S
(r)
2m is r-th derivative of partial sum of function f. It means that it

is partial sum of series (2). Using the boundedness of operator σh uniformly
with respect to h in Lp

w, we get
∥

∥

∥
σh(f (r) − S

(r)
2m)
∥

∥

∥

Lp
w

≤ c
∥

∥

∥
f (r) − S

(r)
2m

∥

∥

∥

Lp
w

≤ cE2m(f (r))

By Theorem 1 for 2m−1 ≤ n < 2m, we have the estimate

E2m(f (r))Lp
w
≤ c

{

2mrE2m(f)Lp
w

+

( ∞
∑

k=2m+1

krγ−1Eγ
k (f)Lp

w

)1/γ
}

≤

≤ c

{

2mrE2m(f)Lp
w

+

( ∞
∑

k=n+1

krγ−1Eγ
k (f)Lp

w

)1/γ
}

.

Since the sequence {Ek(f)} is decreasing, it is clear that

2mrE2m(f)Lp
w
≤ c nrEn(f)Lp

w
≤

c

n2

( n
∑

k=1

k(r+2)γ−1Eγ
k−1(f)Lp

w

)1/γ

. (9)
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Therefore, we have

∥

∥

∥
σh(f (r) − S

(r)
2m )
∥

∥

∥

Lp
w

≤
c

n2

( n
∑

k=1

k(r+2)γ−1Eγ
k−1(f)Lp

w

)1/γ

+

+ c

( ∞
∑

k=n+1

krγ−1Eγ
k (f)Lp

w

)1/γ

. (10)

Then

∥

∥

∥
σh(S

(r)
2m)
∥

∥

∥

Lp
w

=

∥

∥

∥

∥

2m

∑

k=1

krBk,r(x)

(

1 −
sin kh

kh

)∥

∥

∥

∥

Lp
w

≤

≤

∥

∥

∥

∥

m
∑

µ=1

2µ
−1
∑

k=2µ−1

krBk,r(x)

(

1 −
sin kh

kh

)∥

∥

∥

∥

Lp
w

+

+

∥

∥

∥

∥

2mrB2m,r(x)

(

1 −
sin 2mh

2mh

)∥

∥

∥

∥

Lp
w

= I1 + I2

For the first term, by weighted version of Littlewood-Paley theorem, we
have, as in the proof of the previous theorem

I1 ≤

(

m
∑

µ=1

∥

∥

∥

∥

2µ
−1
∑

k=2µ−1

krBk,r(x)

(

1 −
sin kh

kh

)∥

∥

∥

∥

γ

Lp
w

)1/γ

for γ = min {2, p} . Applying Abel’s transform, we get

2µ
−1
∑

k=2µ−1

krBk,r(x)

(

1 −
sin kh

kh

)

=

=
2µ

−2
∑

k=2µ−1

{

kr

(

1 −
sin kh

kh

)

− (k + 1)r

(

1 −
sin(k + 1)h

(k + 1)h

)}

×

× (Tk − T2µ−1
−1)+

+ (2µ − 1)
r

(

1 −
sin(2µ − 1)h

(2µ − 1)h

)

(T2µ
−1 − T2µ−1−1)

and
∥

∥

∥

∥

∥

2µ
−1
∑

k=2µ−1

krBk,r(x)

(

1 −
sin kh

kh

)

∥

∥

∥

∥

∥

Lp
w

≤

≤
c

hr

2µ
−2
∑

k=2µ−1

hr

∣

∣

∣

∣

kr

(

1 −
sin kh

kh

)

− (k + 1)r

(

1 −
sin(k + 1)h

(k + 1)h

)
∣

∣

∣

∣

×

× E2µ−1
−1(f)Lp

w
+ 2µ(r+2)h2E2µ−1

−1(f)Lp
w

(11)
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On the other hand, as the function xr
(

1 − sin x
x

)

is increasing, we have

c

hr

2µ
−2
∑

k=2µ−1

hr

∣

∣

∣

∣

kr

(

1 −
sin kh

kh

)

− (k + 1)r

(

1 −
sin(k + 1)h

(k + 1)h

)∣

∣

∣

∣

≤

≤
c

hr
2µrhr

(

1 −
sin(2µ − 1)h

(2µ − 1)h

)

≤ c2µ(r+2)h2.

From this and (11) we have

∥

∥

∥

∥

∥

2µ
−1
∑

k=2µ−1

krBk,r(x)

(

1 −
sin kh

kh

)

∥

∥

∥

∥

∥

Lp
w

≤ c2µ(r+2)h2E2µ−1−1(f)Lp
w
.

Therefore, we obtain

I1 ≤ ch2

(

m
∑

µ=1

2µ(r+2)γEγ
2µ−1

−1(f)Lp
w

)1/γ

≤

≤
c

n2

(

n
∑

k=1

k(r+2)γ−1Eγ
k−1(f)Lp

w

)1/γ

.

On the other hand,

I2 ≤ c 2m(r+2)h2(|a2m | + |b2m |) ≤

≤ c 2m(r+2)h2E2m(f)Lp
w
≤ c2mrh2E2m(f)Lp

w
.

Taking into account (9), we get

I2 ≤
c

n2

(

n
∑

k=1

k(r+2)γ−1Eγ
k−1(f)Lp

w

)1/γ

.

Therefore, we have

∥

∥

∥
σh(S

(r)
2m )
∥

∥

∥

Lp
w

≤
c

n2

(

n
∑

k=1

k(r+2)γ−1Eγ
k−1(f)Lp

w

)1/γ

. (12)

From (8), (10) and (12) we deduce the desired estimate. �
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