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ON UNIFORM SHAPE THEORY WITH PRECOMPACT SUPPORTS

V. BALADZE AND L. TURMANIDZE

Abstract. The uniform shape theory with precompact supports on

the category of uniform spaces and uniform maps is defined. This

theory is described in terms of direct systems of the uniform shape

category of precompact spaces. The invariants, such as the uniform

Čech homology and cohomology group with precompact supports,

are also defined. The long exact sequences of uniform maps and pro-

groups are obtained.

Introduction

The shape theory for uniform spaces which is an extension of the uni-
form homotopy theory of ANRU-spaces, has been introduced by various
mathematicians [1]. Recently, J. Segal, S. Spiez and B. Günter [2] by using
the semi-uniform topology have given the construction of a strong shape
theory for finitistic uniform spaces. T. Miyata [3] has defined and studied
the classical shape theory of such spaces. In the present paper we construct
an extension of the Miyata’s shape theory from the category of precompact
spaces to the category of arbitrary uniform spaces. The extension can be
realized in terms of a direct system of uniform shapes of precompact subsets
of the uniform spaces. Applications include the definitions of Čech homol-
ogy and cohomology functors with precompact supports from the category
of uniform spaces to the category of abelian groups.

By Unif we denote the category of uniform spaces and uniform maps.
pUnif , fUnif , Upol, ANRU denote the full subcategories of Unif con-
sisting of precompact uniform spaces, finitistic uniform spaces, uniform
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polyhedrons and uniform absolute neighborhood retracts, respectively. By
H(Unif) we denote the uniform homotopy category of Unif , where the ho-
motopy is understood in the sense of semi-uniform homotopy. H(pUnif),
H(fUnif), H(pol), and H(ANRU) denote the uniform homotopy cate-
gories of pUnif , fUnif , Upol and ANRU, respectively. Without specific
citations, in this setting we use the notions and results from [1], [3] and [4].
Some of the results of this paper were announced in [5].

1. Precompact Uniform Shape Category.

A uniform version of resolution [1] has been defined in [2–3].
Let X ∈ Unif . A uniform resolution of X (with respect to ANRU)

is an inverse system X = (Xα, pαα′ , A) in Unif together with a morphism
p : X → X in pro− Unif with the following conditions:

UR1) Let P be an ANRU-space, ν a uniform covering of P and h : X →
P a uniform map. Then there exist an index α ∈ A and a uniform map
f : Xα → P such that f · pα and h are ν-near maps, i.e., (f · pα, h) < ν.

UR2) Let P be an ANRU-space and ν be a uniform covering of P . Then
there exists a uniform covering ν′ of P with the following property: if α ∈ A

and f , f ′ : Xα → P are uniform maps such that (f · pα, f
′ · pα) ≤ ν′, then

there exists an index α′ ≥ α such that (f · pαα′ , f ′ · pαα′) ≤ ν.
A uniform polyhedral resolution (precompact polyhedral resolution,

ANRU-resolution) is a uniform resolution p : X → X = (Xα, pαα′ , A) such
that all Xα are uniform polyhedra (precompact polyhedra, ANRU-spaces).

A uniform resolution (p, q, f) of a uniform map f : X → Y consists of
a uniform resolution p : X → X of X , a uniform resolution q : Y → Y

of Y and a system map f = (fβ , ϕ) : X → Y with an increasing function
ϕ : B → A such that f · p = q · f .

(p, q, f) is a uniform polyhedral (precompact polyhedral, ANRU-) res-
olution of a uniform map f : X → Y if p and q are the uniform polyhedral
(precompact polyhedral, ANRU-) resolutions.

Theorem 1. Each uniform map f : X → Y of precompact uniform spaces
admits a uniform precompact finite-dimensional polyhedral resolution.

Proof. Consider the set M of all finite coverings of Y . The nerve Yµ =
|N(µ)| of µ ∈ M is a finite polyhedron. Let qµ : Y → Yµ be a canonical
map defined by partition of unity (ψ

V
, V ∈ µ). It is clear that the family

(ϕ
V
, V ∈ µ), where ϕ

V
= ψ

V
· f , is a partition of unity subordinated to

f−1(µ) = {f−1(V ), V ∈ µ} and defines a canonical map pµ : X → Xµ =
|N(f−1(µ))|. There is a simplicial map fµ : Xµ → Yµ sending each vertex
V ∈ µ of Xµ, f−1(V ) 6= ∅ to the vertex V of Yµ. The map fµ satisfies the
following relation:

fµ · pµ = qµ · f, µ ∈M.

Consider now the set Λ′ of all finite uniform coverings of X which are not
of the form f−1(µ), µ ∈ M . There is a uniform canonical map pλ : X →



ON UNIFORM SHAPE THEORY WITH PRECOMPACT SUPPORTS 65

Xλ = |N(λ)| defined by the partition of unity (ϕ
U
, U ∈ λ) subordinated to

λ ∈ Λ′. Let i : M → Λ = Λ′ ∪M be the inclusion map. Consider the set B
of all finite subsets of M . Let Yβ = |N(β)| be the nerve of the covering

µ1∧µ2∧· · ·∧µn = {V1∩V2∩· · ·∩Vn | (V1, V2, . . . , Vn) ∈ µ1×µ2×· · ·×µn}

for each β = {µ1, µ2, . . . , µn} ∈ B.
For every pair β ≤ β′ = {µ1, µ2, . . . , µn, . . . , µm} we define the simplicial

map qββ′ : Yβ′ → Yβ which takes the vertex (V1, V2, . . . , Vm) ∈ N(µ1 ∧ µ2 ∧

· · ·∧µm),
m
∩

i=1
Vi 6= ∅, into the vertex (V1, V2, . . . , Vn) ∈ N(µ1∧µ2∧· · ·∧µn).

It is clear that

qββ′ · qβ′β′′ = qββ′′ , β ≤ β′ ≤ β′′.

Let (ψ(V1,V2,...,Vn), (V1, V2, . . . , Vn) ∈ µ1 × µ2 × · · · ×µn) be a partition of
unity subordinated to the covering µ1 ∧ µ2 ∧ · · · ∧ µn, where ψ

(V1 ,V2,...,Vn)
=

ψ
V1

· ψ
V2

· . . . · ψ
Vn

. Let qβ : Y → Yβ be the canonical map. Note that

qββ′ · qβ′ = qβ

for each pair β ≤ β′.
Consider the set A of all finite subsets α = {λ1, λ2, . . . , λn} of Λ and

order it by the inclusion. Let

Xα = |N(λ1 ∧ λ2 ∧ · · · ∧ λn)|, α = {λ1, λ2, . . . , λn} ∈ Λ.

Analogously to the definition of qββ′ , we define pαα′ : Xα′ → Xα. The
function j : B → A defined by formula

j({µ1, µ2, . . . , µn}) = {µ1, µ2, . . . , µn}

is an increasing function. For every finite subset β = {µ1, µ2, . . . , µn} we de-
fine the simplicial map fβ : Xj(β) → Yβ by sending the vertex (V1, V2, . . . , Vn),
f−1(V1 ∩ V2 ∩ · · · ∩ Vn) 6= ∅, of the nerve of f−1(µ1 ∧ µ2 ∧ · · · ∧ µn) =
f−1(µ1)∧f

−1(µ2)∧· · ·∧f−1(µn) to the vertex (V1, V2, . . . , Vn) of the nerve
N(µ1 ∧ µ2 ∧ · · · ∧ µn).

Clearly, we have

fβ · pββ′ = qββ′ · fβ′ .

Let pβ : X → Xβ , β = {µ1, µ2, . . . , µn}, n > 1, be the canonical map
defined by the partition ϕ(V1,V2,...,Vn) = ϕ

V1
·ϕ

V2
·· · ··ϕ

Vn
, where ϕ

Vi
= ψ

Vi
·f ,

i = 1, 2, . . . , n. It is clear that

fβ · pβ = qβ · f, β ∈ B.

Consequently, we have obtained the finite-dimensional precompact in-
verse systems X = (Xα, pαα′ , A) and Y = (Yβ , qββ′ , B) and maps of systems
p : X → X, q : Y → Y , f : X → Y such that

q · f = f · p.
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Let u be a uniform covering of Y . It admits a uniform finite refinement
u′. Consider the canonical map qµ : Y → Yµ = |N(µ)|, where µ = u′.
The star-covering w of N(µ) is a uniform covering and q−1

µ (w) refines µ.
Consequently, q−1

µ (w) refines u. Hence q has property UB2 [2]. Similarly,
we can show that p has property UB2.

Consider the set B′ of all pairs ν = (β, V ), where β ∈ B and V is a
uniform neighborhood of qβ(Y ) in Yβ . Order now B′:

ν ≤ ν′ = (β′, V ′) iff β ≤ β′ and qββ′(V ′) ⊆ V.

Let Y ′ν = V and q′ν = qβ : Y → V for each ν = (β, V ) and qνν′ = qββ′ |V ′ :
V ′ → V for every ν ≤ ν′. The system Y ′ = (Y ′ν , q

′
νν′ , B′) is a precompact

polyhedral inverse system and q′ : Y → Y ′ is a map of systems. Similarly,

we can define a precompact polyhedral inverse system X ′ = (X ′ρ, p
′
ρρ′ , A′)

and a map of systems p′ : X → X ′.
Let j′ : B′ → A′ be a function defined by the formula

j′(ν) =
(

j(β), f−1
β (V )

)

∈ A′.

It is clear that j′ is the increasing function. For each ν ∈ B′ we put

f ′ν = fβ|f−1
β

(V ) : Xj′(ν) = f−1
β (V ) → V = Y ′ν .

The family (f ′ν , j
′) is a map of the system X ′ to the system Y ′ which

satisfies the condition f ′ · p′ = q′ · f .
The condition UB2 holds for q′ because it is fulfilled for q.
Let ν = (β, V ) ∈ B′ and let U be a uniform neighborhood of q′ν(Y ) =

qβ(Y ) in Y ′ν = V ⊆ Yβ . The pair ν′ = (β, U) ∈ B′ and ν ≤ ν′. The map
q′νν′ = qββ|U : U → V is the inclusion uniform map. We have

q′νν′ · (Y ′ν′) = q′νν′(U) = U.

Hence q′ has property UB1 [2]. Similarly, we can show that p′ has
properties UB1 and UB2.

From Theorem 2.3 of [3] we conclude that p′ : X → X ′ and q′ : Y → Y ′

are uniform resolutions.

From Theorem V. 15 of [4] and Theorem 1 follows

Corollary 2. Every uniform map f : X → Y of precompact uniform
spaces admits a precompact ANRU-resolution.

Corollary 3. Every precompact uniform space X admits a precompact
finite-dimensional polyhedral resolution.

Corollary 4. Every precompact uniform space X admits a precompact
ANRU-resolution.

We need the following lemmas.
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Lemma 5. Let X be a precompact space, P ∈ ANRU, and f : X → P be
a uniform map. Then there exist a precompact ANRU-space Q and uniform
maps h : X → Q, g : Q → P such that g · h = f .

Proof. Let c(f(X)) be a completion of f(X). This is a compact space be-
cause f(X) is a precompact space. There exists an embedding i : c(f(X)) →
Im in the Tychonoff cube Im, where m = w(c(f(X))) is the weight of
c(f(X)). The composition i · c : f(X) → Im is a uniform embedding,
and we can consider f(X) as a uniform subspace of Im. By Theorem 9 of
([4],p.40) and Proposition 12 of ([4], p.41) it follows that Im is an injective
space [4]. By Proposition 28 of ([4], p.22) and Proposition 14 of ([4], p.82)
the uniform inclusion map j : f(X) → P has a uniform extension g : Q → P

on some uniform neighborhood Q of f(X) in Im. It is clear that Q is a
precompact ANRU-space. The map h = i · c · f : X → Q is the desired one,
and f = g · h.

Lemma 6. Let X be a precompact space, P , P ′ ∈ pUnif ∩ ANRU and
f : X → P ′, g1, g2 : P ′ → P be uniform maps such that g1 ·f ≈u g2 ·f . Then
there exist a precompact ANRU-space P ′′ and uniform maps f ′ : X → P ′′

and g : P ′′ → P such that g · f ′ = f and g1 · g ≈u g2 · g.

Proof. By Lemma 2.7 of [3], there exist an ANRU-space P ′′1 and uniform
maps f ′1 : X → P ′′1 and g′1 : P ′′1 → P such that g1·f

′
1 = f and g1 ·g

′
1 ≈u g2 ·g

′
1.

By Lemma 5, there exist a precompact ANRU-space P ′′ and uniform
maps f ′ : X → P ′′ and r : P ′′ → P ′′1 such that f ′1 = r · f ′. Let g = g′1 · r.
Consequently, f = g′1 · f

′
1 = g′1 · r · f

′ = g · f ′ and g1 · g ≈u g2 · g.

We now prove the main theorem of this section.

Theorem 7. Let p = (pα) : X → X = (Xα, pαα′ , A) be a precompact
ANRU-resolution of a precompact uniform space X. Then Hp = ([pα]u) :
X → HX = (Xα, [pαα′ ]u, A) is a H(pUnif)-expansion of X with respect to
H(ANRU ∩ pUnif).

Proof. E1). Let P be a precompact ANRU-space and h : X → P be a
uniform map. Let ν be a uniform covering of P such that any two ν-near
maps f , g : X → P are u-homotopic (see [3], Lemma 2.5). By condition
UR1, there exist an index α ∈ A and a uniform map f : Xα → P such that
(f · pα, h) ≤ ν. Consequently, f · pα ≈u h.

E2). Let P be a precompact ANRU-space and f1, f2 : Xα → P be
uniform maps such that f1 · pα ≈u f2 · pα. Let ν be a uniform covering of P
such that ν-near uniform maps into P are u-homotopic. Choose a covering
ν′ according to UR2. Let h : X → P ′ = P × P ∈ ANRU be the map
defined by the formula

h(x) = (f1 · pα(x), f2 · pα(x)), x ∈ X.
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The map h is uniform map. Consider projections g1 : P × P → P and
g2 : P × P → P on the first and second factors, respectively. The maps g1
and g2 are uniform maps. Note that g1 · h ≈u g2 · h.

By Lemma 6, there exist a precompact ANRU-space P ′′ and uniform
maps h′ : X → P , g : P ′′ → P ′ such that g ·h′ = h and g1 ·g ≈u g2 ·g. There
is a uniform covering ν′′ of P ′′ which refines (g1 · g)

−1(ν′) ∧ (g2 · g)
−1(ν′).

By the condition UR1, there exist an index α′′ ∈ A and a uniform map
f : Xα′′ → P ′′ such that (f · pα′′ , h′) < ν′′. We can assume that α′′ ≥ α. It
is clear that (g1 · g · f · pα′′ , g1 · g ·h

′) < ν′. From g1 · g ·h
′ = g1 ·h = f1 · pα it

follows that (g1 ·g·f ·pα′′ , f1 ·pαα′′ ·pα′′) < ν′. Consequently, there is α1 ≥ α′′

such that (g1 ·g ·f ·pα′′α1 , f1 ·pαα1) < ν, so that g1 ·g ·f ·pα′′α1 ≈u f1 ·pαα1 .
Analogously, we can prove that there is α2 ≥ α′′ such that g2 · g · f ·

pα′′α2 ≈u f2 · pαα2 . Let α′ ≥ α1, α2. It is clear that

f1 · pαα′ ≈u g1 · g · f · pα′′α′ ≈u g2 · g · f · pα′′α′ ≈u f1 · pαα′ . �

Using Theorem 7, we can define the precompact uniform shape cate-
gory puSH. By definition puSH category is the abstract shape category
SH

(T ,P)
, where T = H(pUnif) and P = H(ANRU ∩ pUnif).

2. Uniform Shape Category with Precompact Supports.

Let d − puSH be the category whose objects are direct systems X =
(Xλ, Pλλ′ ,Λ) of the precompact uniform shape category puSH and whose
morphisms are systems (Fλ,Φ) : X → Y = (Yµ,Qµµ′ ,M), where Φ : Λ →
M is an increasing function and Fλ : Xλ → YΦ(λ), λ ∈ Λ is a family of
precompact uniform shape morphisms such that if λ ≤ λ′, then QΦ(λ)Φ(λ′) ·
Fλ = Fλ′ · Pλλ′ .

The composition (Hλ, ζ) = (Gµ,Ψ) · (Fλ,Φ) of morphisms (Fλ,Φ) : X →
Y and (Gµ,Ψ) : Y → Z = (Zν , Rνν′ , N) is defined in the usual way:

Hλ = GΦ(λ) · Fλ, ζ = Ψ · Φ.

The identity morphism is the pair (IXλ
, 1Λ) : X → X , where 1Λ : Λ → Λ

is the identity function and IXλ
, λ ∈ Λ is a family of identity precompact

uniform shape morphisms.
We say that two morphisms (Fλ,Φ), (Gλ,Ψ) : X → Y are homotopy

equivalent and we write (Fλ,Φ) ≈u (Gλ,Ψ), if for each index λ ∈ Λ there
exists an index µ ≥ Φ(λ), Ψ(λ) such that QΦ(λ)µ · Fλ = QΨ(λ)µ ·Gλ.

This relation is the equivalence relation in the category d − puSH.
A morphism (Fλ,Φ) : X → Y is said to be a uniform homotopy equiv-

alence, provided there is a morphism (Gµ,Ψ) : Y → X such that (Gµ,Ψ) ·
(Fλ,Φ) ≈u (IXλ

, 1Λ) and (Fλ,Φ) · (Gµ,Ψ) ≈u (IYµ
, 1M ).

By dir−puSH we denote the quotient category of the category d−puSH

and by (Fλ,Φ) an equivalence class of morphisms (Fλ,Φ).
For each uniform space X consider the family Π = {Aµ}µ∈M of all pre-

compact subspaces of X . We order the set M by putting µ ≤ µ′ whenever
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Aµ is a subset of Aµ′ . Let XΠ = (Aµ, Pµµ′ ,M) be a direct system associ-
ated with the family Π. Here Pµµ′ : Aµ → Aµ′ is the precompact uniform
shape morphism induced by the uniform inclusion pµµ′ : Aµ → Aµ′ .

A covering U = (Xλ)λ∈Λ of a uniform space X is said to be ΠS-cofinal
if there is a function Φ : M → Λ called ΠS-cofinality function, such that

(i) for every µ ∈M , Aµ ⊂ XΦ(µ);
(ii) if µ ≤ µ′, then XΦ(µ) ⊆ XΦ(µ′).
We say that a covering U is precompact, provided its elements are pre-

compact subsets of X . It is clear that each precompact covering U =
{Xλ}λ∈Λ of the uniform spaceX defines a direct systemXU = {Xλ, Pλλ′ ,Λ}
of the category puSH, as well. The morphism Pλλ′ is induced by the uni-
form inclusion pλλ′ : Xλ → Xλ′ .

Theorem 8. Let U = {Xλ}λ∈Λ and U ′ = {Xλ′}λ′∈Λ′ be precompact ΠS-
cofinal coverings of the uniform space X. Then there is a uniform homotopy
equivalence between XU and XU ′ .

Proof. The proof is the same as in T. Sanders [6]. Let Θ = Φ′|Λ : Λ → Λ′ and

Θ′ = Φ|Λ′ : Λ′ → Λ be restrictions of ΠS-cofinality functions Φ : M → Λ
and Φ′ : M → Λ′.

Consider the family (Iλ,Θ), where Iλ : Xλ → XΘ(λ) = XΦ′(λ) is the
precompact uniform shape morphism induced by the inclusion iλ : Xλ →
XΘ(λ). For every λ1 ≤ λ2 we have iλ2 · pλ1λ2 = pΘ(λ1)Θ(λ2) · iλ1 . Conse-
quently, Iλ2 · Pλ1λ2 = PΘ(λ1)Θ(λ2) · Iλ1 . The family (Iλ,Θ) is the morphism

from XU to XU ′ . Analogously, the family (Iλ′ ,Θ′), where Iλ′ : Xλ′ →
XΘ′(λ′) = XΦ(λ′) is the precompact uniform shape morphism induced by

the inclusion iλ′ : Xλ′ → XΘ′(λ′), is the morphism from X
U′ to XU .

For each λ ∈ Λ we have iΘ(λ) · iλ = pλΘ′(Θ(λ)) · 1Xλ
. Note that

PΘ′(Θ(λ))Θ′(Θ(λ)) · IΘ(λ) · Iλ = PλΘ′(Θ(λ)) · IXλ
.

Consequently, (Iλ′ ,Θ′) · (Iλ,Θ) ≈u (IXλ
, 1Λ). Similarly, we can prove

(Iλ,Θ) · (Iλ′ ,Θ′) ≈u (IXλ′ , 1Λ′).

Definition 9. Let X and Y be uniform spaces, U = {Xλ}λ∈Λ, U ′ =
{Xλ′}λ′∈Λ′ and V = {Yµ}µ∈M , V ′ = {Yµ′}µ′∈M ′ be precompact ΠS-cofinal
coverings of X and Y , respectively. We say that morphisms (Fλ,Φ) : XU →
Y V and (Fλ′ ,Φ′) : XU ′ → Y V ′ are equivalent and write (Fλ,Φ) ∼ (Fλ′ ,Φ′)
if the homotopy equivalences (Iλ,Θ) : XU → XU ′ and (Iµ,Ω) : Y V → Y

V ′ ,
satisfying the condition

(Fλ′ ,Φ′) · (Iλ,Θ) = (Iµ,Ω) · (Fλ,Φ).

It is readily seen that this relation is indeed an equivalence relation. The
set of all such morphisms is decomposed into classes. The class [(Fλ,Φ)] of
the morphism (Fλ,Φ) we denote by F : X → Y and call it a uniform shape
morphism with precompact support from X to Y .
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Let F : X → Y and G : Y → Z be uniform shape morphisms with
precompact supports. The composition G · F : X → Z is defined as a class
with the representative (Gµ′ ,Ψ′)·(Iµ,Ω)·(Fλ,Φ), where (Fλ,Φ) : XU → Y V

and (Gµ′ ,Ψ′) : Y V ′ → ZW are representatives of F and G, respectively. The
class IX = [(IXλ

, 1Λ)] is called the identity uniform shape morphism with
precompact support. It satisfies the condition

F · IX = IY · F = F.

For each of the uniform shape morphisms with precompact supports F :
X → Y , G : Y → Z and H : Z →W we have

H · (G · F ) = (H ·G) · F.

We define now the category uSHp, called the uniform shape category
with precompact supports. The objects of the category uSHp are all the
objects of the category Unif and the morphisms of uSHp are the uniform
shape morphisms with precompact supports.

We say that two uniform spaces X and Y have the same uniform shape
with precompact supports, and write ushp(X) = ushp(Y ), provided they
are isomorphic objects of the category uSHp.

Theorem 10. Let f : X → Y be a uniform map, and let U = {Xλ}λ∈Λ

and V = {Yµ}µ∈M be precompact ΠS-cofinal coverings of X and Y , respec-
tively. Then f induces morphism (Fλ,Φ) : XU → Y V . If f ≈u g : X → Y ,
then (Fλ,Φ) ≈u (Gλ,Ψ), where (Gλ,Ψ) is induced by the uniform map g.

Proof. The image f(Xλ) of precompact subspace Xλ is a precompact sub-
space of Y . There exists an index µ such that f(Xλ) ⊂ Yµ. In this way we
have defined an increasing function Φ : Λ → M such that f(Xλ) ⊂ YΦ(λ).

The restriction f|Xλ
: Xλ → YΦ(λ) defines a precompact uniform shape

morphism Fλ : Xλ → YΦ(λ). The family (Fλ,Φ) is the morphism from XU

to Y V . Indeed, let Pλλ′ : Xλ → Xλ′ be the precompact uniform shape
morphism induced by the uniform inclusion pλλ′ : Xλ → Xλ′ . Note that
f|Xλ′

· pλλ′ = qΦ(λ)Φ(λ′) · f|Xλ
in the category Unif . Hence Fλ′ · Pλλ′ =

QΦ(λ)Φ(λ′) ·Fλ, where QΦ(λ)Φ(λ′) : YΦ(λ) → YΦ(λ′) is the precompact uniform
shape morphism induced by the inclusion qΦ(λ)Φ(λ′) : YΦ(λ) → YΦ(λ′).

Let H : X ∗ I → Y be a semi-uniform homotopy between f and g.
For every precompact subspace Xλ of X the set Xλ ∗ I is precompact.
The image H(Xλ ∗ I) is precompact and contains precompact subspaces
f(Xλ) and g(Xλ). There is an increasing function Ψ : Λ → M such that
g(Xλ) ⊂ YΨ(λ). There exists an index µ ≥ Φ(λ), Ψ(λ) such that YΦ(λ),
YΨ(λ), H(Xλ ∗ I) ⊂ Yµ. It is clear that qΨ(λ′)µ · g|Xλ

= qΦ(λ)µ · f|Xλ
in

the category H(pUnif). Hence QΦ(λ)µ · Fλ = QΨ(λ)µ ·Gλ, i.e., (Fλ,Φ) ≈u

(Gλ,Ψ).
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Theorem 11. Let U , U ′ and V , V ′ be precompact ΠS-cofinal coverings of
uniform spaces X and Y , respectively. If (Fλ,Φ) : XU → Y V and (Fλ′ ,Φ′) :
XU ′ → Y V ′ are morphisms induced by a uniform map f : X → Y , then
(Fλ,Φ) ≈u (Fλ′ ,Φ′).

Proof. The proof is analogous to that of Proposition 3.3 from [6].

From Theorems 10 and 11 it follows that there exists a covariant functor
uSp : H(Unif) → uSHp such that uSp(X) = X for every uniform space
X , and uSp([f ]u) = F for every uniform homotopy class [f ]u. Here F is the
uniform shape morphism with precompact support induced by the uniform
map f .

Corollary 12. If X ≈u Y , then ushp(X) = ushp(Y ).

Corollary 13. Let X and Y be precompact uniform spaces. Then ushp(X)=
ushp(Y ) iff push(X) = push(Y ).

3. Homology with Precompact Supports.

In [3,7] T. Miyata has studied the homology theory of uniform spaces. He
defined Čech’s type homology (cohomology) functor Ȟk(−;G) (Ȟk(−;G))
from the uniform shape category uSH to the category Ab of abelian groups.
For every uniform space X the k-th Čech homology (cohomology) group
Ȟk(X ;G) (Ȟk(X ;G)) is based on the uniform coverings of X , i.e.,

Ȟk(X ;G) = lim
←

{Hk(N(u);G), puu′k, U cov(X)}

Ȟk(X ;G) = lim
→

{Hk(N(u);G) , pk
uu′ , U cov(X)}

where Hk(N(u);G) (Hk(N(u);G)) denotes the k-th simplicial homology
(cohomology) group of the nerve N(u) of uniform covering u of X .

It is clear that the k-th Čech homology (cohomology) group of the pre-
compact space X is the inverse (direct) limit of the inverse (direct) system
consisting of k-th simplicial homology (cohomology) groups of nerves of
finite uniform coverings of the precompact space X .

Let X be a uniform space and U = {Xλ}λ∈Λ be a precompact ΠS-
cofinal covering of X . Consider a direct system X

U
= (Xλ, Pλλ′ ,Λ) of the

category puSH. Then Ȟk(X
U
;G) = (Ȟk(Xλ;G), Pλλ′k,Λ) (Ȟk(X

U
;G) =

(Ȟk(Xλ;G), P k
λλ′ ,Λ)) is a direct (inverse) system of the category Ab. Here

Pλλ′k(P k
λλ′ ) is the homomorphism induced by the precompact uniform shape

morphism Pλλ′ : Xλ → Xλ′ .
For each morphism (Fλ,Φ) : X

U
→ Y

V
= (Yµ,Qµµ′ ,M) the family

(Fλk,Φ) : Ȟk(X
U
;G) → Ȟk(Y

V
;G) ((F k

λ ,Φ) : Ȟk(Y
V
;G) → Ȟk(X

U
;G))

is a morphism of dir − Ab(pro − Ab). If (Fλ,Φ) ≈u (Gλ,Ψ), then
(Fλk,Φ) ∼ (Gλk,Ψ) ((F k

λ ,Φ) ∼ (Gk
λ,Ψ)) equivalence holds in the cate-

gory dir − Ab(pro − Ab). It is clear that for each of the morphisms
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(Fλ,Φ) : X
U
→ Y

V
and (Gµ,Ψ) : Y

V
→ Z

W
we have the following rela-

tions:

((G
Φ(λ) · Fλ)k,Ψ · Φ) ∼ (Gµk,Ψ) · (Fλk,Φ)

((G
Φ(λ) · Fλ)k,Ψ · Φ) ∼ (F k

λ ,Φ) · (Gk
µ,Ψ)).

Furthermore, ((I
Xλ

)k, 1Λ) (((I
Xλ

)k, 1Λ)) is the identity morphism

Ȟk(X
U
;G) → Ȟk(X

U
;G)(Ȟk(X

U
;G) → Ȟk(X

U
;G)).

Consequently, the functor

Ȟk(−;G) : puSH → Ab(Ȟk(−;G) : puSH → Ab)

induces the functor

dir−Ȟk(−;G) : dir− puSH → dir− Ab

(dir−Ȟk(−;G) : dir − puSH → pro− Ab)

by the formulas

dir−Ȟk(X
U
;G) = Ȟk(X

U
;G)(dir−Ȟk(X

U
;G) = Ȟk(X

U
;G))

dir−Ȟk((Fλ,Φ)) = (Fλk,Φ)(dir−Ȟk((Fλ,Φ)) = (F k
λ ,Φ)).

Define now homology (cohomology) dir-group (pro-group) of the uni-
form space X . Consider precompact ΠS-cofinal covering U of X and dir-
group Ȟk(X

U
;G) (pro-proup Ȟk(X

U
;G)). If U ′ is the other precompact

ΠS-cofinal covering of X , then there is a uniform homotopy equivalence
(Iλ,Θ) : X

U
→ X

U′ (see Theorem 8). Consequently, (Iλ,Θ) induces

an isomorphism of dir-groups (Iλk,Θ) : Ȟk(Xu;G) → Ȟk(X
U′ ;G) (pro-

groups (Ik
λ ,Θ) : Ȟk(Xu′ ;G) → Ȟk(X

U
;G)). We denote by dir−Ȟk(X ;G)

(dir−Ȟk(X ;G)) the equivalence class of dir-groups (pro-groups) which con-
tains Ȟk(X

U
;G) (Ȟk(X

U
;G)) and call the k-th homology (cohomology) dir-

group (pro-group) of the uniform space X with coefficients in the Abelian
group G.

Let F : X → Y be a uniform shape morphism with precompact sup-
port defined by a morphism (Fλ,Φ) : X

U
→ Y

V
. For the representative

(Fλ′ ,Φ′) : X
U′ → Y

V ′ we have (Fλ′ ,Φ′) · (Iλ,Θ) ≈u (Iµ,Ω) · (Fλ,Φ). Con-
sequently, (Fλ′k,Φ

′) · (Iλk,Θ) = (Iµk
,Ω) · (Fλk,Φ) ((Ik

λ ,Θ) · (F k
λ′ ,Φ′) =

(F k
λ ,Φ) · (Ik

µ ,Ω)). Hence (Fλk,Φ) and (Fλ′k,Φ
′) ((F k

λ ,Φ) and (F k
λ′ ,Φ′))

coincide. Clearly, F : X → Y defines the morphism

dir−Ȟk(F ) : dir−Ȟk(X ;G) → dir−Ȟk(Y ;G)

(dir−Ȟk(F ) : dir−Ȟk(Y ;G) → dir−Ȟk(X ;G)).

This shows that we have the following
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Theorem 14. The k-th homology (cohomology) dir-group dir−Ȟk(−;G)
(pro-group dir−Ȟk(−;G)) is a functor uSHp → dir−Ab(uSHp → pro−
Ab).

Corollary 15. Let X and Y be uniform spaces. If ushp(X) = ushp(Y ),
then dir−Ȟk(X ;G) = dir−Ȟk(Y ;G) and dir−Ȟk(X ;G) = dir−Ȟk(Y ;G).

For each uniform space X we now define Čech homology (cohomology)
groups with precompact supports

psȞk(X ;G) = lim
→

dir−Ȟk(X ;G)

(psȞ
k(X ;G) = lim

←
dir−Ȟk(X ;G)).

Let F̌k = lim
→

dir−Ȟk(F ) (F̌ k = lim
←

dir−Ȟk(F )) for each uniform shape

morphism wich precompact support F : X → Y .

Corollary 16. The k-th Čech homology (cohomology) group with precom-
pact supports psȞk(−;G) (psȞ

k(−;G)) is a functor uSHp → Ab.

Corollary 17. Let X and Y be uniform spaces. If ushp(X) = ushp(Y ),
then psȞk(X ;G) = psȞk(Y ;G) and psȞ

k(X ;G) = psȞ
k(Y ;G).

4. The Homology Exact Sequence of a Uniform Map.

Let fϕ be the category of finite simplicial sets and simplicial maps, and
let K the extended homotopy category associated with fϕ [8].

It is known that each category L yields the mapping category Lmaps

whose objects are the morphisms f : X → Y of L and whose morphisms
are the pairs g = (g1, g2) : f → f ′ : X ′ → Y ′ such that f ′ · g1 = g2 · f .

We have associated the “homotopy” category K-fϕ
maps

whose objects
are the those of fϕ

maps
and whose morphisms are the “homotopy” classes of

morphisms in fϕ
maps

[8]. Applying pro, we obtain the following categories:
pro− fϕ

maps
, pro − K− fϕ

maps
.

According to [8], we now define the functor

Č : pUnif
maps

→ pro− K− fϕ
maps

.

Consider the set fU cov(f) of all triples (α, β, ν), where α and β are finite
uniform coverings of Y and X , respectively, and ν : β → f−1α is a refining
map. Let fαβν : N(β) → N(α) be a simplicial map induced by ν. By the
definition,

fαβν(U) = f · ν(U), U ∈ β.

A refining map (µ1, µ2) : (α′, β′, ν′) → (α, β, ν) consists of refining maps
µ1 : β′ → β and µ2 : α′ → α such that ν · µ1 = µ2 · ν′. For each refining
map (µ1, µ2) we have

µ2∗ · fα′β′ν′ = fαβν · µ1∗,
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where µ2∗ and µ1∗ are, respectively, the simplicial maps µ2∗ : Yα′ → Yα and
µ1∗ : Xβ′ → Xβ . Consequently, (µ1∗, µ2∗) : fα′β′ν′ → fαβν is a morphism
in fϕ

maps
. For the other refining map (µ′1∗, µ

′
2∗) : (α′, β′, ν′) → (α, β, ν)

the pairs (µ1∗, µ2∗) and (µ′1∗, µ
′
2∗) are contiguous in fϕ

maps
, and hence

[(µ1∗, µ2∗)] = [(µ′1∗, µ
′
2∗)].

The family Č(f) = (fαβν : N(β) → N(α))(α,β,ν)∈fU cov(f) is an element
of the category pro−K−fϕ

maps
. Let g = (g1, g2) : f ′ → f be a morphism

of fϕ
maps

. Let Č(g) : Č(f ′) → Č(f) be a morphism given by the family

(gαβν ,Θ). Note that Θ(α, β, ν) = (g−1
2 α, g−1

1 β, g∗(ν)) for each (α, β, ν) ∈

fU cov(f), where g∗(ν)(G) = f
′−1 · g−1

2 · f · ν · g1(G), G ∈ g−1
1 β. The map

gαβν : fΘ(α,β,ν) → fαβν is defined by the formula gαβν = ((g1)β , (g2)α).

Consider the composition of the functor Č and of the uniform realization
functor | · |u : fϕ → Upol [3]. Consequently, we can consider Č as the
functor from pUnifmaps into pro − Upolmaps, pro − H − Upolmaps or
pro− H− ANRUmaps.

Let f : K → L be a map in fϕ and Mf be a mapping cylinder (see
[9]). It is known that f = r · i, where i : K →Mf is the inclusion map and
r : Mj → L is a retraction. There is the inclusion map j : L→Mf such that
r · j = 1

L
and j · r and 1

M
are contiguous. Let Hn(f ;G) = Hn(Mf ,K;G).

The sequence

· · · → Hn(K;G) → Hn(L;G) → Hn(f ;G) → · · ·

is the long exact sequence. Hence we have the functor

Hn : K − fϕ
maps

→ LES(Ab)

from the category K − fϕ
maps

to the category of long exact sequences in
Ab. Consider the composition

pro−Hn · Č : pUnifmaps → pro − (LES(Ab))

of functors Č and pro−Hn : pro− K − fϕ
maps

→ pro − (LES(Ab)).

There is a natural functor [2]

γ : pro − (LES(Ab)) → LES(pro − Ab).

Consequently, we have the functor

γ · pro−Hn · Č : pUnifmaps → LES(pro − Ab).

Omitting γ and Č, we write

pro−Hn(f ;G) = (Hn(fαβν ;G))(α,β,ν) ∈ fU cov(f)

and obtain the following

Theorem 18. For each uniform map f : X → Y of precompact uniform
spaces X and Y there is a long exact sequence

· · · → pro−Hn(X ;G) → pro−Hn(Y ;G) → pro−Hn(f ;G) → · · ·
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According to [8], we say that the uniform map f : X → Y is movable iff
Č(f) is movable in pro− K − fϕ

maps
.

Theorem 19. Let f : X → Y be a movable uniform map of precompact
spaces with countable weight. Then there is a long exact sequence

· · · → Ȟn(X ;G) → Ȟn(Y ;G) → Ȟn(f ;G) → · · · ,

where Ȟn(f ;G) = lim
←

pro−Hn(f ;G).

Proof. By the condition of the theorem, fU cov(f) has a countable cofinal
subset. Hence each pro-group in the long exact sequence

· · · → pro−Hn(X ;G) → pro−Hn(Y ;G) → pro−Hn(f ;G) → · · ·

is indexed by a countable set. Each term of this sequence satisfies the
Mittag-Leffler condition. From Proposition IV.1.2 of [8] it follows that the
limit sequence

· · · → Ȟn(X ;G) → Ȟn(Y ;G) → Ȟn(f ;G) → · · ·

is exact.
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