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TWO-WEIGHTED INEQUALITY FOR SOME SUBLINEAR
OPERATORS IN LEBESGUE SPACES, ASSOCIATED
WITH THE LAPLACE-BESSEL DIFFERENTIAL
OPERATORS

E. GULIYEV

ABSTRACT. In this paper several general theorems for the bounded-
ness of sublinear operators, associated with the Laplace—Bessel dif-
ferential operator on a weighted Lebesgue space are established. Suf-
ficient conditions on weighted functions w and w; are given so that
certain sublinear operator is bounded from the weighted Lebesgue
spaces Lp,w,~(R) into Lpw,,~(R}).
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1. INTRODUCTION

The singular integral operators that have been considered by Mihlin [21]
and Calderon and Zygmund [9] are playing an important role in the theory
Harmonic Analysis and in particular, in the theory of partial differential
equations. Klyuchantsev [19] and Kipriyanov and Klyuchantsev [20] have
firstly introduced and investigated by the boundedness in L,-spaces of mul-
tidimensional singular integrals, generated by the Laplace-Bessel differential

n
operator Ap, = > % + By, By, = % + L9~ >0 (B, singular inte-
k n

= Ty Oxy
grals). Aliev and Gadjiev [5] and Gadjiev and Guliyev [7] have studied the
boundedness of B,, singular integrals in weighted L,-spaces with radial and
general weights consequently. The maximal functions, singular integrals,
potentials and related topics associated with the Laplace-Bessel differential
operator Ap_ which is known as an important differential operator in anal-
ysis and its applications, have been the research areas many mathematicans
such as I. Kipriyanov and M. Klyuchantsev [19]-[20], L. Lyakhov [23]-[24],
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I. A. Gadjiev and 1. A. Aliev [6]-[5], I. A. Aliev, S. Bayrakei [3, 4], V. S.
Guliyev [12]-[14] and others.

In the paper we shall prove the boundedness of some sublinear opera-
tors, generated by the B, Bessel differential operators on a weighted L,
spaces. Sufficient conditions on weighted functions w and w; are given
so that certain sublinear operator is bounded from the weighted Lebesgue
spaces Ly . ~(R") into L, ., (R%). The condition (2) (see below) is sat-
isfied by many interesting operators in harmonic analysis, such as the B,
singular integrals (for example, see [19, 20] ), B,, Hardy-Littlewood maxi-
mal operators (see also [12, 14]- [25]) and so on.

2. NOTATIONS AND BACKGROUND

Suppose that R™ is the n-dimensional Euclidean space, z = (21,...,Z,),
&= (&,...,&,) are vectors in R™, (z,€) = 2161 + .. . + 2nén, 2] = / (2, 2).
Let R} = {zx = (21,...2n): 2y >0},7v>0. E(z,7) ={y € R} : |[z—y| <
r}, Xy ={z e R} : |z| =1}

For measurable set E C R let |E|, = [, x)dx. Then |[E(0,r)], =
w(n,y)r" ™7, where w(n,v) = |E(0,1)],.

An almost everywhere positive and locally integrable function w : R} —
R will be called a weight. We shall denote by L, . (R’ ) the set of all
measurable function f on R’} such that the norm

1/p
191, ca) = s = ([ 150 Patorsan) " 1< p<oe

Ky

is finite. For w = 1 the space L, ., ,(R"}) is denoted by L, (R’ ), and the
norm ||fHprwﬁ(]R1) by Hf“Lpﬁ(]Ri)'

The operator of generalized shift (B,, shift operator) is defined by the
following way (see [19], [22]):

TVf(z) =C, / (@ =y, V22 = 2zny, cosa+ y2) sin? ada,
0

where G, = 772 (y + H)I (7).

Note that this shift operator is closely connected with B,, Bessel’s singular
differential operators (see [19], [22]).

The translation operator TY generated the corresponding B,,-convolution

(f ©9)(z) = / @) [T¥9(2)] v dy,
R’y
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for which the Young inequality

If®g]
holds.

Lemma 1 ([5, 23]). Let 1 <p < oo. Then for all y € R}, TV f belongs
L, (R%}) and

=

£ S W, lgllz, > 1 <Par<oo

75O, < 1, - (1)

Definition 1. A function K defined on R}, is said to be B, singular
kernel in the space R’} if

i) K € C%(RY) ;

ii) K(rz) =r "7 7K (x) for each 7 > 0, x € RY};

iii) [y K(x)x]do(x) =0, where do is the element of area of the X.

First, we establish the boundedness in weighted L,, spaces for a large class
of sublinear operators, generated by the B, Bessel differential operators.

Theorem 1. Let p € (1,00) and let T be a sublinear bounded operator
Jrom Ly (R%) to L, ~(R%) such that for any f € Li~(R%) with compact
support and x ¢ supp f

5@ <o [ 1117 |£0)] vy @
RY
where ¢y is independent of f and x.
Moreover, let w(x), wi(x) be weight functions on R} and the following

three conditions are satisfied:
(a) there exist b > 0 such that

sup wi(y) <bw(z) for ae. xeRY,
|lol/4<]y|<4|=|

(b)
’ p—1
A= sup( / wl(x)|x|_(”+'y)pxgdac)( / WP (2)x) dx) <00,
r>0

R7\E(0,2r) E(0,r)
()
/ / p_l
BESUp( /wﬂx)xldm)( / WP ()]~ (P x%dm) < 00.
r>0
“ o R7\E(0,2r)

Then there exists a constant c, independent of f, such that for all f €
Lpw~(RY)
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Moreover, condition (a) can be replaced by the condition
(&) there exist b > 0 such that

w1 (z) ( sup .

)<b for a.e. x € R"™
|| /4<|y| <4|z| ¥ (y)

Proof. For k € Z we define By = {z € R : 2F <|z| <281} By ={z €
R:l_ : |£L’| < 2k71}, Ek72 = {:L' € R:l_ co2k-l < |£L’| < 2k+2}, Ek73 = {IL’ S
R @ |z| > 2F+2} Then Ei o = Ex—1 U Ej U Ej41 and the multiplicity of
the covering {Ej 2}rez is equal to 3.

Given f € Ly, ~(R?), we write

|Tf(x)| = Z T f(z)|xe, () Z |T fr1 ()| X8, ()

kez keZ
+ Y T fro(@)|xm, (2) + Y [T frs(@)| x5, (z) =
keZ keZ
=T f(x) + Tof(x) +T3f(x), (4)

where x g, is the characteristic function of the set Ey, fri = fxg, ., i =
1,2,3.

First we estimate |11 f]|z, ., .- Note that for z € Ex, y € Ej 1 we have
ly] < 2F=1 < |z|/2. Moreover, Ey Nsupp fr1 = 0 and |z — y| > |z]/2.
Consequently by (2)

Tif(x) <eo ) (/Tylwl_”_” |fea()lyn dy)XEk <

KEZ Ngn
<o / [z —y| 7" f ()] v dy <
{yery: |y|<|=|/2}
< 2" eqla| T / | | )| vl dy

{yeRrn: |y|<|z|/2}

for any x € Ej. Hence, we have

/ Ty f(2)[Pwi (2)2], do <

RY

p
sy [( [ Wl e e i

RY  {yeR}: |yl<|z|/2}
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Since A < oo, the Hardy inequality

p
/wl(:v)|x|_(”+7)p( / ‘f(y)| y) dy) z) dr <

R7Y {yeR}: |y|<|z|/2}
< C/ ‘f(av)|pcu(av)307I dx
R

holds and C' < ¢/ A, where ¢’ depends only on n and p. In fact the condition
A < o0 is necessary and sufficient for the validity of this inequality (see [2],
[16]). Hence, we obtain

/ ‘Tlf(:c)‘pwl(m) x)dr < / |f(:c)‘pw(:c) x) dx. (5)
R" R

where ¢ is independent of f.

Next we estimate || T5f| 1, ., .- Asit is easy to verify, forx € By, y € Ex 3
we have |y| > 2|z| and |z — y| > |y|/2. Since Ej Nsupp fi,s =0, for x € Ej,
by (2) we obtain

Liw<a [ )] b dy <
{yery: |y|>2|z|}
< 2", lfW)||z—y| ™" 7yl dy <
{yery: |y|>2|z|}
<2ve [ 1wl
{yeRry: [y[>2]=|}
Hence, taking into account the latter estimates we have

/ |T5f(2)[Pwi(z) 2} dw <

RY

P
sy [ [ il i) wg
R:  {yeRy: |y|>|2z]}
Since B < oo, the Hardy inequality
P
/wl(fc)< / @)yl 7yldy) ) dr <

R%} {yeRy: |y[>|2x]}

<c [ 1@ do

n
RZ
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holds and C' < ¢’ B, where ¢’ depends only on n and p. In fact the condition
B < oo is necessary and sufficient for the validity of this inequality (see [2],
[16]). Hence, we conclude that

/ |Tsf(2)| w1 (x) 2} do < 62/ |f(@)|["w(z) =] da, (6)
R7 R%

where ¢, is independent of f.
Finally, we estimate ||Taf| L
and condition (a) we have

/‘Tgf(:c)‘pwl(m):c:ld:c:/(z‘Tfkg |XE;C )pwl(m)aﬁldaz:

By the L, (R?) boundedness of T

pwy,y "

En gn keZ
/(Z‘Tfkg | XE;C )wl( QC’Yd:C*Z/‘Tka |w1 :c’yd:v<
R? keZ keZE
< Z sup wy (x /‘Tfk 9 )|px;yldac§ ||THpZ sup wl(x)/|fk,2(x)‘pxz da =
eZlE k kez® Ey -
+
= TIP3 sup et /v a7 e,
kezY
where |T'|| = |T'||z, ,&7)—L,,®?)- Since 21 < |z < 282 for z € By o,
by condition (a) we have
sup wy(y) = sup wi(y) < sup w1(y) <bw(z)
YEE 2kt <y <2k +2 |z|/4<]y|<4|z|

for almost all € Ej ». Therefore

/ |T2f($)|pw1(x)$;{ dr <

]R"

<Y [ @i < [ i@l wwga o

keZy, En
where cg = 3||T||Pb, since the multiplicity of covering {Ey 2}rez is equal to
3.

Inequalities (2), (5), (6), (2) imply (3) which completes the proof. O

Similarly, we can prove the weak variant of Theorem 1.
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Theorem 2. Let p € [1,00). Suppose that T is a sublinear bounded
operator from Ly, (R%) to WL, (R}), i.e.,

x”dm<—/‘f ‘vadx

{z€RY:|T f(z)|>A} R%

and satisfies (2). Moreover, let w(x), wi(x) be weight functions on R’} and
conditions (a), (b), (¢) be satisfied.

Then there exists a constant c, independent of f, such that for all f €
Lpwy(RY)

wi(z)x)de < —/‘f |p x)x) dr. (8)

{z€RY:|T f(z)|>A} R%

Let K is a B,, singular kernel and T" be the B,, singular integral operator

Tf(x) = po. / TVE () f(4)y7 dy.

K}

Then T satisfies the condition (2).
Thus, we have

Corollary 1 ([7]). Letp € (1,00), T be the By, singular integral operator.
Moreover, let w(x), wi(x) be weight functions on RY and conditions (a), (b),
(c) be satisfied. Then inequality (3) is valid.

Corollary 2. Let p € [1,00), T be the B,, singular integral operator.
Moreover, let w(x), wi(x) be weight functions on R’} and conditions (a),
(b), (c) be satisfied. Then inequality (8) is valid.

Theorem 3. Let p € (1,00), T be a sublinear bounded operator from
Ly~(RY) to Ly, (RY) satisfying (2).

Moreover, let w(xy,), w1(xy) be a weight functions on Ry and the follow-
ing three conditions be satisfied:

(a1) there exists a constant b > 0 such that

sup w1(yn) < bw(zy) for ae. x, >0,
T [4<yn <4Tn

oo T p71
(b1) Ay =sup (/w1 x; (I+p+y d:cn) (/wl_” (:cn):c;yld:cn) < o0,
>0
0

T

[~

oo

p—1
(c1) By =sup (/m Tp)T d:cn> </w 4P gy > < o0.
r>0
0

2r
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Then there exists a constant ¢, independent of f, such that for all f €
Lypw(R™)

/ ‘Tf(m)|pw1(:£n):c?l dzx < c/ |f(:c)‘pw(:£n):£;{ dx. 9)
R R?

Moreover, condition (a) can be replaced by the condition
(a3) there exists a constant b > 0 such that

wl(:cn)( sup ) <b forae x,>0.

Ty [A<yn <4z, w(yn)

Proof. For k € Z we define B, = {x e R} : 28 <z, <2V} By ={z €
R% -z, < k=1 Ero ={z € R - 2kt < g, <282} Eps={z € R -
x, > 282} Then Ej2 = Ex_1 U Ej, U Ej41 and the multiplicity of the
covering {Ey 2 }rez is equal to 3.

Given f € Ly, ~(R"), we write

ITf(@)| =D |Tf(@)|xe,(x) <Y |Tfea(@)|xe, (2)+

keZ keZ
+Z |T fr2(x)|xe, (2 +Z |T fr3(x)|xE, () =
ey kez
=T f(z) +Taf(z) + T3 f (), (10)

where x g, is the characteristic function of the set Ey, fri = fxg,., ¢ =
1,2,3. We shall estimate ||T1f]|z,, ,- Note that for x € Ex, y € Ey 1 we

have y,, < 28=1 < z,,/2. Moreover, Ey Nsupp fr.1 = 0 and |2, —yn| > 2, /2.
Hence, by (2)

1@ < e 3 ([ 1@t ™ dy ) e, <

k€EZ “pn
]R+
Tn /2

§c4/ /Ty‘x‘fnﬂ\f )y dy <
Rn—1 0

Tn/2

<Cs/ / (zn+ 12" =) " F )|y dyn dy’
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for any = € Ej. Using this last inequality we have

/ ‘Tlf($)|pw1(acn)xz dr <

P
< / ( / / (12— ') " )w dyndy') wr ()] d

For x = (2, zy,) € R™ let

Tn /2

() = / (/ /(xn+|x’—y’|)"V\f(y’,yn)\y%dyndy’)pdm’

Rn—1 Rn—1 0
Tn /2

- / </ < / (x”“f”/y’|)nVlf(y’,yn)|dy’)ygdyn>pd:c’.

Rn—1 0 Rn—1
Using the Minkowski and Young inequalities we obtain

Tn /2

13

o= [ 1) "( e o] -

0 Rn—1 Rr—
Tn /2
p d$/ p
— . Y —
- ( / Hf(ayn)Hp,]Rnlyndyn) ( / (xn+|m/|)n+'y) -
0 Rn—1
Tn /2
p dz’ p
— —(1+ —
—xn( wp( / Hf(.)yn)Hp,]Rnlygdyn> (/W) =
0 Rn—1

Tn /2
p
CGmn(1+7)p< / Hf(ayn)Hp,Rnlygdyn) .
0

Taking into account the latter estimates and integrating over R, we get

/ ‘Tlf(m)|pw1(:£n):cz dzx <
RY
Tn /2

P
<o [rtenan ([ el i) ot do
R, 0
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Since A; < oo, the Hardy inequality

Tn/2

p
/Wl(l'n)xr_l(1+v)p< / Hf('ayn)HpRnlyzdyn> l,;yl dry, <
0

Ry

<C [N} g sl o,

Ry

holds and C' < ¢’ Ay, where ¢ depends only on n and p. In fact the condition
Ay < oo is necessary and sufficient for the validity of this inequality (see
[8], [17]). Hence, we obtain

/‘Tlf(:n)|pu)1(:£n)acjI dzx < 09/ |f(:c)‘pw(:cn):£g dx. (11)

R R

Let us estimate || 153f]|z, , ,- Further, it is easy to verify that y, > 2z,
and |z, — yp| > yn/2 for x € By, y € Ei 3. Since Ej, Nsupp fr3 = 0, for
x € Ey by (2) we obtain

o

Tsf(2) < cs / / 1) (5 + 12 — /1) """y dym dy-
Rr—1 2z,

Using this last inequality we have

/‘Tsf(z”pwl(fﬂn)ﬂ?l dr <
Rr
§c§/< / /\f(y)\(ynJrle’*y'l) vl dyndy’) wn (@) da.
]Rj'r' Rn—12x,

Let

o}
p

Ii(zn) = / (/ / 1FW)| (v + 12" = o'1) "y dyndy’) x) dz’

Rn—1 2z, Rn—1
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for x = (2/,x,) € R™ Using the Minkowski and Young inequalities we obtain

= ([ rowrs) " f )

2%y, Rn—1 Rn—1
® P du' P
1 Y
CG(/ynl ’YHf(')yn)Hp,]Rnlyxdyn> (/ W) =
2%y, Rn—1
o0
P
=C7</yzl_”Hf(-,yn)Hp,Rnlyzdyn) :
2zp

Integrating over R} we get

/ ‘Tsf($)|pw1(wn)xz dr <

RY

(oo}
P
<o [ ([ oI5l it ) n(on)el don,

R4 2%,

Since B < 0o, the Hardy inequality

® P
Jerte( [ sl v ) o <

R4 2%,

<C [l o s O Plan)al TP d =

Ry

=C |f(:c)‘pw(:£n):£;{ dx
/

holds and, moreover, C < ¢'B;, where ¢’ depends only on n, v and p. In
fact the condition B; < oo is necessary and sufficient for the validity of this
inequality (see [8], [17]). Hence, we obtain

/‘T3f(:c)‘pw1(mn):cz dx < 010/|f(:c)‘pw(mn)m;{ dx. (12)
RY

K}
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Finally, we estimate ||T2f]|L
condition (a1) we have

/‘Tzf )[wi ()2, de = / (Z ‘Tfk,2($)|XEk(ﬂfn))pwl(fﬂn)ﬁ dr =

By the L, (R") boundedness of 7" and

p,wi,y "

En n k€Z
/(Z |Tfk2 ‘ XE, (Tn )wl(xn ) dx Z/|Tfk2 wl(xn)dox<
R” keZ keZE

S sup wi (z,, /‘Tfkg |px7dm<HTH Zsupwl T /|fk2 ‘ r)dr=

kez®EEx B kez"EE i
= [[7] 32 sup ey / 7)) do
kez YEF
where ||T'|| = ||T|z,,. (R L, (RY)- Since 2k_1 < an <282 for x € By o,
by condition (a;) we have
sup w1 (yn) = sup w1(yn) < sup w1(yn) < bw(zy)
yEE 2k 1<y, <2hH2 Tn /4<yn<dzn

for almost all € Ej 5. Therefore

[ Imar@ Pt ar <
RW,

|THpr / ‘f |p (zn d:v<cu/|f ‘p (xp)z) dz, (13)

KeZg

where ¢11 = 3||T||Pb.
Inequalities (2), (11), (12), (2) imply (9) which completes the proof. O

Similarly we have weak variant of Theorem 3.

Theorem 4. Let p € [1,00). Suppose that T is a sublinear bounded
operator from Ly, ~(R%) to WL, (RY) and (2) is satisfied. Moreover, let
w(xy), wi(x,) be weight functions on Ry and conditions (ay), (b1), (c1) be
satisfied.

Then there exists a constant c, independent of f, such that for all f €
Ly (BY)

w1 (Tp)x) de < /|f ‘p (xn)x) dx. (14)
{z€RY:|T f(z)|>A} R}

Corollary 3. Let p € (1,00) and let T be the B, singular integral
operator. Moreover, let w(xy), wi(zyn) be weight functions on (0,00) and
conditions (a1), (b1), (c1) be satisfied. Then inequality (9) is valid.



TWO-WEIGHTED INEQUALITY 17

Corollary 4. Let p € [1,00) and let T be the B, singular integral
operator. Moreover, let w(xy,), wi(xy,) be weight functions on (0,00) and
conditions (a1), (b1), (c1) be satisfied. Then inequality (14) is valid.

Remark 1. Note that, if instead of w(z), wi(x) respectively put w(zy,),
w1(xy), then from conditions (a), (b), (¢) will not follows conditions (a1),
(b1), (1) respectively.

Theorem 5. Let p € (1,00). Assume that T is a sublinear bounded
operator from L, ~(R") to Ly, (R") and (2) is satisfied. Moreover, let w(t)
be a weight function on (0,00), w1(t) be a positive increasing function on
(0,00) and the weighted pair (w(|z|), wi(|x|)) satisfies conditions (a), (D).

Then there exists a constant ¢ > 0, such that for all f € Ly, ~(R%)

/ T (@) [ (), da < C/ |f (@) w(|z)a da. (15)
RY R7
Proof. Suppose that f € L, (R’ ) and w; are positive increasing functions
on (0,00) and w, w; satisfied the conditions (a’), (V).

Without loss of generality we can suppose that w; may be represented
by

t
w1(t) = w1 (0+) + /d)()\)d)\,
0
where w1 (04) = lim;_owi(t) and wy(t) > 0 on (0,00). In fact there ex-

ists a sequence of increasing absolutely continuous functions w,,, such that
wp(t) < wi(t) and lim w, () = wi(t) for any ¢ € (0,00) (see [10], [11] for
n—oo

details).
‘We have
/ T £ (2)[Peor (|2])o dor = w1(0+)/ T4 (2)[P2] do+
R R

|z
+ |Tf(x)|p</w()\)d)\) 2 dz = Jy + .
i 0

If wi(0+) =0, then J; = 0. If wy(0+) # 0, then by the boundedness of
T in L, ,(R’) and (a) we conclude that

7 < |7Per(04) [ | de <

n
RZ

< HT|\P/|f(z)|Pw1(|z|)mg dxgbHTHP/\f(x)qupxgdx.

R% R%
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Changing the order of integration in Jy we have

Jo = 7¢(A)( / |Tf ()| 2} dx) dx <

{z€R?: |z|>A}

< 2p1/¢()\)( / IT(fX(aimr/2y) (@) 2] da+
0 {z€R}: |z|>A}

+ / |T(fX{\z\gA/2})($)|p$Z dm) A\ = Jo1 + Jaa.

{z€RY: |z|>A}

Using the boundeedness of T in L,, ,(R" ) and condition (a) we obtain

melrl foo( [ el a-
0 {yeRy: ly[>A/2}

2|yl

=71 [ 1 ([ o) v <
0

n
RZ

<|7|I” / 17(0)| e 2lul)y2dy < b|IT|” / £ )P w (v dy.
R R?

Let us estimate Joo. For || > X and |y| < A\/2 we have |z|/2 < |z —y| <
3|z|/2, and consequently

oo

P
mefo( [ / Tylxl‘"‘”lf(y)lyzdy) mzd:c>dA§
0 {zeRy: |z[>A}  {yeR%: |y|<2A}

s%o/oow(A)( /() |f<y>|yzdy)plscl—(”*%zdx)dxz

{z€R}: [z[>A}  {yeRY: |y|<2A}

e 7¢( AA- (N G- < / |7 ) |2 dy> "
0

{yern: Tyl<n/2}
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The Hardy inequality

x p
/ wu)w*”@”( J dy> i <
0

{yern: Tyl<n/2}

SC/|f(y)\pW(|yl)y2dy
s

for p € (1,00) is characterized by the condition C' < ¢/ A’ (see [8], [17]),
where

azswp( [oreowna) ([ A ) <
>0
2T

E(0,7)
Note that
z/j(T)Tf(nJrv)(pfl)dT —

2t
00

— ()= 1) [ v [ AN -

2t

00 A
=)= 1) [ X0y [y <
2t 2t

< (n+7)p 1) / AT g (V) dA =
2t

_(n+yp-1)

—(n+y)p, v
= wi(lyl)ly Y dy.
RO (1y)ly

R\ E(0,2t)
Condition (b) of the theorem guarantees that A" < %A < 0.
Hence, applying the Hardy inequality, we obtain
T < e [ @) wllal)ar do
RZ
Combining the estimates for J; and J, we arrive at (15) for wy(t) =

w1 (0+) + fot (1)dr. By Fatou’s theorem we finally have the desired result.
(]

Corollary 5 ([5], [7]). Letp € (1,00), K be a B, singular kernel and T
be the corresponding operator. Moreover, let w(t) be a weight function on
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(0,00), wi(t) be a positive increasing function on (0,00) and the weighted
pair (w(|z|), wi(|x])) satisfies conditions (a), (b). Then inequality (15) is
valid.

Example 1. Let
t trtNE=DP L for ¢ € (0,1)
w =
(2P P 2)tP,  for t € [, 00)
tENE=1 - for t € (0,4)
wi(t) = —p+1 1
20~ pHlge for t € [3,00)

where 0 < a < 3 < (n+7)(p—1). Then the weighted pair (w(|z|), w1(|z]))
satisfies the condition of Theorem 5.

Theorem 6. Let p € (1,00). Suppose that T is a sublinear bounded
operator from Ly (R}) to Ly, (R%) satisfying (2). Moreover, let w(t) be a
weight function on (0,00), wi(t) be a positive decreasing function on (0,00)
and the weighted pair (w(|z|), wi(|z|)) satisfies conditions (a), (c¢). Then
inequality (15) is valid.

Proof. Without loss of generality we can suppose that w; may be repre-
sented by
oo
wr(t) = wi (+00) + / (),
t

where wy(400) = tlim w1 (t) and wq(t) > 0 on (0,00). In fact there exists a

sequence of decreasing absolutely continuous fuctions t,, such that w, (t) <
w1 (t) and limy, 0 @, (t) = wi (t) for any t € (0, 00)( see [10], [11] for details).
We have

/‘Tf(av)|pu11(|30|)307I dac:wl(—i-oo)/‘Tf(x)Fxldm—i—
R R
0o
+/ |Tf(m)|p</z/;(7)d7) a2l de =1 + Is.
Rn 2l
If wi(+o00) = 0, then I; = 0. Further, if wy(4+00) # 0, then by the

boundedness of T"in L, (R’ ) and condition (a) we have

Ji < |\Tuwl<+oo>/|f<x)|%g de <

Ry

< HTH/|f(z)|%1(|z|)mgdxgbHTH/|f(x)\%(|x|)mgdx.

R% R%
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Changing the order of integration in Jy we have

Jo = 701/)0\)( / |T f ()|}, d:c) d\ <
0

{z€R?: |z|<A}

< 2p1/¢(>\)< / | T(fX (| <2ny) ()| 27, dz+
0 {zeRY: |z|<A}

+ / ‘T(fX{|z|z2A})($)‘p$71 dx) dX\ = Jo1 + Jao.
{z€R?: |z|<A}

Using the boundeedness of T in L,(R™) and condition (a) we obtain

Jo < ||T| 71/)(t)< / |f(y)}pyg dy> dt =
0

lyl<2A
it 1P ([ )i =
R lyl/2

<7 / £ )P (191/2)7 dy < b||T| / £ ()P} dy.
R R

Let us estimate Joo. For || < A and |y| > 2\ we have |y|/2 < |z —y| <
3|y|/2, and consequently

Jon < e /ww( / ( / Ty\z|"”|f(y>b2dy>px2dx>wg

0 {z€RY: |z|<A} {y€eRY: |y[>2A}

< 2"087;&@)( / ( / \y\_"_w\f(y)\yzdy)pw?bdw) dA=

{z€R}: |z|<A} {y€RT: |y|>2A}

“ 7w(A)Anﬂ ( / lyl ") | dy)pd)\.
0

{yeR™: |y|>2))
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Further, the Hardy inequality

7 p
/ ww”( / |y|‘”‘”\f<y>|yzdy) ir<
0 {yeRy: |y[>2X}
< [ U@l "o ety tn = € [ 150wl
R7L R"L

for p € (1, 00) is characterized by the condition C' < ¢B’ (see [8], [17]), where

’ p—1
= sup </¢ ?fnJr7 dT) < / wl*;n'(|y|)|y|*(”+7)l7 yY dy> < .
>0

R™\E(0,27)

Note that

T T t

/w(t)t”ﬂ dt = (n+7)/¢(t) dt/)\”ﬂ—ld)\:

0 0 0
T t
= (n+7)/)\"+7_1 d)\/w(r) dr <
0 A

< n+vy—1 — n—+7 / ~ .
S (n+7)/)\ w1(A) dA o) wi (|z|)x;) da
0 E(0,r)

Condition (c) of the theorem guarantees that B’ < WTE:VV)B < oo. Hence,
applying the Hardy inequality, we obtain

Jag < 610/‘f($)|pw(|x|)xg dz.
RTL

Combining the estimates for J; and Jo, we get (15) for wq(t) = wy(400) +
ftoo ¥ (7)dr. Fatou’s theorem completes the proof. O

Corollary 6 ([5], [7]). Letp € (1,00), K be a B, singular kernel and T
be the corresponding operator. Moreover, let w(t) be a weight function on
(0,00), wi(t) be a positive decreasing function on (0,00) and the weighted
pair (w(|z|), wi(|x])) satisfies conditions (a), (c). Then inequality (15) is
valid.
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Example 2. Let

w(t) = o In” 1, for t <d
(d="=7=>In” D>, for t > d,

1 81
——1n” + for t <d

e )

Ldl(t):{t t

(d—n—v—klnﬁ g) A for t>d

where < v <0, n—y7<A<a<0,d= eﬁ. Then the weighted pair
(w(]z|), wi(|x])) satisfies the condition of Theorem 6.

Theorem 7. Let p € (1,00). Suppose that T is a sublinear bounded
operator from Ly (R") to Ly (R") and and satisfies (2). Moreover, let
w(t) be a weight function on (0,00), w1(t) be a positive increasing function
on (0,00) and w(zy), wi(zy) be satisfied the conditions (a1), (b1). Then
inequality (9) is valid.

Proof. Suppose that f € L, ~(R"), w1 are positive increasing functions
on (0,00) and w(t), wy(t) satisfied the conditions (a1), (b1).

Without loss of generality we can suppose that w; may be represented
by

01(t) = wi (04) + / B A,

where wy(0+) = }iné w1(t) and wy(t) > 0 on (0,00). In fact there exists a

seqence of increasing absolutely continuous functions w, such that <, (t) <
wi(t) and lim w,(t) = wi(t) for any t € (0,00) (see [10], [11] for details).
n—oo
We have

/ |Tf(ac)|pw1 (Xp)x) de = w1 (0+) / ‘Tf(x)‘pacg dx+
R R

+ |Tf(:c)|p( w()\)dA) ) de = J, + Jo.
]

If wi(0+) =0, then J; = 0. If w;(0+) # 0, then by the boundedness of
T in L, ~(R") and (a) we obtain

B < [P+ [ |f@Pare <

n
R%

< HTHP/|f(m)|%1(xn)mgdxg HTH%/|f(m)|%(xn)x,zdx.

R} R}



24 E. GULIYEV

Changing the order of integration in Jy we have

o0

_ 7¢(A)( / /|Tf(x)\”xg dm) i <

n—1
IS

SQZ’_I/OOW)\)( / 7|T(fX{zn>A/2})($)‘p$7zd33+
0

Rn—1 )\

+ / / T (X (wn<r/ay)@)| ], d33) d\ = Jo1 + Jaa.

Rn—1 X
Using the boundeedness of 7" in L, (R’ ) we obtain

Ja1 < HTHP 77/1@)( / 7‘f(y)‘pyyz dy> dt =
0

Rn—1 /2

—71” f ([ 17Cml o) =
0

A/2
2yn

ﬁﬁH/W e ([ w0 <

Vwmf%hwwﬂ%wm_

<O [ 15wty do
R‘n

Let us estimate Jos. For x, > A and y,, < A\/2 we have x,,/2 < |z, —yn| <
3x,/2, and consequently

meo oo [ ([ [7a) 0o

A/2

ool (] ety i)

A Rn—1
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For z = (2/,,) € R let

2/2

e / < / / e L)

n—1

Using the Minkowski and Young inequalities we obtain
2/2

J(zn, A) < [/ (R/ |f(y)|”dy’)1/p( / W)ygd%]:

0 Rn—1
A2

p du’ p
< </Hf('ayn)Hp’]Rn1ygdyn> ( / m) =
0

Rn—1

A/2

(1) p dy/ p
= C3%p K p( / ||f('7yn)Hp7Rn71yx dyn) < / W) =
0 1

Rn—

A/2

p
C4mn(1+7)p</ ||f('7yn)Hp7]Rn1yzdyn) .
0

Taking into account the latter estimates and integrating over (0, 00) X (A, 00)
we get

o A2

x P
gz [ 6OV [ (] NGl ot ) P )ay
0 0

A
0o A/2 )
2c _
= [uoo “W’*V“( / ||f(~,yn)||,,,Rn1yzdyn> ax.
0

p—1
0

Further, the Hardy inequality

0o A/2

p
J Rt (O VOV R
0 0

<C [t g v don = € [ 1£)P ()57 dy,

R+ R

for p € (1,00) is characterized by the condition C' < ¢/ A", where

00 T -1
A’ = sup </w(t)t(1+7)p+7+1 dT) </w1p ()Y dt) < 0.
7>0
27 0
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Note that

/WT)T‘“”’”*”“ dr =(1+7)(p-1) /w(r) dr/)\—(1+v)p+v D=
5t g J

o) A
=1+ -1) [ XEEPAN [ g(r)dr
o]

<)1) [ AL 0
2t

Condition (b1 ) of the theorem guarantees that A” < (1+v)(p—1)4; < co.
Hence, applying the Hardy inequality, we obtain

Jo2 < cen / |f(@)|Pw(@n)z]), da.
RZ

Combining the estimates for J; and Jo, we get (15) for wy(t) = wi(0+) +

fot (1) dr. Fatou’s theorem completes the proof of the theorem. O

Example 3. Let

0 tr~'nP 1, for t € (0,3)
w =
(28-PH1 P 2)¢P,  for t € [3,00),

o 1, for ¢ € (0,3)
wl( ) - 2a—p+1t0¢7 fOI’ te [%700)7

where 0 < «, 3 < p—1. Then the pair (w(z,, ), w1 (x,)) satisfies the condition
of Theorem 7.

Corollary 7. Let p € (1,00), K be a B, singular kernel and T be the
corresponding operator. Moreover, let w(t) be a weight function on (0,00),
w1 (t) be a positive increasing function on (0,00) and w(zy,), wi(zy) be sat-
isfied the conditions (a1), (b1). Then inequality (9) is valid.

Theorem 8. Let p € (1,00). Assume that T be a sublinear bounded
operator from Ly (R"}) to Ly (R") satisfying (2). Moreover, let w(t) be a
weight function on (0,00), w1(t) be a positive decreasing function on (0, 00)
and w(zy), wi(xy,) be satisfied the conditions (a1), (c1). Then inequality (9)
holds.

Proof. Without loss of generality we can assume that w; may be represented
as follows:

wi(t) = wi (+00) + / (r) dr,
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where wy (+00) = tlim w1(t) and wy(t) > 0 on (0,00). In fact there exists a
—00

sequence of decreasing absolutely continuous fuctions w,, such that <o, (t) <
w1 (t) and limy, 0 @, (t) = w1 (t) for any t € (0, 00) (see [10], [11] for details).
We have

/‘Tf(:c)‘ wi(xy)z) de = wi(+oo /|Tf |pm7 dx+
RY

RY
+ |Tf(m)|p< w(f)df) ) de =1, + Is.
]R/ 1[

n
If wi(+00) =0, then I; = 0. If wy(+00) # 0, then by the boundedness
of T'in L, ,(R") we obtain

Ji < HTH”wl(+oo)/\f<x)|”xg dz <
R}
<P [ 1@l de < T [ 50t i
R7 En

Changing the order of integration in Js we conclude that

Jgo/w <R/1/|Tf \”zwx>dx<

§2p—1/w()\ < / /‘T(fX{lxn\<2)\} x | x,, dr+
0

Rn—1 0

/ / 1T (fXw>20)(@)] 2], dx) dA = Ja1 + Jaa.
Rn—1
Using the boundeedness of T" in L, ,(R) we obtain

ngww/ww(//wmew)wz

Rn—1 0

=MWﬂmW(7wm®M@sMW/mm%@mmwg

Rn Yn/2 R;‘_

<7l [ 1wt do
R}
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Let us estimate Jog. For ,, < A and y,, > 2\ we have y,,/2 < |2, —yn| <
3yn/2. Hence,

oo A »
el [ //> i)

Rn—1 0 Rn-—

(U ——

Rn—1 24

For x = (2, zy,) € R™ let

P
Jl(x'r‘m = / (/ / |1,/7y|+y )anyndy) daj’.

Rn—1 2) Rn-—1

Using the Minkowski and Young inequalities we obtain

n 1/p d / P
e | [ ([ 1s0Par) ([ s Jidn] -
24 Rn-! RA-1 "
7 p dy' p
< </||f(',yn)||p,Rn1yldyn> < / m) =
2A 1

R

it e P dy/ N7
C3</||f('ayn)||p,1gn1yn yndyn) < / Wdy) =
2) 1

Rn—

7 p
= C4</ ||f('7yn)HpRnily;li’yyg dyn> .
2

Integrating over (0,00) X (0, ) we get

%) A %)
p
J22 SCS/T/)()\)</ (/||f(-,yn)||p7Rw,1yn1”yxdyn> ) d:cn>dA
0 0

2A

= 205

® p
SO ([ 1m0 )
2\
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Further, the Hardy inequality

o oo p
/ wu)w( [ Wl et i) <

< C/ ||f y Tn Hp]Rn W(Tn )y, dy, :C/lf Wew(yn )y dy,

Ry RZ

for p € (1, 00) is characterized by the condition C' < ¢/’B”, where

p—1
= sup (/w O Lt dr) (/ Py Ap' gy dt) < .
>0

Note that

/w Ot dt = (1+7)/Tw()dt/t>ﬂcu=

0

=(147) /X’d)\/w Ydr < ( 1+7/ MAY dA.

0

Condition (¢;) of the theorem guarantees that B” < B; < oo. Hence,
applying the Hardy inequality, we obtain

Jag < c/ |f(:c)‘pw(:cn)mz dzx.

Combining the estimates for J; and Jo, we get (15) for wq(t) = wi(400) +
[ w(7) dr. Fatou’s theorem iplies (9). The theorem has been proved. [

Corollary 8. Let p € (1,00), K be a B, singular kernel and T be the
corresponding operator. Moreover, let w(t) be a weight function on (0,00),
w1 (t) be a positive decreasing function on (0,00) and w(xy), wi(zy,) be sat-
isfied the conditions (a1), (c1). Then inequality (9) is valid.

Example 4. Let

+1n” 1, for t<d
w(t) = —l—« v 1\;«
(d In” )%,  for t >d,

1Pl
() = 7 1n” 4, 1 for t<d
(@'’ Hyr,  for t>d,

where 3 < v <0, -1 < A< a <0, d=e’. Then the pair (w(z,),w:1 (7))
satisfies the condition of Theorem 8.



30

E. GULIYEV

ACKNOWLEDGEMENTS

The author would like to express their thanks to her supervisor Academi-

cian. A. D. Gadjiev for the statement of the problem and many helpful
discussions about this subject.

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

REFERENCES

S. K. Abdullaev, On some classes of integral operators and weight embedding theo-
rems. (Russion) Dokl. Acad. Nauk SSSR 304(1989), No. 6, 1289-1293.

. E. Adams, On weighted norm inequalities for the Riesz transforms of functions with

vanishing moments. Studia Math. 78(1984), No. 2, 107-153.

. I. A. Aliev and S. Bayrakci, On inversion of B-elliptic potentials by the method of

Balakrishnan-Rubin. Fract. Calc. Appl. Anal. 1(1998), No. 4, 365-384.

. I. A. Aliev and S. Bayrakci, On inversion of Bessel potentials associated with the

Laplace-Bessel differential operator. Acta Math. Hungar. 95(2002), No. 1-2, 125-
145.

. Aliev, I.A. and Gadzhiev, A.D., Weighted estimates for multidimensional singular

integrals generated by the generalized shift operator. Mat. Sb. 183(1992), No 9,
45-66; English transl.: Russian Acad. Sci. Math. 77(1994), No 1, 37-55.

. I. A. Aliev and A. D. Gadjiev, On classes of operators of potential types, generated

by a generalized shift. (Russian) Rep. Enlarged Sess. Semin. 1. Vekua Inst. Appl.
Math. 3(1988), No. 2, 21-24.

. A. D. Gadjiev and E. V. Guliyev, Two-weighted inequality for singular integrals

in Lebesgue spaces associated with the Laplace-Bessel differential operator. Proc.
Razmadze Math. Inst., 138(2005), 1-15.

. J. S. Bradley, Hardy inequalities with mixed norms. Canad. Math. Bull. 21(1978),

No. 4, 405-408.

. A. P. Calderon and A. Zygmund, On singular integrals. Amer. J. Math. 78(1956),

289-309.

I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec, Weight theory for
integral transforms on spaces of homogeneous type. Pitman Monographs and Surveys
in Pure and Applied Mathematics, 92. Longman, Harlow, 1998.

V. S. Guliev, Two-weight inequalities for integral operators in Lp-spaces and their
applications. (Russian) Trudy Mat. Inst. Steklov. 204(1993), Issled. po Teor. Differ.
Funktsii Mnogikh Peremen. i ee Prilozh. 16, 113-136; translation in Proc. Steklov
Inst. Math. 204(1994), No. 3, 97-116.

V. S. Guliev, Sobolev’s theorem for Riesz B-potentials. (Russian) Dokl. Akad. Nauk
358(1998), No. 4, 450-451.

V. S. Guliev, Some properties of the anisotropic Riesz-Bessel potential. Anal. Math.
26(2000), No. 2, 99-118.

V. S. Guliev, On maximal function and fractional integral, associated with the Bessel
differential operator. Math. Inequal. Appl. 6(2003), No. 2, 317-330.

E. G. Guseinov, Singular integrals in the spaces of functions summable with monotone
weight. (Russian) Mat. Sb. 132(174)(1977), No. 4, 28-44.

D. E. Edmunds, P. Gurka and L. Pick, Compactness of Hardy-type integral operators
in weighted Banach function spaces. Studia Math. 109(1994), No. 1, 73-90.

V. M. Kokilashvilii, On Hardy’s inequalities in weighted spaces. (Russian) Bull. Acad.
Sci. Georgian SSR, 96(1979), 37-40.

V. M. Kokilashvili and A. Meskhi, Two-weight inequalities for singular integrals
defined on homogeneous groups. Proc. A. Razmadze Math. Inst., 112(1997), 57-90.



20.

21.

22.

23.

24.

25.

TWO-WEIGHTED INEQUALITY 31

M. I. Klyuchantsev, On singular integrals generated by the generalized shift operator
I. Sibirsk. Math. Zh. 11(1970), 810-821; English transl.: Siberian Math. J. 11(1970),
612-620.

I. A. Kipriyanov and M. I. Klyuchantsev, On singular integrals generated by the
generalized shift operator II. Sibirsk. Mat. Zh., 11(1970), 1060-1083; (English trans-
lation) Siberian Math. J., 11(1970), 787-804.

S. G. Mihlin, Multidimensional singular integrals and integral equations. Translated
from the Russian by W. J. A. Whyte. Translation edited by I. N. Sneddon Pergamon
Press, Ozford-New, York-Paris, 1965.

B. M. Levitan, Expansion in Fourier series and integrals with Bessel functions. (Rus-
sian) Uspekhi Matem. Nauk (N.S.) 6(1951), No. 2(42), 102-143.

L. N. Lyakhov, A class of spherical functions and singular pseudodifferential opera-
tors. (Russian) Dokl. Akad. Nauk SSSR 272(1983), No. 4, 781-784.

L. N. Lyakhov, Multipliers of the mixed Fourier-Bessel transform. (Russian) 7r.
Mat. Inst. Steklova 214(1997), Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee
Prilozh. 17, 234-249; English transl.: Proc. Steklov Inst. Math. 1996, No. 3 (214),
227-242.

K. Stempak, Almost everywhere summability of Laguerre series. Studia Math.
100(1991), No. 2, 129-147.

(Received 01.07.2005)

Author’s address:

Azerbaijan National Academy of Sciences,
Institute of Mathematics and Mechanics,
10, F. Agaev Str., Baku,

Azerbaijan



