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ON ONE PROBLEM OF THE PLANE THEORY OF

ELASTICITY WITH A PARTIALLY UNKNOWN

BOUNDARY

G. KAPANADZE

Abstract. The problem of finding an equi-strong contour in a rect-
angular plate to each side of which are attached absolutely smooth
rigid punches with rectilinear bases, is considered. An unknown part
of the boundary is free from stresses. The condition for the contour
to be equi-strong is that the tangential normal stress are stable on it.

Using the methods of the theory of analytic functions, an elastic
equilibrium of the plate and analytic form of the equi-strong contour
are defined under different physical and geometrical conditions.

îâäæñéâ. à�êýæèñèæ� áîâç�áæ é�îåçñåý� òæîòæðæï öæàêæå å�-

ê��î�áéðçæùâ çëêðñîæï éëúâ�êæï �éëù�ê�, îëáâï�ù é�îåçñåýâ-

áæï àãâîáâ�äâ éëóéâáâ�âê ��ïëèñðñî�á ýæïðæ àèñãæ ïûëîòñúæ-

�êæ öð�éìâ�æ, ýëèë ï�ä�ãîæï ñùêë�æ ê�ûæèæ å�ãæïñò�èæ� à�îâ-

à�êæ á�ðãæîåãâ�æï�à�ê. çëêðñîæï å�ê��î�á ïæéðçæùæï ìæîë��

àñèæïýéë�ï é�ïäâ ð�êàâêùæ�èñîæ êëîé�èñîæ ú��ãæï éñáéæãë��ï.

�ê�èæäñî òñêóùæ�å� éâåëáâ�äâ á�õîáêë�æå à�êï�ä�ãîñèæ�

îëàëîù ïýâñèæï áîâç�áæ ûëê�ïûëîë��, �ïâãâ á�áàâêæèæ� å�-

ê��î�áéðçæùâ çëêðñîæï �ê�èæäñîæ ï�ýâ ïýã�á�ïýã� òæäæçñîæ á�

àâëéâðîæñèæ ìæîë�â�æï öâéåýãâãâ�öæ.

In the present work we consider the problem of finding an equi-strong
contour in a rectangular plate to each side of which are attached absolutely
smooth rigid punches with rectilinear bases. It is assumed that normal
compressive forces with principal vectors p and q are applied to the punches.
Our purpose is to find elastic equilibrium of the plate and analytic form of
an unknown contour under the condition that tangential normal stress takes
on that contour constant value.

Using the methods of complex analysis, the problem is reduced to the
mixed problem of the theory of analytic functions. The solution of the
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latter allows one to construct both the equation of the unknown contour
and Kolosov-Muskhelishvili’s complex potentials effectively (analytically).

Similar problems of the plane theory of elasticity for an infinite plane
weakened by equi-strong holes have been investigated in [1]–[4], and for a
finite doubly-connected region in [5]–[8].

Statement of the Problem. Let a homogeneous elastic plate on a plane
z = x + iy of a complex variable occupy a doubly-connected region whose
external boundary is a rectangle with the sides 2a and 2b, and internal one
is a closed smooth contour (an unknown part of the boundary). Suppose
that absolutely smooth rigid punches with rectilinear bases are applied to
the opposite sides of the rectangle; the punches are under the action of
compressive forces with principal vectors p and q, and the interior boundary
is free from stresses.

Consider the problem: Find an elastic equilibrium of the plate and ana-
lytic form of an unknown contour under the condition that the tangential
normal stress takes on that contour constant value σs = k = const.

Solution of the Problem. Due to the axial symmetry, we restrict ourselves
to the consideration of elastic equilibrium on a quarter of the plate only
and denote it by S (curvilinear pentagon). By L we denote its boundary

consisting of rectilinear segments L1 =
4
∪
1
L

(1)
j =

4
∪
1
Aj Aj+1 and arc L2 =

A5A1 (the unknown part of the boundary). Assume that A1A2‖A3A4

and A2 A3‖A4A5. Suppose also that normal compressive forces with the
principal vectors A2A3 = b and A3A4 = a act on the sides q/2 and p/2,
while forces, opposite to the above, i.e., −q/2 and −p/2, act on the sides
A4A5 and A1A2. It is not difficult to see that under these conditions

the normal displacements vn(t) on every segment L
(1)
j (j = 1, . . . , 4) are

constant, while tangential stresses τns on the whole boundary L and normal
stress σn on A5A1 are equal to zero.

On the basis of the well-known Kolosov-Muskhelishvili’s formulas ([9])
the problem under consideration is reduced to finding two holomorphic in
S functions ϕ(z) and ψ(z) with the following boundary conditions on L:

Re
[

e−iα(t)
(

κ ϕ(t) − t ϕ′(t) − ψ(t)
)

]

= 2µ vn(t), t ∈ L1, (1)

Re
[

e−iα(t)
(

ϕ(t) + t ϕ′(t) + ψ(t)
)

]

= c(t), t ∈ L1, (2)

ϕ(t) + t ϕ′(t) + ψ(t) = 0, t ∈ L2, (3)

Re
(

ϕ′(t)
)

=
k

4
, t ∈ L2, (4)

where α(t) is the angle lying between the outer normal to the contour Γ

and the ox-axis, i.e., α(t) = αk = −π
2 + π(k−1)

2 , k ∈ L
(1)
k (k = 1, . . . , 4).
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c(t) = Re
∫ t

A1

i σn(s0) exp i[α(t0)−α(t)]ds0. It is easy to show that c(t) is a

piecewise constant function

c(t) =











0, t ∈ L
(1)
1 ∪ L(1)

4 ,

−p/2, t ∈ L
(1)
2 ,

−q/2, t ∈ L
(1)
3 .

We require for the function ϕ(z) to be continuous in a closed region
S + L, and for the functions ϕ′(z) and ψ(z) to be everywhere continuously
extendable on the boundary L, except possibly for the points Ak in the
vicinity of which they satisfy the condition

|ϕ′(z)|, |ψ(z)| < M |z −Ak|−δk , (5)

where M = const, 0 ≤ δk ≤ 1, k = 2, 3, 4, 0 ≤ δ < 1
2 , k = 1, 5.

Summing equalities (1) and (2), then differentiating with respect to the
arc abscissa s and taking into account that the function vn(t) is piecewise
continuous, we obtain

Im ϕ′(t) = 0, t ∈ L1. (6)

It is proved (see [7]) that the problem (4), (6) under the condition (5)
has a unique solution ϕ′(z) = k

4 , and hence

ϕ(t) =
k

4
z (7)

(an arbitrary constant of integration is assumed to be equal to zero).
By virtue of the relations (2), (4) and (7), with respect to the potential

ψ(t) we obtain the boundary conditions

Re
[

e−i α(t)
(k

2
t+ ψ(t)

)]

= c(t), t ∈ L1,

k

2
t+ ψ(t) = 0, t ∈ L2.

(8)

Let the function z = ω(ς) map conformally the unit semi-circle D0 =
{|ς| < 1, Im ς > 0} onto the region S. By ak, (k = 1, . . . , 5) we denote
preimages of the points Ak and assume that a1 = 1, a3 = i, a5 = −1 (i.e.,
the contour L2 transforms into the segment [−1, 1]).

Taking into account that the equality Re
[

e−i α(t)t
]

= Re
[

e−i α(t)A(t)
]

holds on L1 (A(t) = Ak for t ∈ L
(1)
k (k = 1, . . . , 4)), from the conditions

(8) with respect to the functions ω(ς) and ψ0(ς) = ψ[ω(ς)] we obtain the
following boundary value problem:

Re
[

e−i α(t)ω(t)
]

= Re
[

e−i α(t)A(t)
]

, t ∈ l1,

Re
[

e−i α(t) ψ(t)
]

= c(t) − k

2
Re

[

e−i α(t)A(t)
]

, t ∈ l1, (9)
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k

2
ω(t) = −ψ(t), t ∈ l2,

where l1 =
4
∪
1
l
(k)
1 (l

(k)
1 (k = 1, . . . , 4) are the parts of the semicircle l0 =

{|t| = 1, Im t > 0} corresponding to the segments L
(1)
k under the mapping

z = ω(ς)); l2 = [−1, 1].
Consider the function

W0(ς) =







k

2
ω(ς), |ς| < 1, Im ς > 0,

−ψ0∗(ς), |ς| < 1, Im ς < 0,
(10)

where ψ0∗(ς) = ψ0(ς).
On the basis of (9) we conclude that the function W0(ς) is holomorphic

in the circle D = {|ς| < 1}, continuously extendable up to the boundary
l = {|t| = 1} and satisfies the boundary conditions

Re[iW0(σ)] = 0, σ ∈ l
(1)
1 ; Re[iW0(σ)] = 0, σ ∈ l

(1)
1∗ ;

Re[W0(σ)] =
ka

2
, σ ∈ l

(2)
1 ; Re[W0(σ)] =

ka+ p

2
, σ ∈ l

(2)
1∗ ;

Re[iW0(σ)] = −kb
2
, σ ∈ l

(3)
1 ; Re[iW0(σ)] = −kb+ q

2
, σ ∈ l

(3)
1∗ ;

Re[W0(σ)] = 0, σ ∈ l
(4)
1 ; Re[W0(σ)] = 0, σ ∈ l

(4)
1∗ ,

(11)

where l
(k)
1∗ (k = 1, . . . , 4) is the image of the arc l

(k)
1 under the mapping

ς1 = ς.
We will now seek for a solution of the problem (11) of the class h(a1,. . .,a5)

(for details, see [10]).
We introduce into consideration holomorphic in the circle D functions

Ψ1(ς) and Ψ2(ς) defined by the formulas

Ψ1(ς) =
[

W0(ς) +W0∗(ς)
]

/2; Ψ2(ς) = −i
[

W0(ς) −W0∗(ς)
]

/2, (12)

where W0∗(ς) = W0(ς).
It is easily seen that the functions Ψj(ς) (j = 1, 2) satisfy the condition

Ψj(ς) = Ψj∗(ς) (j = 1, 2) (13)

and the function W0(ς) is defined through the above functions by the for-
mula

W0(ς) = Ψ1(ς) + iΨ2(ς). (14)
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Substituting (12) into (11), for the functions Ψ1(ς) and Ψ2(ς) we obtain
the boundary value problems

Ψ1(σ) − Ψ1

( 1

σ

)

= 0, σ ∈ l
(1)
1 ;

Ψ1(σ) + Ψ1

( 1

σ

)

=
2ka+ p

2
, σ ∈ l

(2)
1∗ ;

Ψ1(σ) − Ψ1

( 1

σ

)

= − iq
2
, σ ∈ l

(3)
1 ;

Ψ1(σ) + Ψ1

( 1

σ

)

= 0, σ ∈ l
(4)
1 ;

(15)

Ψ2(σ) + Ψ2

( 1

σ

)

= 0, σ ∈ l
(1)
1 ;

Ψ2(σ) − Ψ2

( 1

σ

)

=
ip

2
, σ ∈ l

(2)
1 ;

Ψ2(σ) + Ψ1

( 1

σ

)

=
2kb+ q

2
, σ ∈ l

(3)
1 ;

Ψ2(σ) − Ψ2

( 1

σ

)

= 0, σ ∈ l
(4)
1 .

(16)

The problems (15) and (16) are of the same type. For the solution of
these problems we use the method of conformal sewing (see [11]). Under
the sewing function we mean Zhukovski’s function ξ = ς+ 1

ς
which maps the

circle D onto the plane with a cut along the segment I = [−2; 2] of the real
axis in such a way that the upper semicircle l1 is mapped onto the upper
contour and the lower semicircle l1∗ onto the lower contour of the segment
I. The positive direction on I is assumed to coincide with that of the real
axis. We introduce the functions

Φj(ξ) = Ψj

[

ς(ξ)
]

= Ψj

[

(ξ −
√

ξ2 − 4)/2
]

(j = 1, 2),

where under the square root is understood that branch which is positive on
the real axis outside the segment I. Then for σ ∈ l1 we have

Ψj(σ) = Ψj

[

(τ −
√

τ2 − 4)/2
]

= Φ+
j (τ), τ ∈ I,

Ψj

( 1

σ

)

= Ψj

[

(τ +
√

τ2 − 4)/2
]

= Φ−
j (τ), τ ∈ I, (j = 1, 2),

and the boundary conditions (15) and (16) take the form

Φ+
1 (τ) − Φ−

1 (τ) = 0, τ ∈ [δ1; 2];

Φ+
1 (τ) + Φ−

1 (τ) =
2ka+ p

2
, τ ∈ [0; δ1];

Φ+
1 (τ) − Φ−

1 (τ) = − iq
2
, τ ∈ [−δ2; 0];

Φ+
1 (τ) + Φ−

1 (τ) = 0, τ ∈ [−2;−δ2];

(17)
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Φ+
2 (τ) + Φ−

2 (τ) = 0, τ ∈ [δ1; 2];

Φ+
2 (τ) − Φ−

2 (τ) =
ip

2
, τ ∈ [0; δ1];

Φ+
2 (τ) + Φ−

2 (τ) =
2kb+ q

2
, τ ∈ [−δ2; 0];

Φ+
2 (τ) − Φ−

2 (τ) = 0, τ ∈ [−2;−δ2],

(18)

where 2; δ1; 0;−δ2;−2 are the images of the points ak (k = 1, . . . , 5), respec-
tively, under the mapping ξ = ς + 1

ς
.

We will seek for bounded at infinity solutions of the problems (17) and
(18) of the class h(−2;−δ2; 0; δ1; 2), satisfying the condition

Φj(ξ) = Φj(ξ) (j = 1, 2). (19)

The indices for the given class of problems are equal to −2.
Consider the problem (17). The necessary and sufficient condition for

the solvability of the problem has the form

(2ka+ p)

δ1
∫

0

dτ

χ
1
(τ)

− iq

0
∫

−δ2

dτ

χ
1
(τ)

= 0, (20)

and the solution itself is given by the formula

Φ1(ξ) =
χ

1
(ξ)

2πi

[

2ka+ p

2

δ1
∫

0

dτ

χ
1
(τ)(τ − ξ)

− iq

2

0
∫

−δ2

dτ

χ
1
(τ)(τ − ξ)

]

, (21)

where χ
1
(ξ) =

√

(ξ + 2)(ξ + δ2)ξ(ξ − δ1).
Introduce the functions ζ2(ξ) = Φ2(−ξ); the boundary conditions (18)

yield

ζ+
2 (τ) + ζ−2 (τ) = 0, τ ∈ [−2;−δ1]; ζ+

2 (τ) − ζ−2 (τ) = − ip
2
, τ ∈ [−δ1; 0];

ζ+
2 (τ) + ζ−2 (τ) =

2kb+ q

2
, τ ∈ [0; δ2]; ζ+

2 (τ) − ζ−2 (τ) = 0, τ ∈ [δ2; 2].

The necessary and sufficient condition for the existence of a bounded at
infinity solution of the class h(−2;−δ2; 0; δ1; 2) has the form

(2kb+ q)

δ2
∫

0

dτ

χ
2
(τ)

− ip

0
∫

−δ1

dτ

χ
2
(τ)

= 0, (22)

and the solution itself is given by the formula

ζ2(ξ) =
χ

2
(ξ)

2πi

[

2kb+ q

2

δ2
∫

0

dτ

χ
2
(τ)(τ − ξ)

− ip

2

0
∫

−δ1

dτ

χ
2
(τ)(τ − ξ)

]

, (23)
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where χ
2
(ξ) =

√

(ξ + 2)(ξ + δ1)ξ(ξ − δ2).
It is easy be verify that the functions Φ1(ξ) and Φ2(ξ) = ζ2(−ξ) satisfy

the condition (19).
The integrals appearing in formulas (20)–(23) are the first and third kind

elliptic integrals (see [12]).
If the approximations

F (ϕ, k) =

ϕ
∫

0

dϕ
√

1 − k2 sin2 ϕ
≈

ϕ
∫

0

(

1 +
1

2
k2 sin2 ϕ

)

dϕ;

Π(ϕ;n; k) =

ϕ
∫

0

dϕ

(1−n sin2 ϕ)
√

1−k2 sin2 ϕ
≈

ϕ
∫

0

[

1+
(k2

2
+ n

)

sin2 ϕ
]

dϕ

are satisfied, then the conditions (20) and (22) take the form

(2ka+ p)
[

10δ1 + 8δ2 − δ1δ2
]

= −q
[

8δ1 + 10δ2 + δ1δ2
]

,

(2kb+ q)
[

8δ1 + 10δ2 − δ1δ2
]

= −p
[

10δ1 + 8δ2 + δ1δ2
]

.
(24)

and the solution of the problem (11) by virtue of (14) takes the form

W0[ς(ξ)] = Φ1(ξ) + iΦ2(ξ) =
δ1δ2

8(δ1 + δ2)
√

2(δ1 + δ2)
×

×
[
√

(

1 +
2

ξ

)(

1 +
δ2
ξ

)(

1 − δ1
ξ

)

(2ka+ p− q)+

+ i

√

(

1 − 2

ξ

)(

1 − δ1
ξ

)(

1 +
δ2
ξ

)

(2kb+ q − p)

]

. (25)

Thus owing to formula (10), the equation of an unknown contour has the
form (assuming ξ = σ ∈ (−∞;−2] ∪ [2;∞))

w0(σ) = ω[ς(σ)] =
2

k
W0[ς(σ)] =

δ1δ2

4k(δ1 + δ2)
√

2(δ1 + δ2)
×

×
[

(2ka+ p− q)

√

(

1 +
2

σ

)(

1 +
δ2
σ

)(

1 − δ1
σ

)

+

+ i(2kb+ q − p)

√

(

1 − 2

σ

)(

1 − δ1
σ

)(

1 +
δ2
σ

)

]

, (26)

σ ∈ (−∞;−2] ∪ [2;∞)

and the function ψ0[ς(ξ)] is given by the formula

ψ0[ς(ξ)] = W0[ς(ξ)] = −k
2
ω0(ξ) = − δ1δ2

8(δ1 + δ2)
√

2(δ1 + δ2)
×
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×
[

(2ka+ p− q)

√

(

1 +
2

ξ

)(

1 +
δ2
ξ

)(

1 − δ1
ξ

)

−

− i(2kb+ q − p)

√

(

1 − 2

ξ

)(

1 − δ1
ξ

)(

1 +
δ2
ξ

)

]

. (27)

Having found a part of the unknown equi-strong contour and bearing the
axial symmetry in mind, we will be able to find the remaining parts of that
contour by means of axisymmetric mapping.

Revert now to the conditions (24). These condition provide us with
δ2 = αδ1, where

α =
8k2ab+ 4k[(a− b)(p− q) + 9(−ap+ bq)] − 4(p− q)(5p+ 4q)

8k2ab+ 4k[(a− b)(−p+ q) + 9(ap− bq)] + 4(p− q)(5q + 4p)
, (28)

k = − p(10 + 8α) + q(8 + 10α)

a(10 + 8α) + b(8 + 10α) − (a+ b)δ2
. (29)

Since 0 < δ2 < 2, from (29) we obtain the estimate

10(p+ αq) + 8(q + αp)

8(b+ αa) + 10(a+ αb)
< −k < 10(p+ αq) + 8(q + αp)

8(b+ αa) + 10(a+ αb) − 2(a+ b)
. (30)

Thus for determination of the parameters k, δ1 and δ2 we have obtained
the conditions (28)–(30). However, it is practically impossible to determine
the above parameters in a general case, and thus we are obliged to restrict
ourselves to the consideration of particular cases of practical value for which
the problem can be solved once and for all.

1. Let us consider some of the cases, for example, the case in which all
sides of the square, weakened by an equi-strong hole, are compressed, i.e.,
we put p = q and a = b.

Assuming δ1 = δ2 = δ, two conditions (24) are reduced to one

(2ka+ p)(18 − δ) = −p(18 + δ),

which in turn yields

k =
−36p

λ(18 − δ)
(λ = 2a − is the side length of the square),

δ =
18(kλ− 2p)

kλ
.

Since 0 < δ < 2, for k we obtain the estimate −k ∈
(

2p
λ

; 9p
4λ

)

.
On the basis of formula (26), the equation for the quarter of the unknown

contour takes the form

w0(σ) =

√
δ λ

16

√

1 − δ2

σ2

(

√

1 +
2

σ
+ i

√

1 − 2

σ

)

, (31)

σ ∈ (−∞;−2] ∪ [2;∞).
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If by x1 and x∗ we denote respectively abscissas of the points A1 and A
(A is the midpoint of the contour A1A5), then we will get

x1 =

√
2

32
λ
√
δ
√

4 − δ2, x∗ =

√
δ

16
λ.

This allows us to conclude that for −k ∈
(

2p
λ

; 36p

(18−
√

2)λ

)

we have 0 < δ <
√

2; x1 > x∗; and for −k = 36p

(18−
√

2)λ
, δ =

√
2 we have x1 = x∗ =

4
√

2
16 λ. For

−k = 54p

(27−
√

3)λ

)

, the coordinate x1 reaches its maximum x1 max = λ
25/233/4

,

x∗ =
√

3
2 x1 max, δ = 2

√
3

3 . For −k → 2p
λ

, x1, x
∗ → 0 (the hole transforms

into a point), and for −k → 9p
4λ

, x1 → 0, x∗ →
√

2
16 λ.

2. Consider the case p = q, a > b. Then from (28) we obtain

α =
2kab− 9p(a− b)

2kab+ 9p(a− b)
,

(which in its turn allows one to conclude that α > 1) and

−k =
9(α+ 1)(a− b)p

2(α− 1)ab
. (32)

In this case, the condition (30) takes the form

9(α+ 1)p

a(5 + 4α) + b(4 + 5α)
<

9(α+ 1)(a− b)p

2(α− 1)ab
<

9(α+ 1)p

4a(α+ 1) + b(3 + 5α)
,

or
2

a(5 + 4α) + b(4 + 5α)
<

a− b

(α− 1)ab
<

2

4a(α+ 1) + b(3 + 5α)
.

The above condition results in the system










4α
(

a− 5

4
b
)

+ 5
(

a− 4

5
b
)

> 0,

α
(

a− 5

4
b
)

+
(

a− 3

4
b
)

< 0,

for the existence of which it is necessary and sufficient that the inequality
a < 5

4 b to take place, and hence b < a < 5
4 b; for α we obtain the estimate

1 < α <
5a− 4b

5b− 4a
. (33)

Choosing α by virtue of the condition (33), we define k by formula (32),
and for δ2 and δ1 we obtain

δ2 =
k[a(10 + 8α) + b(8 + 10α)] + 18p(α+ 1)

k(a+ b)
, δ1 =

δ2
α
.

Then the functions ω0(σ) and ψ0[ς(ξ)] are defined by formulas (26) and
(27) in which we put p = q.
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3. Let us now find out what condition should satisfy the values p, q, a
and b in order to assume δ1 = δ2 = δ a priori. Obviously, in this case α = 1,
and from (28) we get

−k =
p2 − q2

2(ap− bq)
. (34)

Since −k > 0, the above formula allows us to conclude that we have to

require either

{

p > q

ap > bq
or

{

p < q

ap < bq
.

The relation (30) takes in the case under consideration the form

1

a+ b
<

p− q

2(ap− bq)
<

9

8(a+ b)
. (35)

Assuming

{

p > q

ap > bq
, from (35) we obtain the system







(p+ q)(a− b) < 0,

ap− bq >
4

9
(b + a)(p− q).

Similarly, under the assumption

{

p < q

ap < bq
we have







(p+ q)(a− b) > 0,

ap− bq <
4

9
(b + a)(p− q).

Thus we have obtained the following result: if


















p > q,

b > a,

ap− bq > 0,

4(bp− aq) < 5(ap− bq),

or



















p < q,

b < a,

bq − ap > 0,

4(bp− aq) > 5(ap− bq),

then for the condition δ1 = δ2 = δ the above formulated problem has a
solution, the values k and δ are defined by the formulas

−k =
p2 − q2

2(ap− bq)
,

δ =
18k(a+ b) + 18(p+ q)

k(a+ b)

and the functions ω0(σ) and ψ0[ς(ξ)] are defined by formulas (26) and (27)
in which we have to write δ1 = δ2 = δ.
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