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ON BASES OF MULTIDIMENSIONAL HAAR TYPE

WAVELET SYSTEMS IN THE SPACES Lp
Q(dµ), 1 ≤ p <∞

Z. MELIKIDZE

Abstract. In the paper necessary and sufficient conditions on a
Borel measure µ for which the Haar type wavelet system of functions
{χn(x)}∞n=1

is a basis in L
p
Q

(dµ), 1 ≤ p < ∞ are established.

îâäæñéâ. ê�öîëéöæ ê�ìëãêæ� �ñùæèâ�âèæ á� ï�çé�îæïæ ìæîë-

�â�æ �ëîâèæï µ äëé�äâ îëéèæïåãæï�ù ÿ��îæï ðæìæï ãâæãâèâðå�

{χn(x)}∞n=1 ïæïðâé� ��äæïæ� L
p

Q(dµ), 1 ≤ p < ∞, ïæãîùâöæ.

1. Introduction

Let E be a Borel set in Rn. Suppose that µ is a finite positive Borel
measure on E. By the symbol Lp

E(dµ), 1 ≤ p ≤ ∞, we denote the Banach
space of all functions f such that

‖f‖Lp

E
(dµ) =

(
∫

E

|f(x)|pdµ

)1/p

<∞ (1)

for 1 ≤ p <∞ and

‖f‖L∞
E

(dµ) = ess sup
x∈E

|f(x)| (relative to µ) (2)

for p = ∞. If µ is the Lebesgue measure, then we write Lp
E instead of

Lp
E(dµ).
In the sequel by the symbol Zn will be denoted the space of all integer

vectors γ whose dimension equals n.
Let A : Rn → Rn be a fixed linear map such that A(Zn) ⊂ Zn and that

all (complex) eigenvalues of A have absolute values greater than 1. Further,
assume that | detA| = δ. From the properties of A mentioned above it
follows that δ ≥ 2 is a natural number.

We will treat with Zn as an additive group. Then A(Zn) is a normal
subgroup, so we can form the cosets of A(Zn) in Zn. They naturally form

2000 Mathematics Subject Classification. 42C40; 65T60.
Key words and phrases. Haar type wavelet system, Haar set, fractal set, basis in a

wide sense.



62 Z. MELIKIDZE

a group. Let us take only one element from each coset of A(Zn). A subset
of Zn defined by this way will be called a set of digits. It is well known (see
[10], Proposition 5.5) that the number of different cosets of A(Zn) in Zn

equals | detA| = δ.
Let us fix a set of digits S = {k1, . . . , kδ} and define the set

Q =

{

x ∈ Rn : x =

∞
∑

j=1

A−jsj , where sj ∈ S

}

. (3)

It is easy to check that the series in (3) is absolutely convergent.
It can be happened, however, that different sets of digits give setsQ which

are different. For some sets of digits the sets Q can be ”very” irregular. Such
sets are called fractals.

Now we define the vectors

k
(1)
0 = Θ (where Θ is the zero vector),

k
(δ(m−1)+i)
n+1 = k

(m)
n + A−(n+1)(ki), n = 0, 1, . . . , m = 1, . . . , δn, i = 1, . . . , δ

and the sets

Q
(m)

n = A−n(Q) + k(m)
n , n = 0, 1, . . . , m = 1, . . . , δn

for the sets of digits S = {k1, . . . , kδ}.
Let Q be the set introduced by (3). Then (see [10], Proposition 5.19) the

following properties of Q hold:
(i) Q is a compact subset of Rn;

(ii) Q =
δn
⋃

m=1
Q

(m)

n , n = 1, 2, . . . ;

(iii)
⋃

γ∈Zn

(Q+ γ) ≡ Rn;

(iv) Q contains an open set.
In addition, let us suppose that the set of digits S = {k1, . . . , kδ} are

chosen so that Q satisfies the condition
(v) |Q| = 1, where |Q| denotes the Lebesgue measure of Q.
The interior part of Q (measure of its boundary equals zero) will be

denoted by Q. By the same manner, we assign to the each set Q
(m)

n , n =

0, 1, . . . , m = 1, . . . , δn, its interior part Q
(m)
n . The sets Q

(m)
n , n =

0, 1, . . . , m = 1, . . . , δn are called Haar sets.
Let Aδ = (αi,j), i = 0, . . . , δ − 1, j = 1, . . . , δ be the matrix, such

that α0,j = 1, j = 1, . . . , δ and
δ
∑

j=1

αn,jαm,j = δδn,m, where δn,m is the

Kronecker delta.
Let us define the following function system

χ
(0)
0 (x) = 1, x ∈ Q,
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χ(m)
n (x) =

{

δn/2αi,j , x ∈ Q
(lδ+j)
n+1

0, x ∈ Q\Q
(l+1)

n ,
(4)

n = 0, 1, . . . , m = 1, . . . , δn(δ − 1), j = 1, . . . , δ,

where 1 ≤ i ≤ δ − 1 and l are chosen so that i− 1 ≡ (m − 1)(mod(δ − 1))

and l =
[

m−1
δ−1

]

([a] is an entire part of the real number a).

In this paper we deal with general Borel measures. Hence, it should
be taken into account values of functions (4) at the points of discontinu-
ity. Thus, we define values of functions (4) so that a closed system in

CQ can be obtained. Namely, the values of the functions χ
(m)
n (x), n =

0, 1, . . . , m = 1, . . . , δn(δ − 1), at the point of discontinuity x0 is equal to

the arithmetic mean of the numbers δn/2αi,j , for which x0 ∈ Q
(lδ+j)
n+1 , j =

1, . . . , δ, i and l have the same meaning as in (4).
Let us write

χ1(x) = χ
(0)
0 (x) and for n = δk + j χn(x) = χ

(j)
k (x). (5)

System (5) is called Haar type wavelet system and the latter is an or-
thonormal basis in Lp

Q, 1 ≤ p <∞.

A system of functions {fn(x)} is said to be closed in Lp(dµ), 1 ≤ p <∞,
if every function from Lp(dµ) can be approximated in the norm by finite
linear combinations of fn. A system {fn(x)} in Lq(dµ) (q denotes the
conjugate exponent of p, 1 ≤ p < ∞) is called total with respect to Lp(dµ)
if only the zero function in Lp(dµ) is orthogonal to fn for any n. By A. I.
Markushevitch [9], we call the system of functions {fn(x)} a basis in a wide

sense for Lp(dµ), 1 ≤ p < ∞, if that system is minimal closed in Lp(dµ)
and the system conjugate to {fn(x)} is total with respect to Lp(dµ).

The problem of the existence of a conditional basis in a Hilbert space was
open for a long time. The latter problem has been solved by K.I. Babenko
[1] who showed that the system obtained by product of the trigonometric

system
{

einx
}∞

n=−∞
and the function Mα(x) = |x|α, 0 < α < 1/2, forms

a conditional basis in Lp
[−π,π].

Observe that if the system {fn(x)M(x)}, where M is some function,
forms a basis in Lp for some 1 ≤ p < ∞, then the system {fn} is a basis
itself in Lp(ψ(x)dx) and vice versa, where ψ(x) = |M(x)|p.

In 1972 R. Hunt, B. Muckenhoupt and R. Wheeden [3] derived a char-
acterization of the class of all weight functions W for which W (x)einx is a
basis in Lp

[0,2π]. Namely, the next statement holds.

Theorem (Hunt, Muckenhoupt, Wheeden). Let W (x) be a non-

negative 2π-periodic function. The trigonometric system
{

einx
}∞

n=−∞
is a

basis in Lp
[0,2π](W (x)dx), 1 ≤ p <∞, if and only if there exists an absolute
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constant Kp such that for any interval I

(

1

|I|

∫

I

W (x)dx

)(

1

|I|

∫

I

(W (x))−1/(p−1)dx

)p−1

≤ Kp,

holds, where |I| denotes a length of I.
In 1971 A. S. Krantzberg [8] described a class of all positive Borel mea-

sures µ for which the Haar system is a basis in Lp(dµ), 1 ≤ p < ∞. In
particular the following statement holds.

Theorem (Krantzberg). Let µ be a positive Borel measure on [0, 1].
The Haar system {χn(x)}∞n=1 is a basis in Lp(dµ), 1 ≤ p <∞, if and only

if µ has the form

dµ(x) = ψ(x)dx, (6)

where ψ(x) is a non-negative Lebesgue integrable function satisfying the con-

dition
(

1

|∆|

∫

∆

ψ(x)dx

)(

1

|∆|

∫

∆

(ψ(x))−1/(p−1)dx

)p−1

≤ Kp

for any dyadic interval ∆ = ((m− 1)/2n,m/2n) (n=1, 2, . . . ;m=1, . . . , 2n),
where Kp depends only on p.

In the sequel the symbol Lq(dµ) will denote the dual space of Lp(dµ),
1 ≤ p <∞: 1/p+ 1/q = 1 (as usual, we assume 1/∞ = 0 and 1/0 = ∞. So
that p = 1 implies q = ∞).

2. The system {ϕn(x)}∞n=1 as a basis in a wide sense

Theorem 1. Suppose that {ϕn(x)}∞n=1 ∈ L∞
Q is minimal in L∞

Q . Assume

that {ψn(x)}∞n=1 is biorthonormal to {ϕn(x)} and, besides, {ϕn(x)}∞n=1 is

total with respect to L1
Q. Then the system {ϕn(x)}∞n=1 is a basis in a wide

sense in Lp
Q(ψ(x)dx), 1 ≤ p < ∞ (ψ(x) ∈ L1

Q, ψ(x) > 0 a.e. on Q) if and

only if for any natural number n

|ψn(x)|p[ψ(x)]−1 ∈ L
1/(p−1)
Q .

Proof. Necessity. Since the system {ϕn(x)}∞n=1 is a basis in a wide sense in
Lp

Q(ψ(x)dx), there exists a system {fn(x)}∞n=1 in Lq
Q(ψ(x)dx) biorthonor-

mal to {ϕn(x)}∞n=1 (1/p+ 1/q = 1) such that
∫

Q

ϕn(x)fk(x)ψ(x)dx = δn,k, n = 1, 2, . . . , k = 1, 2, . . . .
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It is clear that
∫

Q

[

fk(x) − ψk(x)[ψ(x)]−1
]

ϕn(x)ψ(x)dx = 0

for any natural number n. Hence
∫

Q

[fk(x)ψ(x) − ψk(x)]ϕn(x)dx = 0.

Taking into account that the system {ϕn(x)}∞n=1 is total with respect to
L1

Q, we have

fk(x) = ψk(x)[ψ(x)]−1

Consequently

ψn(x)[ψ(x)]−1 ∈ Lq
Q(ψ(x)dx).

Hence,

|ψn(x)|p[ψ(x)]−1 ∈ L
1/(p−1)
Q

for any natural number n. Necessity has been proved.
Sufficiency. Suppose that

|ψn(x)|p[ψ(x)]−1 ∈ L
1/(p−1)
Q .

Hence,

fn(x) = ψn(x)[ψ(x)]−1 ∈ Lq
Q(ψ(x)dx).

Further, note that {fn(x)}∞n=1 is a system biorthonormal to {ϕn(x)}∞n=1.
Consequently the system {ϕn(x)}∞n=1 is minimal in Lp

Q(ψ(x)dx).

Now assume that {ϕn(x)}∞n=1 is not closed in Lp
Q(ψ(x)dx). Then there

exists a function f ∈ Lq
Q(ψ(x)dx), f(x) 6≡ 0, such that

∫

Q

f(x)ϕn(x)ψ(x)dx = 0

for any natural number n. Since the system {ϕn(x)}∞n=1 is total with respect
to L1

Q, it follows that

f(x)ψ(x) ≡ 0

Which contradics the assumption f(x)ψ(x) 6≡ 0. Finally we conclude that
{ϕn(x)}∞n=1 is closed in Lp

Q(ψ(x)dx).

It remains to prove that the system {fn(x)}∞n=1 conjugate to {ϕn(x)}∞n=1

is total with respect to Lp
Q(ψ(x)dx). Let f(x) ∈ Lp

Q(ψ(x)dx) and
∫

Q

f(x)fn(x)ψ(x)dx = 0
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for any natural n. Hence
∫

Q

f(x)ϕn(x)dx = 0, n = 1, 2, . . . .

Taking into account that the system {ϕn(x)}∞n=1 is total with respect to
L1

Q, we obtain

f(x) ≡ 0,

which clearly means that the system {fn(x)}∞n=1 is total with respect
to Lp

Q(ψ(x)dx).
The theorem has been proved. �

3. The system {χn(x)}∞n=1 as a basis

Theorem 2. The system {χn(x)}∞n=1 is a basis in the space Lp
Q(dµ),

1 ≤ p <∞, if and only if

(a) there exists a Lebesgue integrable function ψ(x) such, that dµ(x) =
ψ(x)dx;

(b) ψ(x) > 0 a.e. on Q;

(c) [ψ(x)]−1 ∈ L
1/(p−1)
Q ;

(d) there exists a number Mp > 0 such, that for every Haar set Q
(m)
n ,

n = 0, 1, . . . , m = 1, . . . , δn, we have

(

1

|Q
(m)
n |

∫

Q
(m)
n

ψ(x)dx

)(

1

|Q
(m)
n |

∫

Q
(m)
n

[ψ(x)]−1/(p−1)dx

)p−1

≤Mp.

To prove Theorem 2 we use the following fact, which is a direct con-
sequence of Theorem 1 and of Lemmas 1 and 2 from [7] (we only notice
that these Lemmas in multi- dimensional case can be derived by the same
manner as in the case of one-dimensional case).

Theorem 3. The system {χn(x)}∞n=1 forms a basis in a wide sense in

Lp(dµ), 1≤ p<∞, if and only if conditions (a), (b) and (c) of Theorem 2
hold.

Assume that the measure µ satisfies conditions (a), (b), (c) of Theorem
2 which means that the system {χn(x)}∞n=1 is a basis in a wide sense in
Lp(dµ), 1 ≤ p <∞. Denote by Sn(f, x) the partial sums for f ∈ Lp(dµ) in
terms of that system. Consider the Haar sets of maximal measure on which
all the functions χn(x), n = 1, . . . , N (N ≡ 1(mod(δ− 1))), are constant. It
is obvious that for a given integer N ≥ 1 there are N number of such sets
. Let us denote the latter sets by Γ1, . . . ,ΓN . Using this notation we can
formulate the next lemma which will be useful to prove Theorem 2.
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Lemma 1. Let µ be a measure satisfying conditions (a), (b), (c) of

Theorem 2. Then for every N ≥ 1 (N ≡ 1( mod (δ − 1))) we have

SN (f, x) =
1

|Γn|

∫

Γn

f(t)dt if x ∈ Γn, 1 ≤ n ≤ N. (7)

Proof. By the assumption we have that {χi(x)}
∞
i=1 is a basis in a wide sense

in Lp(dµ). We will construct the conjugate system {ψi(x)}
∞
i=1. Obviously

the latter can be written as follows

ψi(x) = χi(x)[ψ(x)]−1 . (8)

For any N ≥ 1 (N ≡ 1(mod(δ − 1))) and f ∈ Lp(dµ) we have

SN (f(x)) =

N
∑

i=1

ciχi(x),

where

ci =

∫

Q

f(x)ψi(x)dµ. (9)

Now we use an induction. For N = 1 we have

c1 =

∫

Q

f(x)χ1(x)[ψ(x)]−1ψ(x)dx =

∫

Q

f(x)dx.

Hence

S1(f, x) =

∫

Q

f(x)dx.

Let us now assume that (7) holds for some N ≡ 1(mod(δ − 1)) and
calculate SN+δ−1(f, x). Indeed, it is easy to see that

SN+δ−1(f, x) = SN (f, x) +

δ−1
∑

i=1

cN+iχN+i(x).

Denote by P1, . . . , Pδ the Haar sets on which χN+i(x), 1 ≤ i ≤ δ − 1, takes

the values αi,1|Γk|
−1/2, . . . , αi,δ|Γk|

−1/2 respectively, where

∣

∣

∣

∣

δ
⋃

j=1

Pj \ Γk

∣

∣

∣

∣

=

0. Hence, due to (8) and (9) we have

cN+i =

∫

Q

f(x)ϕN+i(x)[ψ(x)]−1ψ(x)dx =

∫

Q

f(x)ϕN+i(x)dx =

=
δ

∑

j=1

αi,j |Γk|
−1/2

∫

Pj

f(x)dx.
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Further, if x ∈ Pn, 1 ≤ n ≤ δ, then

δ−1
∑

i=1

cN+iϕN+i(x) =

δ−1
∑

i=1

δ
∑

j=1

αi,j |Γk|
−1/2

∫

Pj

f(x)dxαi,n|Γk|
−1/2 =

= |Γk|
−1

δ
∑

j=1

δ−1
∑

i=1

αi,jαi,n

∫

Pj

f(x)dx = |Γk|
−1

δ
∑

j=1

∫

Pj

f(x)dx

δ−1
∑

i=1

αi,jαi,n.

Since
δ−1
∑

i=1

αi,jαi,n = δδj,n − 1, we have

δ−1
∑

i=1

cN+iϕN+i(x) = |Γk|
−1

δ
∑

j=1

(δδj,n − 1)

∫

Pj

f(x)dx =

= |Γk|
−1

δ
∑

j=1

δδj,n

∫

Pj

f(x)dx − |Γk|
−1

δ
∑

j=1

∫

Pj

f(x)dx =

= |Γk|
−1δ

∫

Pn

f(x)dx − |Γk|
−1

∫

Γk

f(x)dx =

= |Pn|
−1

∫

Pn

f(x)dx − |Γk|
−1

∫

Γk

f(x)dx.

Consequently

SN+δ−1(f, x) =
1

|Pn|

∫

Pn

f(x)dx for x ∈ Pn, 1 ≤ n ≤ δ. (10)

Taking into account that χN+i (1≤ i≤ δ−1) equals zero outside of Γk and
(7), (10), finally we have the desired result. Lemma 1 has been proved. �

Proof of Theorem 2. It is well known that a basis in a wide sense in Lp(dµ)
is a basis if and only if norms of partial sums of functions from this basis
are uniformly bounded. Thus, in order to obtain sufficiency of (a)-(d), by
Theorem 3 it suffices to estimate norms of SN(f, x). Let N ≡ 1(mod(δ−1))
and 0 ≤ k < δ − 1. Without loss of generality we assume that Γn (for the
Haar sets Γ1, · · · ,ΓN considered above) denotes that Haar set for which the
functions χN+k(x) (0 ≤ k < δ − 1) equal zero outside of ΓN . According to
Lemma 1 we have

∫

Q

|SN+k(f, x)|pψ(x)dx =

N
∑

i=1

∫

Γi

|SN+k(f, x)|pψ(x)dx =
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=

N−1
∑

i=1

∣

∣

∣

∣

1

|Γi|

∫

Γi

f(x)dx

∣

∣

∣

∣

p ∫

Γi

ψ(x)dx+

+

∫

ΓN

∣

∣

∣

∣

1

|ΓN |

∫

ΓN

f(x)dx +

k
∑

j=1

∫

ΓN

f(x)χN+j(x)dxχN+j(x)

∣

∣

∣

∣

p

ψ(x)dx ≤

≤

N−1
∑

i=1

1

|Γi|p

∫

Γi

|f(x)|pψ(x)dx

(
∫

Γi

[ψ(x)]−q/pdx

)p/q ∫

Γi

ψ(x)dx+

+
(1 +B2k)p

|ΓN |p

∫

ΓN

|f(x)|pψ(x)dx

(
∫

ΓN

[ψ(x)]−q/pdx

)p/q ∫

ΓN

ψ(x)dx ≤

≤

(

1 + (1 +B2(δ − 2))p

)

Mp

∫

Q

|f(x)|pψ(x)dx,

where B = max {|αi,j | : 0 ≤ i ≤ δ − 1, 1 ≤ j ≤ δ}. Sufficiency of Theorem
2 has been proved.

To show necessity, we use the fact that if the system {χi(x)}
∞
i=1 is a basis

in Lp(dµ), then

||SN || ≤M < +∞. (11)

On the other hand, by virtue of Theorem 3, Lemma 1 and the boudedness
of the operators SN (N ≡ 1(mod(δ − 1))) we have

||SN || = sup
||f ||

L
p
Q

(dµ)≤1

||SN (f, x)||Lp

Q(dµ) ≥ max
1≤i≤N

sup ||SN (f, x)||Lp

Q(dµ), (12)

where the latter supremum is taken over all f provided

||f ||Lp(dµ) ≤ 1 and f(x) = 0 for x ∈ Q\Γi.

Equality (8) shows that the supremum is equal to

sup
||f ||

L
p
Q

(dµ)≤1

||SN (f, x)||Lp

Γi
(dµ) =

=

(
∫

Γi

ψ(x)dx

)1/p

sup
||f ||

L
p
Q

(dµ)≤1

∣

∣

∣

∣

∣

∣

1

Γi

∫

Γi

f(x)dx

∣

∣

∣

∣

∣

∣

for i = 1, . . . , N (13)

Using the equality

f(x) = f(x)[ψ(x)]−1ψ(x)

we obtain

sup
||f ||

L
p
Q

(dµ)≤1

∣

∣

∣

∣

∫

Γi

f(x)dx

∣

∣

∣

∣

= ||[ψ(x)]−1||Lp
Γi

(dµ) =

(
∫

Γi

[ψ(x)]−1/(p−1)dx

)(p−1)/p

.



70 Z. MELIKIDZE

Hence, (11)-(13) lead to necessity of (d). �
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