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ZAREMBA’S PROBLEM IN SMIRNOV CLASS OF

HARMONIC FUNCTIONS IN DOMAINS WITH

PIECEWISE-LYAPUNOV BOUNDARIES

G. KHUSKIVADZE AND V. PAATASHVILI

Abstract. Zaremba’s problem is studied in a weighted Smirnov class
of harmonic functions in domains bounded by piecewise-Lyapunov
curves. The conditions of solvability are obtained and the solutions
are constructed in quadratures. In the case of domains with Lya-
punov boundaries, the same problem is investigated under weaker
assumptions regarding boundary data.

îâäæñéâ. ä�îâé��ï ï�ï�ä�ãîë �éëù�ê� öâïû�ãèæèæ� ÿ�îéëêæñè

òñêóùæ�å� ïéæîêëãæï ûëêæ�ê çè�ïâ�öæ ñ��ê-ñ��ê èæ�ìñêëãæï ûæ-

îâ�æå öâéëï�ä�ãîñè �îâöæ. éæ�â�ñèæ� �éëýïê�áë�æï ìæîë�â�æ

á� �àâ�ñèæ� �éëê�ýïêâ�æ çã�áî�ðñîâ�öæ. èæ�ìñêëãæï ûæîâ�æå

öâéëï�ä�ãîñèæ �îââ�æï öâéåýãâã�öæ æàæãâ �éëù�ê� à�éëçãèâñèæ�

ï�ï�ä�ãîë éëê�ùâéå� éæé�îå ñòîë ïñïð éëåýëãêâ�öæ.

In [1–3], by analogy with the classes of analytic functions Ep introduced
by V. I. Smirnov ([4], see also [5] Ch. X), we defined weighted classes of har-
monic functions e

(
L1p(ρ1), L

′
2q(ρ2)

)
, investigated some of their properties

and studied mixed boundary value problem, when values of an unknown
function are given on one part of the boundary, and those of its derivative
to the interior normal are given on the other part of the boundary ([6],
Zaremba’s problem). As for the domain in which we consider the problem,
it assumed to be bounded by a simple Lyapunov curve.

In the present work we continue our investigation of Zaremba’s problem,
but this time for domains which are bounded by piecewise-Lyapunov curves.
Moreover, for the domains bounded by Lyapunov curves, this problem is
considered in a new statement.
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10. Definitions, Notation and Auxiliary Statements

1.1. Let D be a simply connected finite domain bounded by a simple
rectifiable curve L and let Lk = (Ak, Bk), k = 1,m be the arcs lying sep-
arately on that curve (the points A1, B1, A2, B2, . . . , Am, Bm follow each
other in the positive direction). By C1, C2, . . . , C2m we denote the points

taken arbitrarily. In a plane, cut along a set of curves L1 =
m
∪

k=1
Lk, we

consider analytic functions

Π1(z) =

√√√√
m1∏

k=1

(z − Ck), Π2(z) =

√√√√
2m∏

k=m1+1

(z − Ck), (1)

where m1 is an integer from the interval [0; 2m]; we take any branch of the
first function, while the second one we choose such that the function

R(z) = Π1(z)
[
Π2(z)

]−1

(2)

decomposes in the neighborhood of the point at infinity as follows:

R(z) = zm1−m + a1 z
m1−m−1 + · · ·

(see [7], p. 277). For z = t ∈ L, under Π1(t), Π2(t), R(t) we mean a value
which takes the function on the left side of L.

1.2. Let p ≥ 1, and ρ(t) be a measurable function on L, almost every-
where different from zero. By Lp(L; ρ) we denote a set of measurable on L
functions f (in the arc measure ds) for which |fρ|p is Lebesgue measurable.

1.3. Let [A′
k, B

′
k] be the arcs lying on Lk (the points B′

k follow A′
k in the

direction of Lk). Denote

L1 =
m
∪

k=1
Lk, L̃ =

m
∪

k=1

[
Ak;A′

k

] m
∪

k=1

[
B′

k;Bk

]
, L2 = L\L1. (3)

1.4. Suppose U = {w : |w| ≤ 1}, and let z = z(w) be the conformal
mapping of U onto D, and w = w(z) be an inverse mapping. Denote






Γ1 = w(L1), γ̃ = w(L̃), Γ2 = w(L2),

ak = w(Ak), bk = w(Bk),

Γj(r) =
{
w : w = reiζ , ζ ∈ Θ(Γj)

}
, Lj(r) = z

(
Γj(r)

)
,

(4)

where Θ(Γ) =
{
ζ : 0 ≤ ζ ≤ 2π, eiζ ∈ Γ

}
, Γ ⊆ γ = {τ : |τ | = 1}.

1.5. Let the points D1, D2, . . . , Dn belong to L and be different from Ck;
D1, D2, . . . , DN1

lie on L1, while Dn1+1, . . . , Dn on L2. Let p > 1, q > 1;
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assume

ρ1(z) =

n1∏

k=1

|z −Dk|
αk , (5)

ρ2(z) =

m1∏

k=1

|z − Ck|
νk

2m∏

k=m1+1

|z − Ck|
λk

n∏

k=n1+1

|z −Dk|
βk , (6)

where

−
1

p
< αk <

1

p′
, −

1

q
< βk <

1

q′
, p′ =

p

p− 1
, q′ =

q

q − 1
, (7)

−
1

q
< νk < 0, 0 ≤ λk <

1

q′
. (8)

1.6. We say that the harmonic in D function u(z), z = x + iy = reiζ

belongs to the class e
(
L1p(ρ1), L

′
2q(ρ2)

)
, if

sup
r<1

[ ∫

L1(r)

∣∣u(z)ρ1(z)
∣∣p|dz| +

∫

L2(r)

(∣∣∣
∂u

∂x

∣∣∣
q

+
∣∣∣
∂u

∂y

∣∣∣
q
)
ρ

q
2(z)|dz|

]
<∞. (9)

When D = U (and hence Lk = Γk, k = 1, 2), we will write
h
(
Γ1p(ρ1),Γ

′
2q(ρ2)

)
instead of e

(
Γ1p(ρ1),Γ

′
2q(ρ2)

)
. If Γ1 = γ, ρ1 ≡ 1, then

this class coincides with the well-known class hp (see [5], Ch.IX).

1.7. If f(z) is the function defined on the set of E-finite union of closed
arcs lying on L, and t = t(s), 0 ≤ s ≤ l is the equation of the curve L
with respect to the arc abscissa, then we say that f is absolutely continuous
on E and write f ∈ A(E): if, the function f(t(s)) is absolutely continuous
on the set {s : t(s) ∈ E}, i.e. for any ε > 0 there exists a number
δ > 0, such that for any intervals [t(sk), t(σk)], lying on E with the condition∑

|(σk − sk) mod l| < δ, we have
∑

|f(t(σk) − f(t(sk))| < ε.
It can be easily proved that if f(z) ∈ A(E), and z(τ) is the restriction

on γ of the conformal mapping z = z(w), then the function f(z(τ)) ∈ A(e),
e = w(E); and vice versa, if ϕ ∈ A(e), where e is a finite union of closed
arcs on γ, then ϕ(w(t)) ∈ A(E), E = z(e) ([2], Lemma 9).

1.8. Below we will present some properties of functions from
e
(
L1p(ρ1), L

′
2q(ρ2)

)
.

Statement 1 ([2], Lemmas 2–4). If the functions ρ1, ρ2 are given on

γ by the equalities (5)–(6), the conditions (7)–(8) are fulfilled, and u(z) ∈
h
(
Γ1p(ρ1),Γ

′
2q(ρ2)

)
, then:

(i) there exists σ > 1, such that u ∈ hσ;

(ii) if v is the function which is harmonically conjugate to u, then v ∈
h
(
Γ1p1

(ρ1),Γ
′
2q(ρ2)

)
, where p1 = pσ

p+σ
;
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(iii) if u ∈ e
(
L1p(ρ1), L

′
2q(ρ2)

)
, then the function U(w) = u(z(w)) be-

longs to the class h
(
Γ1p(ω1(w)),Γ′

2q(ω2(w))
)
, where

ω1(w) = ρ1(z(w)) p
√
|z′(w)| , ω2(w) = ρ2(z(w)) q

√
|z′(w)| .

Statement 2 ([3]). If u ∈ h
(
Γ1p(ρ1),Γ

′
2q(ρ2)

)
, then u(z) is continuously

extendable on every closed arc lying on Γ2, and the boundary function u+(t)
is such that there exist the limits

u(ak−) = lim
t→ak−

u+(t), u(bk+) = lim
t→bk+

u+(t),

thus the obtained on Γ2 function u+(t) is absolutely continuous on Γ2 and
∂u+

∂ζ
∈ Lq(Γ2; ρ2).

1.9. It follows from Statement 1 of item (i) that if u belongs to
h
(
Γ1p(ρ1),Γ

′
2q(ρ2)

)
, then there exist angular boundary values u+(t) almost

everywhere on γ, and u(reiϕ) is representable by the Poisson integral with
density u+ ([5], Ch. IX).

20. Zaremba’s Problem in a Domain with

Lyapunov Boundary

Let us consider the boundary value problem: find a function u satisfying
the following conditions





∆u = 0, u ∈ e
(
L1p(ρ1), L

′
2q(ρ2)

)
, p > 1, q > 1,

u+
∣∣
L1\L̃

= F, F ∈ Lp(L1\L̃, ρ1), u+ ∈ A(L1 ∪ L̃),

u+
∣∣
L̃

= Ψ, Ψ′ ∈ Lq(L̃; ρ2),
(∂u
∂n

)+∣∣∣
L2

= G, G ∈ Lq(L2; ρ2).

(10)

Using the results obtained in [8]–[9] and Statements 1–2 in [2], the fol-
lowing theorem is proved.

Theorem A. Let D be a finite simply connected domain bounded by a

simple closed Lyapunov curve L; ρ1 and ρ2 are defined by the equalities

(5)–(7), and moreover,

−
1

q
< νk < min

(
0;

1

q′
−

1

2

)
, max

(
0;

1

2
−

1

q

)
≤ λk <

1

q′
. (11)

Then for the problem (10) to be solvable:

I. For m1 ≤ m, it is necessary and sufficient that the conditions

ζk+1∫

ϕk

Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)

dτ

τ − z(eiα)

]
dα =

= Ψ(Ak+1) − Ψ(Bk), k = 1,m (12)
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be fulfilled; here R is the function given by the equality (2) and it is assumed

that

eiζk =w(Ak), eiϕk = w(Bk), ζk, ϕk ∈ [0, 2π], ζm+1 = ζ1, Am+1 = A1,

µ(τ) = −G(z(τ)) +
1

2π

m∑

k=1

[
Ψ(Ak+1) ctg

ζk+1 − ϕ

2
− Ψ(Bk) ctg

ϕk − ϕ

2

]
−

−
1

2

∫

Θ(γ̃)

Ψ(z(eiζ))
dζ

2 sin2 ζ−ϕ
2

−
1

2π

∫

Θ(Γ1\γ̃)

F (z(eiζ))
dζ

2 sin2 ζ−ϕ
2

,

where

τ = eiϕ ∈ Γ2, a =
1

2π

m∑

k=1

[
Ψ(Ak+1) − Ψ(Bk)

]
.

II. For m1 > m, it is necessary and sufficient that the conditions (12)
and also

∫

L2

iµ(w(t)) + a

R(w(t))
wk(t)w′(t) dt = 0, k = 0, l− 1, l = m1 −m (13)

be fulfilled.

III. If the above conditions are fulfilled, then the solution of the problem

(10) is given by the equality

u(z) = u∗(z) + u0(z),

where

u∗(z)=
1

2π

∫

Θ(γ̃)

Ψ(z(eiζ))P (r, ζ−ϕ)dζ+
1

2π

∫

Θ(Γ1\γ̃)

F (z(eiζ))P (r, ζ−ϕ)dζ+

+
1

2π

∫

Θ(Γ2)

WΓ2
(ζ)P (r, ζ − ϕ)dζ, (14)

in which P (r, x) = 1−r2

1+r2−2r cos x

WΓ2
(ζ) =

ζ∫

ϕ1

χΘ(Γ2)(α)Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)

dτ

τ − eiα

]
dα+Mk, (15)

χE denotes the characteristic function of the set E,

Mk =Ψ(Ak+1)−

ζk+1∫

ϕ1

χΘ(Γ2)(α)Re

[
R(eiα)

πi

∫

Θ(Γ2)

iµ(τ) + a

R(τ)(τ−eiα)
dτ

]
dα, (16)
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and

u0(z) =





0, for m1 > m,

1

2π

2π∫

0

W ∗
Γ2

(ζ)P (r, ζ − ϕ)dζ, W ∗
Γ2

(ζ) =

=

ζ∫

β1

χΘ(Γ2)(α)Re
[
R(eiα)Pr−1(e

iα)
]
dα+Nk,

for m1 ≤ m.

(17)

Nk = −

ζk+1∫

ϕk

Re
[
R(eiα)Pr−1(e

iα)
]
dα, r = m−m1.

Here Pr−1(e
iζ) = 0, if r − 1 < 0, but if m1 ≤ m, then Pr−1(e

iζ) =
r−1∑
j=0

(xj + iyj)e
ijζ is the polynomial in which (x0, y0, x1, y1, . . . , xr−1, yr−1)

is a solution of the system

ϕk∫

ζk

r−1∑

j=0

[
xjR1(e

iζ) cos jζ − yjR2(e
iζ) sin jζ

]
dζ = 0,

k = 1,m, r = m−m1,

ϕk∫

ζk

r−1∑

j=0

[
xjR2(e

iζ) cos jζ − yjR1(e
iζ) sin jζ

]
dζ = 0,

(18)

where R1(t) = ReR(t), R2(t) = ImR(t).
If ν is the rank of the matrix of the system (18), (ν ≤ 2r), then a solution

of the homogeneous problem u0(z) contains 2(m−m1)− ν real parameters.

30. The Mixed Problem in Domains with Piecewise Lyapunov

Curves

The theorem given shows that the mixed boundary value problem (10)
is solvable in Smirnov classes, when the domain D is bounded by a simple
Lyapunov curve. Below we will try to find those Smirnov classes (i.e., those
values p, q and admissible weights ρ1, ρ2) for which in case of the domains
with piecewise-Lyapunov curves one can apply to the investigation of the
problem (10) the method used in [2] and obtain an analogue of Theorem A.

Let D be the finite domain bounded by a simple piecewise-Lyapunov
curve L with angular points t1, t2, . . . , ts. We assume that the sizes of angles
at these points which are interior with respect to the domain D, are equal to
µkπ, 0<µk≤2. A set of such curves we denote by C1(t1, . . . , ts;µ1, . . . , µs).



ZAREMBA’S PROBLEM IN SMIRNOV CLASS 85

Let L ⊂ C1(t1, t2, . . . , ts;µ1, µ2, . . . , µs), L1, L2, L̃ are defined by virtue
of (3), and the functions ρ1, ρ2 are given by the equalities (5)–(6). Consider
the problem (10). Using item (iii) of Statement 1, we reduce it by means of
the conformal mapping to the problem of the same type, but now for the
circle. Undoubtedly, the weighted functions in this case vary.

Since L ⊂ C1(t1, t2, . . . , ts;µ1, µ2, . . . , µs), therefore as is known ([10]; see
also [11], [12]),

z′(w) =

s∏

k=1

(w − τk)µk−1z0(w), τk = w(tk),

w′(z) =
s∏

k=1

(z − tk)
1

µk
−1
w0(z),

(19)

z(w) =

s∏

k=1

(w − τk)µkz1(w), w(z) =

s∏

k=1

(z − tk)
1

µk w1(z), (20)

where z0(w), z1(w) are other than zero Hölder class functions in the closed
circle U , and w0(z), w1(z) are the same functions in D.

We divide the set of angular points {t1, t2, . . . , ts} into four parts and
denote by t1, t2, . . . , ts1

those which are contained in the product Π1; by
ts1+1, . . . , tσ1

we denote the points in Π2, and the remaining ones will be
inserted in the set of points {D1, D2, . . . , Dn}. In this case, let tσ1+1, . . . , tσ2

lie on L1, and tσ2+1, . . . , ts on L2. Assume tk = Ck, k = 1, s1, ts1+k =
Cm1+k, k = 1, σ1 − s1, tσ1+k = Dk, k = 1, σ2 − σ1, tσ2+k = Dn1+k, k =
1, s− σ2. In this connection, we write the weights ρ1, ρ2 in the form

ρ1(z) =

σ2∏

k=σ1+1

|z − tk|
αk

n1∏

k=σ2+1

|z −Dk|
αk , (21)

ρ2(z) =

s1∏

k=1

|z − tk|
νk

m1∏

k=s1+1

|z − Ck|
νk

σ1∏

k=s1+1

|z − tk|
λk ·

·

2m∏

k=m1+σ1+1

|z − Ck|
λk

s∏

k=σ2+1

|z − tk|
βk

n∏

k=n1+s−σ2+1

|z −Dk|
βk . (22)

Introduce the notation

ck = w(Ck), τk = w(tk), dk = w(Dk). (23)

Taking into account the equalities (19)–(20) (and the fact that at the points
Dk 6= tj we have µk = 1) and item (iii) of Statement 1, the classes Lp(ρi),
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i = 1, 2, transform into the classes Lp(ωi) in which

ω1(w) =

σ2∏

k=σ1+1

|w − ck|
αkµk+

µk−1

p

n1∏

k=σ2+1

|w − dk|
αk , (24)

ω2(w) =

s1∏

k=1

|w − τk|
µkνk+

µk−1

q

m1∏

k=s1+1

|w − ck|
νk ·

·

σ1∏

k=s1+1

|w − τk|
λkµk+

µk−1

q

2m∏

k=m1+σ1+1

|w − ck|
λk ·

·

s∏

k=σ2+1

|w − τk|
βkµk+

µk−1

q

n∏

k=n1+s−σ2+1

|w − dk|
βk . (25)

Denote

U(w)=u(z(w)), f(τ)=F (z(τ)), ψ(τ)=Ψ(z(τ)), g(τ)=G(z(τ)). (26)

Then the function U(w) will be of the class h
(
Γ1p(ω1),Γ

′
2q(ω2)

)
which, ac-

cording to Statements 1, 2 and the conclusion of point 1.7 in Section 10,
belongs to A(Γ2 ∪ γ̃), where Γ1, γ̃,Γ2 are defined by virtue of (4). Conse-
quently, U(w) is a solution of the problem





∆U = 0, U ∈ h
(
Γ1p(ω1),Γ

′
2q(ω2)

)
, p > 1, q > 1,

U+ ∈ A(Γ2 ∪ γ̃),

U+
∣∣
Γ1

= f, f ∈ Lp(Γ1\γ̃, ω1), U
+

∣∣
γ̃

= ψ, ψ′ ∈ Lq(γ̃, ω2),
(

∂U
∂n

)+∣∣∣
Γ2

= g, g ∈ Lq(Γ2;ω2).

(27)

Relying on Statements 1, 2 and equalities (19)–(20), it is not difficult
to show that if U(w) is a solution of the problem (27), then the function
u(z) = U(w(z)) will be a solution of the problem (10).

Thus the problem (10) under consideration with the curve
L ⊂ C1(t1, . . . , ts;µ1, µ2, . . . , µs) has been reduced equivalently to the prob-
lem (27). Theorem A can likewise be applied to the same problem if for
the weights ω1 and ω2 will be fulfiled the conditions (11), i.e., if for the
exponents in the equalities (24)–(25) the following relations will be fulfilled:





−
1

p
< αk <

1

p′
,

−
1

p
< αkµk +

µk − 1

p
<

1

p′
,

k = σ1 + 1, σ2,





−
1

q
< βk <

1

q′
,

−
1

q
< βkµk +

µk − 1

q
<

1

q′
,

k = σ2 + 1, s,

(28)
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−
1

q
< νk < 0,

−
1

q
< µkνk +

µk − 1

q
< min

(
0;

1

q′
−

1

2

)
,

k = 1, s1,





0 ≤ λk <
1

q′
,

max
(
0;

1

2
−

1

q

)
≤ µkλk +

µk − 1

q
<

1

q′
,

k = s1 + 1, σ1,

(29)





−

1

q
< νk < min

(
0;

1

q′
−

1

2

)
, max

(
0;

1

2
−

1

q

)
≤ λk <

1

q′
,

k = s1 + 1,m1, k = m1 + σ1 − s1 + 1, 2m,
(30)




−

1

p
< αk <

1

p′
, k = σ2 + 1,m,

− 1
q
< βk <

1
q′
, k = n1 + s− σ2 + 1, n.

(31)

The solution of the systems (28)–(29) yields



−

1

p
<αk < min

( 1

p′
;

1

µk

−
1

p

)
, −

1

q
< βk < min

( 1

q′
;

1

µk

−
1

q

)
,

k = σ1 + 1, σ2, k = σ2 + 1, s,
(281)






−
1

q
<νk <

1

µk

min
(
0;

1 − µk

q
;

q
2 − µk

q

)
, k = 1, s1,

1

µk

max
(
0;

1 − µk

q
;

q
2 − µk

q

)
≤ λk < min

( 1

q′
;

1

µk

(
1 −

µk

q

))
,

(291)

Thus the following theorem is valid.

Theorem 1. Let L ⊂ C1(t1, t2, . . . , ts;µ1, µ2, . . . , µs), L1, L̃, L2 be defined

by virtue of (3), and the weights ρ1, ρ2 be given by the equalities (21)–(22)
in which the exponents αk, βk, νk, λk satisfy the relations (281), (291), (30),
(31), then for the problem (10) the Statements I-III of Theorem A are valid.

40. Discussion of Results of Theorem 1

Theorem 1 allows one to define a family of those Smirnov weight spaces
for which a character of solvability of the mixed problem (10) with domains
containing piecewise-Lyapunov boundaries, remains the same as for domains
containing Lyapunov boundaries; that is, the defining point for the solvabil-
ity of the problem is the choice of number m1 of those arc ends Lk at which
the solution is required to fulfil the following comparatively hard condition
B, i.e., “to be integrable with power weight concentrated at the given end
with a negative exponent”. For the Lyapunov boundaries, the Lebesgue ex-
ponents p and q are arbitrary numbers from the interval (1; +∞), and the
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exponents of the weights ρ1 and ρ2 satisfy the natural conditions (11) ensur-
ing the summability of the boundary function of a solution (and necessary
for the summability).

Theorem 1 states that for a sufficiently wide set of Smirnov classes the
choice of number m1 of ends at which the requirement B is fulfilled is
defining for the problem (10) to be solved in them, and the solutions are
being constructed explicitly for the curves from the class C1(t1, t2, . . . , ts;
µ1, µ2, . . . , µs) with the condition 0 < µk ≤ 2, k = 1, s. But this is not
the case in all classes with Lyapunov boundaries. The conditions (28)–(31)
show what parameters of Smirnov classes and within what limits (depending
on the geometry of the boundary) one can take for which Statements I–III
of Theorem A hold for the solution of problem (10).

It is not difficult to show that a set of spaces in which the above-
mentioned situation is realized is not empty, i.e., for the given µ1, µ2, . . . , µs,
0 < µk ≤ 2 there exist families (p, q, αk, βk, νk, λk) satisfying the system
(28)–(31); note that p and q are, as a rule, taken arbitrarily from the inter-
vals (1; +∞) and (2; +∞), respectively, and αk, βk, νk, λk belong to certain
admissible intervals. A number of such families depend on those angular
points and angle values at them which turn out to be the ends of the arcs
of Lk.

First of all, it should be noted that the fulfilment of the inequalities (30)
and (31) and of the first inequalities of (281) and (291), is the necessary
condition in the case of Lyapunov boundaries, as well (see Section 20).
Hence when considering nonsmooth curves, the second inequalities of the
systems (281) and (291) turn out to be supplementary ones.

It is seen from (281) and (291) that: if 1
p′

≥ 1
µk

− 1
p

(i.e. for µk > 1),

we have − 1
p
< αk < 1

µk
− 1

p
, but if 1

p′
< 1

µk
− 1

p
(i.e. for µk < 1), then

− 1
p
< αk <

1
p′

.

Analogously, for µk > 1 we have − 1
q
< βk < 1

µk
− 1

q
, and for µk < 1,

− 1
q
< βk <

1
q′

.

This implies that for any given p > 1, q > 1 we can choose αk, βk, such
that the conditions (281) are satisfied.

As for νk and λk, since 1
q′

− 1
µk

(
1 − µk

q

)
= µk−1

µk
, we have:

if q ≥ 2, 0 < µk < 1, then

−
1

q
< νk < 0,

q − 2µk

2µkq
≤ λk <

1

q′
;

if q > 2, 1 < µk ≤ 2, then

−
1

q
< νk <

1 − µk

qµk

, max
(
0;
q − 2µk

2µkq

)
≤ λk <

q − µk

qµk

;

if q ≤ 2, 0 < µk < 1, then
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−
1

q
< νk < min

(
0;
q − 2µk

2qµk

)
,

1 − µk

µkq
≤ λk <

1

q′
;

if q < 2, 1 < µk ≤ 2, then

−
1

q
< νk <

q − 2µk

2qµk

, 0 ≤ λk <
q − µk

qµk

.

Obviously, the systems (28) and (29) are unsolvable for q ≤ 2, 0 < µk < 1
and µkq < 1, or when q < 2, 1 < µk ≤ 2 and µk > q (in both cases it is
impossible to determine λk).

This means that if we take q < 2, then at the angle points which are the
arc ends of Lk for which either µkq < 1 or µk > q, the weight multiplier
|t− tk| should be with negative degree.

The same conditions (28)–(31) can also be interpreted as follows: if there
is a class of unknown functions, i.e., p, q, ρ1, ρ2 are the given functions, then
there arises the question: what kind is the set of piecewise-Lyapunov curves
(that is, what kind is the set of admissible values for µk) for which Theorem
1 holds.

This question can be answered analogously to the above one, and we do
not dwell on it.

50. The Classes of Harmonic Functions e
(
Γ1p(ω1),Γ

′
2q(ω2), H(γ̃; δ)

)

According to Statement 2, the equality

h
(
Γ1p(ω1),Γ

′
2q(ω2)

)
=

= h
(
Γ1p(ω1),Γ

′
2q(ω2)

)
∩

{
u : u+ ∈ A(Γ2),

∂u+

∂ζ
∈ Lq(Γ2;ω2)

}

holds.
We consider the boundary value problem (10) in somewhat narrower class

h
(
Γ1p(ω1),Γ

′
2q(ω2)

)
∩

∩
{
u : u+ ∈ A(Γ2 ∪ γ̃2),

(∂u
∂n

)+

∈ Lq(Γ2;ω2)
}
. (32)

Along with the classes (9) and (32), let us consider the class

h
(
Γ1p(ω1),Γ

′
2q(ω2), H(γ̃, δ)

)
= h

(
Γ1p(ω1),Γ

′
2q(ω2)

)
∩

∩
{
u : u+ ∈ H(γ̃; δ),

(∂u
∂n

)+

∈ Lq(Γ2;ω2)
}
. (33)

where byH(γ̃; δ) we denote a set of functions satisfying the Hölder condition
with exponent δk on that segment of γ̃ which contains the end ck, k = 1, 2m,
and δ = (δ1, δ2, . . . , δ2m), δk ∈ (0, 1]. The only difference between the classes
of functions defined by (32) and (33) is that in the first case u+ is required to

be absolutely continuous on γ̃, and this together with the condition ∂u+

∂ζ
∈

Lq(Γ2;ω2) implies that u+ belongs to the fixed Hölder class H(γ̃; δ), where
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δ = (δ1, . . . , δ2m), δk = 1
q′

, k = 1,m, δk = λkq
q′

, k = m+ 1, 2m; in the second

case, u+ is required belong to any given class of functions. Thus the family
of the classes (33), i.e., their union with respect to δ, is wider than the class
(32).

In the sequel, we will need one property of the Poisson integral. This
property is, probably, known, but we will cite it together with a rather
simple proof.

60. On a Derivative of the Poisson Integral

Let there be given on [0, 2π] the real periodic function ψ(ζ) satisfying
the Hölder condition on the interval [α, β] ⊂ [0, 2π], with the exponent δ,
δ ∈ (0, 1], while on the remaining part from [0, 2π] equal to zero, and

u(r eiϕ) =
1

2π

β∫

α

ψ(ζ)
1 − r2

1 + r2 − 2r cos(ζ − ϕ)
dζ. (34)

We investigate the function ∂u
∂r

in the neighborhood of the points a = eiα

and b = eiβ . We have

∂u

∂r
=

1

2π

β∫

α

ψ(ζ)
−ϕr + (2r2 + 2) cos(ζ − ϕ)

[1 + r2 − 2r cos(ζ − ϕ)]2
dζ. (35)

If ϕ < α, then we write ∂u
∂r

in the form

∂u

∂r
=

1

2π

β∫

α

[ψ(ζ) − ψ(α)]
−ϕr + (2r2 + 2) cos(ζ − ϕ)

[1 + r2 − 2r cos(ζ − ϕ)]2
dζ+

+
ψ(α)

2π

β∫

α

−ϕr + (2r2 + 2) cos(ζ − ϕ)

[1 + r2 − 2r cos(ζ − ϕ)]2
dζ = u1(r e

iϕ) + u2(r e
iϕ).

Passing to the limit, as r → 1, and assuming ϕ < α, we obtain

lim
r→1

u2(r e
iϕ)

(ϕ<α)

=
ψ(α)

2π

β∫

α

dζ

2 sin2 ζ−ϕ
2

=
ψ(α)

2π

[
ctg

α− ϕ

2
− ctg

β − ϕ

2

]
. (36)

As for u1(r e
iϕ), we have

lim
r→1

u1(r e
iϕ) = −

1

2π

β∫

α

ψ(ζ) − ψ(α)

2 sin2 ζ−ϕ
2

dζ = u+
1 (eiϕ).
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Therefore

∣∣u+
1 (eiϕ)

∣∣ ≤M1

β∫

α

|ζ − α|δ

sin2 ζ−ϕ
2

dζ =

= M1

β∫

α

|ζ − α|δ − |ζ − ϕ|δ

sin2 ζ−ϕ
2

dζ +M1

β∫

α

|ζ − ϕ|δ

sin2 ζ−ϕ
2

dζ ≤

≤M1|α− ϕ|δ
β∫

α

dζ

sin2 ζ−α
2

dζ +M2

β∫

α

dζ

|ζ − ϕ|2−δ
=

= M1|α− ϕ|δ
(

ctg
α− ϕ

2
− ctg

β − ϕ

2

)
+M3K(ϕ),

where K(ϕ) = 1
|α−ϕ|1−δ if δ < 1, and K(ϕ) = − ln |α− ϕ| if δ = 1.

It follows from the above estimate that in the left neighborhood of the
point α

∣∣u+
1 (eiϕ)

∣∣ < M
( 1

|α− ϕ|1−δ
+

∣∣ ln |α− ϕ|
∣∣
)
. (371)

Analogously, in the right neighborhood of the point β we have

∣∣u+
1 (eiϕ)

∣∣ < M
( 1

|β − ϕ|1−δ
+

∣∣ ln |β − ϕ|
∣∣
)
. (372)

Consequently, if Γa = γa′a, where a′ is the point on γ preceding a and lying
near it, then u+

1 belongs to Lq(Γa; |ζ −α|x), where x > (1− δ)− 1
q

= 1
q′
− δ.

Analogously, if Γb is a small right neighborhood of the point b, then
u+

1 ∈ Lq(Γb; |ζ − β|x) for the same values x.

Note here that ∂u
∂n

= −∂u
∂r

, and the relations of the type (36), (371) and

(372) are valid for ∂u
∂n

, as well.
Thus we have proved the following

Lemma 1. If u is the harmonic function given by the equality (34),
where ψ ∈ H([α, β]; δ), δ = (δα, δβ), then for eiϕ ∈ (Γa ∪ Γb) we have

(∂u
∂n

)+

(eiϕ) =
ψ(α)

2π
ctg

α− ϕ

2
−
ψ(β)

2π
ctg

β − ϕ

2
+ ψ1(ϕ), (37)

in addition, ψ1 ∈ Lq([Γa ∪ Γb], |ϕ− α|x|ϕ− β|y), where x > − 1
q

+ (1 − δα),

y > − 1
q

+ (1 − δβ).

Lemma 2. If u ∈ h(Γ1p(ρ1),Γ
′
2q(ρ2)) ∩H(γ̃; δ), δ = (δ1, . . . , δ2m), then

for eiϕ ∈ Γ2 we have

(∂u
∂n

)+

(eiϕ) =

2m∑

k=1

hk ctg
αk − ϕ

2
+ u1(ϕ) + u2(ϕ), (38)
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where hk = (−1)n(ck) u(ck−)
2π

, in which n(ck) = 0 if ck ∈ {a1, . . . . , a2m},

and n(ck) = 1 if ck ∈ {b1, . . . , bm}; u1 ∈ Lq(γ̃; ρ), ρ =
2m∏
k=1

|eiϕ − ck|
xk ,

xk >
1
q′
− δk, u2 ∈ Lq(γ̃; ρ).

Proof. It follows from Statement 1 that u is representable by the Poisson
integral (see 1.8), i.e.,

u(reiϕ) =

( ∫

Γ1\γ̃

+

∫

γ̃

+

∫

Γ2

)
1

2π
u+(eiζ)P (r, ζ − ϕ)dζ. (39)

It is evident that the character of behavior of the function
(

∂u
∂n

)+
on γ̃ is

defined by that of the second and third summands of the given sum. The
character if the summand 1

2π

∫
γ̃

u+(eiζ)P (r, ζ − ϕ)dζ is given by Lemma

1, since u+ ∈ H(γ̃; δ). Density u+(eiζ) = χΘ(Γ2)(ζ)u
+(eiζ) in the third

integral belongs, by Statement 2, to A(Γ2) and ∂u
∂ζ

∈ Lq(Γ2; ρ2), therefore

χΘ(Γ2)(ζ)u
+(eiζ) belongs to Lq(γ; ρ2). The above facts and equality (37)

allow us to conclude that the representation (38) is valid. �

Lemma 3. For the boundary function u+ of the function u from the class

h(Γ1p(ρ1),Γ
′
2q(ρ2)) to belong to the set

h
(
Γ1p(ρ1),Γ

′
2q(ρ2)

)
∩

{
u : u+ ∈ H(γ̃; δ),

(∂u
∂n

)+

∈ L(Γ2; ρ2)
}
,

it is necessary and sufficient for u+ to be continuous at the points ck and

the inclusion Lq(Γ2; ρ) ⊂ Lq(Γ2; ρ2), ρ =
2m∏
k=1

|eiϕ − ck|
xk , i.e.

xk ≥ νk, k=1,m1, xk≤λk, k=m1 + 1, 2m (40)

to take place.

Proof. If we write u in the form

u(reiϕ) =
1

2π

∫

Θ(γack
)

[
u+(eiζ) − u(ck−)

]
P (r, ζ − ϕ)dζ+

+
1

2π

∫

Θ(γcka)

[
u+(eiζ) − u(ck+)

]
P (r, ζ − ϕ)dζ+

+
u(ck−)

2π

∫

Θ(γack
)

P (r, ζ − ϕ)dζ +
u(ck+)

2π

∫

Θ(γcka)

P (r, ζ − ϕ)dζ,

where a ∈ γ, and γack
, γcka are two mutually disjoint arcs of the circumfer-

ence γ, then using Lemma 1, we can easily obtain statements of the above
lemma. �
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70. Zaremba’s Problem in the Class h
(
L1p(ρ1), L

′
2q(ρ2);H(L̃; δ)

)

Let D be a simply connected domain bounded by a simple Lyapunov

curve L; L1, L2, L̃ are the sets, and ρ1 and ρ2 are the weighted functions
defined in Section 10. Suppose

e
(
L1p(ρ1), L

′
2q(ρ2), H(L̃; δ)

)
= e

(
L1p(ρ1), L

′
2q(ρ2)

)
∩

∩
{
u : u+ ∈ H(L̃; δ),

(∂u
∂n

)+∣∣∣
L2

∈ Lq(L2; ρ2)
}

and consider the mixed boundary value problem: Find the function u sat-
isfying the conditions






∆u = 0, u ∈ e
(
L1p(ρ1), L

′
2q(ρ2)H(L̃; δ)

)
,

u+
∣∣
L1\L̃

= F, F ∈ Lp
(
L1\L̃; ρ1), u+

∣∣
L̃

= Ψ, Ψ ∈ H(L̃; δ),
(∂u
∂n

)+∣∣∣
L2

= G, G ∈ Lq(L2; ρ2).

(41)

Using the conformal mapping, we reduce this problem to a circle. For
the existence of a solution of the obtained problem, it suffices to fulfil the
conditions (40) of Lemma 3, or the conditions

δk ≥
1

q′
− νk, k = 1,m1, δk ≤

1

q′
− λk, k = m1 + 1, 2m, (42)

with regard of the inequalities xk >
1
q′

− δ.

Moreover, to apply the method suggested in [2], we regard the conditions

(11) are fulfilled. In obtaining the integral equation with respect to ∂u+

∂ζ

(see Section 30 of [2]) we have instead of an absolute continuity of u on

γ̃ = w(L̃) to take advantage of the fact that u ∈ H(L̃; δ) and apply Lemmas
2 and 3.

It is not difficult to verify that the Poisson integral constructed by means
of its solution, satisfies all requirements of (41). Thus we arrive at the
following

Theorem 2. If the conditions (11) and (42) are fulfilled, then Statements

I–III of Theorem A are valid for the problem (41).
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