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DG HOPF ALGEBRAS WITH STEENRODS I-TH COPRODUCTS

T. KADEISHVILI

Abstract. In this article we introduce the notion of DG-Hopf algebra
with Steenrods ∇i coproducts (C, d, µ,∇0,∇1, . . . ), where (C, d, µ) is
a DG-algebra and {∇i : C → C ⊗ C} are chain cooperations, with
properties dual to Steenrods ⌣i-products, satisfying certain condi-
tions of compatibility with the multiplication µ : C ⊗ C → C. As an
application the constructions of ∇i−s on the singular cubical chain
complex CU∗(X) and on the cobar construction ΩC̄∗(X) of the sin-
gular chain complex of an 1-connected space X are given.

In this article we study objects of type

(C; d;∇0,∇1,∇2, . . . ; µ)

where (C; d;∇0) is a DG-coalgebra (with deg d = −1), (C; d; µ) is a DG-
algebra and ∇i : C → C ⊗ C, i > 0, are cooperations, dual to Steenrods
⌣i products, i. e. they satisfy the conditions

deg∇i = i, (d ⊗ 1 + 1 ⊗ d)∇i + ∇id = ∇i−1 + (−1)iT∇i−1.

here T : C ⊗ C → C ⊗ C is the permutation map.
We are interested what kind of compatibility of ∇i-s with the multipli-

cation µ should be required. The requirement for the coproduct ∇0 is well
known: ∇0 : C → C ⊗ C should be a multiplicative map (this means, that
(C; d;∇0; µ) is a DG-Hopf algebra). The requirement for ∇1 is known too
(see [3]): ∇1 should be a (∇0, T∇1)-derivation, i. e.

∇1µ = µC⊗C(∇1 ⊗∇0 + T∇0 ⊗∇1).
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Below we introduce the notion of n-derivation, which is map of algebras,
which preserves multiplicative structure in some specific way. Particularly,
a 0-derivation is just a multiplicative map, a 1-derivation is an ordinary
derivation. We formulate the requirements for higher ∇i-s in these terms:
∇n should be a n-derivation. In a case when C is a free graded algebra,
this allows proceed as follows: we can define ∇n on generators and ex-
tend on whole C as a n-derivation. As an example we give construction of
cooperations ∇i for cubical chain complex of a space. Note, that the coop-
eration ∇0, constructed by this procedure coincides with the cooperation,
constructed in [9], and ∇1 with cooperation, constructed in [3].

It is a pleasure to dedicate this article to 70’th birthday of Professor
Nodar Berikashvili.

1. Derivations

1.1. High rank derivations. There are various types of maps of algebras
f : A → B, respecting multiplicative structure in some sense. First of all
these are multiplicative maps, i. e. maps, satisfying f(ab) = f(a)f(b). If
two multiplicative maps f, g : A → B are given, then come in play (f, g)-
derivations, i. e. maps s : A → B with property s(ab) = s(a)f(b)+g(a)s(b).
So multiplicative maps and derivations decompose on products differently.
If A is a free algebra, i. e. if A = T (V ), here T (V ) is the tensor algebra
generated by a graded module V , then each multiplicative map, as well as
a derivation, is uniquely determined by the restriction on generator graded
module V , but they have different extension rules: any linear map α : V →
B determines a multiplicative map fα : A → B extended from α by the rule

fα(a1 ⊗ a2 ⊗ · · · ⊗ an) = α(a1)α(a2) · · ·α(an).

If, in addition β, β′ : V → B are given (which determine a multiplicative
maps fβ, fβ′ : A → B), then the same α can be extended as a (fβ, fβ′)-
derivation sα : A → B by the extension rule

sα(a1 ⊗ · · · ⊗ an) = Σn
k=1β

′(a1) · · ·β
′(ak−1)α(ak)β(ak+1) · · ·β(an).

In this section we introduce high rank derivations, maps with special type
of decomposability on products.

Bellow we assume, that A and B are graded algebras with products
µA : A ⊗ A → A and µB : B ⊗ B → B respectively (we write µ for µA and
µB).

Let us define a 0-derivation as a homomorphism of degree 0 f : A → B

such, that

fµ = µ(f ⊗ f),

in fact a 0-derivation is just a multiplicative morphism of graded algebras.
Suppose now that two 0-derivations f0

0 , f0
1 : A → B are fixed. A 1-

derivation with respect to data (f0
0 , f0

1 ) is a homomorphism f1
0 : A → B of
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degree 1, which decomposes by the rule

f1
0 µ = µ(f1

0 ⊗ f0
0 + f0

1 ⊗ f1
0 ),

This notion coincides with the usual notion of (f0
0 , f0

1 ) derivation.
Now fix a following data

f1
0 f1

1

f0
0 f0

1 f0
2 ,

where f0
0 , f0

1 , f0
2 : A → B are 0-derivations, and f1

0 , f1
1 : A → B are 1-

derivations with respect to (f0
0 , f0

1 ) and (f0
1 , f0

2 ). A 2-derivation with respect
to data above we define as a homomorphism of degree 2 f2

0 : A → B which
decomposes by the rule

f2
0 µ = µ(f2

0 ⊗ f0
0 + f1

1 ⊗ f1
0 + f0

1 ⊗ f2
0 ).

Here is the general

Definition 1. Suppose a following data is given:

fn−1
0 fn−1

1

· · · · · · · · · · · · · · ·
f1
0 f1

1 · · · f1
n−2 f1

n−1

f0
0 f0

1 · · · · · · · · · f0
n−1 f0

n,

(1)

where each fp
q is a p-derivation with respect to the collection {f i

j} with f i
j

from the triangle with fp
q on the top. An n-derivation is a homomorphism

of degree n, which decomposes by the rule

fn
0 µ = µ(

n∑

i=0

fn−i
i ⊗ f i

0). (2)

1.2. Universal property. Let A be a free graded algebra, i. e. the tensor
algebra

T (V ) = Λ + V + V ⊗ V + V ⊗ V ⊗ V + · · · =

∞∑

i=0

⊗iV

of some free graded Λ−module V with usual grading and product.
Each morphism of graded algebras f : T (V ) → B is uniquely determined

by it’s restriction on generators f |V . More precisely tensor algebra has
the following universal property: for an arbitrary homomorphism of graded
modules α : V → B there exists the unique multiplicative homomorphism
(a 0-derivation) f : T (V ) → B, for which commutes the diagram

V
i

−→ T (V )
α ց ւ f

B

,
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here i : V → T (V ) is the imbedding as the second direct summand of T (V ).
The construction of f (i. e. the extension rule for α) is obvious:

f | ⊗n V = µn[(α)n],

here µn : ⊗nB → B is the iteration of the product µ : B ⊗ B → B and
(α)n = α ⊗ · · · (n-times) · · · ⊗ α.

Tensor algebra has the similar universal property for 1-derivations too
(see for example [7]): for an arbitrary data

α1
0

α0
0 α0

1

where α0
0, α

0
1 ∈ Hom0(V ; B), α1

0 ∈ Hom1(V ; B) there exist: 0-derivations
f0
0 , f0

1 : T (V ) → B and 1-derivation f1
0 : T (V ) → B with respect to couple

(f0
0 , f0

1 ), such, that fp
q i = αp

q . The construction of f1
0 (i. e. the extension

rule for α1
0 ) is following:

f1
0 | ⊗

m V =
m−1∑

k=0

µn[(α0
1)

k ⊗ α1
0 ⊗ (α0

0)
m−k−1],

here (α0
i )

0 means omitting of this factor.

Now we are going to show that T (V ) has the similar universal property
for higher derivations too:

Proposition 1. Tensor algebra T (V ) has the following universal property:

for an arbitrary collection of homomorphisms

αn
0

αn−1
0 αn−1

1

· · · · · · · · · · · · · · ·
α1

0 α1
1 · · · α1

n−2 α1
n−1

α0
0 α0

1 · · · · · · · · · α0
n−1 α0

n

(3)

with αp
q ∈ Homp(V ; B) there exists the unique collection

fn
0

fn−1
0 fn−1

1

· · · · · · · · · · · · · · ·
f1
0 f1

1 · · · f1
n−2 f1

n−1

f0
0 f0

1 · · · · · · · · · f0
n−1 f0

n

where each fp
q is a p-derivation with respect to the collection {f i

j} with f i
j

from the triangle with fp
q on the top, such, that fp

q i = αp
q .
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Proof. Here is the construction of fn
0 (the extension rule for αn

0 ):

fn
0 | ⊗mV =

min(n,m)∑

p=1

∑

k1+k2+···+kp=n

∑

m1+m2+···+mp+1=m−p

µm[(α0
k1+k2+···+kp

)m1 ⊗ α
kp

k1+k2+···+kp−1
⊗ (α0

k1+k2+···+kp−1
)m2 ⊗ · · ·

⊗αk3

k1+k2
⊗ (α0

k1+k2
)mp−1 ⊗ αk2

k1
⊗ (α0

k1
)mp ⊗ αk1

0 ⊗ (α0
0)

mp+1 ], (4)

here ki ≥ 1, mi ≥ 0, and (α0
i )

0 means omitting of this factor. The rest
is routine verification. Note, that even αn

0 = 0, it’s extension fn
0 can be

nonzero.

1.3. DG-derivations. Now we suppose that (A, d) and (B, d) are differential

graded algebras (DG-algebras) with differentials of degree-1.

Let us define a DG-0-derivation as a 0-derivation f : A → B with
additional property Df = 0, (here D is the differential in Hom(A, B):
Df = dBf − (−1)deg ffdA ). In fact this means that f is just a multi-
plicative chain map.

Suppose now that two DG-derivations f0
0 , f0

1 : A → B are fixed. A
DG − 1−derivation with respect to (f0

0 , f0
1 ) we define as a 1-derivation

f1
0 : A → B with additional property Df1

0 = f0
0 − f0

1 . This notion coincides
with the obvious notion of derivation homotopy.

Generally we introduce the following inductive

Definition 2. Suppose a following data is given:

fn−1
0 fn−1

1

· · · · · · · · · · · · · · ·
f1
0 f1

1 · · · f1
n−2 f1

n−1

f0
0 f0

1 · · · · · · · · · f0
n−1 f0

n,

(5)

where each fp
q is a DG − p−derivation with respect to the collection {f i

j}

with f i
j from the triangle with fp

q on the top. A DG − n− derivation is
an n-derivation with respect to this data fn

0 : A → B which, in addition,
satisfies the condition

Dfn
0 = fn−1

0 + (−1)nfn−1
1 . (6)

Proposition 2. Suppose A = T (V ) and fn
0 : T (V ) → B be an n-derivation

with respect to data (5), then fn
0 is a DG-n-derivation if and only if the

condition (6) is satisfied for generators, i. e. if

Dfn
0 |V = (fn−1

0 + (−1)nfn−1
1 )|V.
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Proof. The proof follows from the fact, that Dfn
0 and fn−1

0 + (−1)nfn−1
1

have same decomposition rules:

Dfn
0 µ = µΣn

i=0(Dfn−i
i ⊗ f i

0 + (−1)n−ifn−i
i ⊗ Df i

0) =
= µ[Σn−1

i=0 ((fn−i−1
i + (−1)n−ifn−i−1

i+1 ) ⊗ f i
0) + Σn

i=1(−1)n−ifn−i
i ⊗

(f i−1
0 + (−1)if i−1

1 )] = µ[Σn−1
i=0 fn−i−1

i ⊗ f i
0 + Σn−1

i=0 (−1)n−ifn−i−1
i+1 ⊗ f i

0+

+Σn
i=1(−1)n−ifn−i

i ⊗ f i−1
0 + Σn

i=1(−1)nfn−i
i ⊗ f i−1

1 ] =
= (fn−1

0 + (−1)nfn−1
1 )µ. �

1.4. Twisting elements. Now we suppose that A is a free DG−algebra, i.
e. A = T (V ) with some differential d. In this section we shall find the
conditions which should satisfy a data (3) in order the induced n-derivation
fn
0 : T (V ) → B to be a DG-n-derivation.

Let us first analyze the structure of a differential d : T (V ) → T (V ) on
T (V ) (see for example [7] or [6]).

Since this differential is required to be a derivation of degree -1, it is
determined by its restriction

β = d | V : V −→ T (V ),

which, in fact, consists of components

β = {βi : V −→ ⊗iV )

and the extension rule is

d | ⊗mV =

m∑

k=1

∞∑

i=1

(id)k−1 ⊗ βi ⊗ (id)m−k.

The composite dd is a derivation of degree -2, whence dd = 0 if and only
if the restriction dd | V = 0. This condition for the collection {βi} means

∑

i+j=n

j∑

k=1

[(id)k−1 ⊗ βi ⊗ (id)j−k]βj = 0

for all n ≥ 1. Note that shifting dimensions (V ; {βi}) is an A∞−coalgebra,
see [10].

Since of the universal property an n-derivation fn
0 : T (V ) → B is uniquely

determined by a by a data (3). We are interested what aditional condition
should satisfy this data in order fn

0 to be a DG-n-derivation?

Definition 3. A data (3) we call n-twisting if the following condition is
satisfied:

dαn
o +

∑min(n,m)
p=1

∑
k1+k2+···+kp=n

∑
m1+m2+···+mp+1=m−p

µm[(α0
k1+k2+···+kp

)m1 ⊗ α
kp

k1+k2+···+kp−1
⊗ (α0

k1+k2+···+kp−1
)m2 ⊗ · · ·

⊗αk3

k1+k2
⊗ (α0

k1+k2
)mp−1 ⊗ αk2

k1
⊗ (α0

k1
)mp ⊗ αk1

0 ⊗ (α0
0)

mp+1 ]βm =

= αn−1
0 + (−1)nαn−1

1 .

(7)
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Proposition 3. The n-derivation fn
0 induced by a data (3) is a DG-n-de-

rivation if and only if (3) is n-twisting.

Proof. Since of Proposition 2 Dfn
0 and fn−1

0 + (−1)nfn−1
1 coincide, iff they

coincide on generators, i. e. iff Dfn
0 | V = ( fn−1

0 + (−1)nfn−1
1 ) | V. This

condition for generating homomorphisms {αi} means exactly (7).

2. DG-Hopf Algebras with Steenrods ∇i-coproducts

2.1. Steenrods ∇i coproducts. We are going to study objects of type

(C, d,∇0,∇1,∇2, . . . )

where (C, d,∇0) is a DG-coalgebra (with deg d = −1) and ∇i : C → C ⊗
C, i > 0, satisfies

deg∇i = i, D∇i = ∇i−1 + (−1)nT∇i−1, (8)

here D is the differential in Hom(C, C ⊗ C) and T : C ⊗ C → C ⊗ C is the
permutation map T (a ⊗ b) = (−1)dim a·dim bb ⊗ a. Such an object we shall
call DG colagebra with Steenrods ∇i− coproducts.

The main example is chain complex C∗(X) with ∇i dual to Steenrods
⌣i −products.

Suppose that, in addition, on C an associative multiplication µ : C⊗C →
C is given, which turns (C, d, µ) into a DG algebra, i. e. d is a derivation
with respect to µ.

We are interested what kind of compatibility of ∇i-s with µ is natural to
require.

Usualy for ∇0 : C → C ⊗ C it is required the multiplicativity, i. e.

∇0µ = µC⊗C(∇0 ⊗∇0),

here µC⊗C = (µ ⊗ µ)(id ⊗ T ⊗ id) is the induced multiplication on C ⊗ C.

This condition means, that (C, d, µ,∇0) is a DG-Hopf algebra. The example
of such structure is C∗(ΩX).

As for the next cooperation, in [3] it is requred that ∇1 should be a
(∇0, T∇1)-derivation, i. e.

∇1µ = µC ⊗ C(∇1 ⊗∇0 + T∇0 ⊗∇1).

Let us mention that an object (C, d, µ,∇0,∇1) is a HAH in the sense of
[An], homotopy Hopf algebra in sense of [3] and a B∞−algebra in sense of
[5].

The compatibility of higher ∇i-s with the product µ is described in the
following

Definition 4. A DG−Hopf algebra with Steenrods ∇i coproducts

(C, d, µ,∇0,∇1,∇2, . . . )
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we define as a DG−algebra (C, d, µ) with given sequence of cooperations

{∇i : C −→ C ⊗ C, i = 0, 2, . . .}

so that each ∇n is a DG− n−derivation with respect to data (5) with
fp

q = T q∇p, i. e. with respect to data

∇n−1 T∇n−1

· · · · · · · · · · · · · · ·
∇1 T∇1 · · · T n−2∇1 T n−1∇1

∇0 T∇0 · · · · · · · · · T n−1∇0 T n∇0.

(9)

In other words cooperations (∇0,∇1,∇2, . . . ) shall satisfy the conditions
(see (6) and (2)):

cD∇n = ∇n−1 + (−1)nT∇n−1 (10)

and

∇nµ =
n∑

k=0

µC⊗C(∇k ⊗ T k∇n−k). (11)

The advantage of this definition is that if C = T (V ) then it suffices to
define the cooperations ∇i on generators and extend them by the rule (4),
then the needed conditions will be automatically satisfied.

Namely, from the Proposition 3 follows the

Proposition 4. Suppose for a sequence of homomorphisms

{α0, α1, . . . ; αi ∈ Homi(V, T (V ) ⊗ T (V ))}

the sequence {αp
q = T qαp} satisfies the condition (7). Then the sequence

of cooperations {∇i} where each ∇n is a DG − n-derivation, obtained by

extension of {αi} by the rule (4) forms on (T (V ), d) a structure of DG−Hopf

algebra with Steenrods ∇i coproducts.

2.2. Steenrods ∇i coproducts in cubical chain complex. First we construct
cooperations ∇i for the DG-algebra I(∞), which was used by Baues [3] for
the construction of ∇0 and ∇1.

Let I(∞) be the free graded algebra generated by three elements e, e′, e′′

with degree deg e′ = 0, deg e′′ = 0, deg e = 1. An element of I(∞) we shall
write as e1 · · · e2 · · · en with ei = e′, e′′ or e. The differential d : I(∞) →
I(∞) on generators is given by d(e′) = d(e′′) = 0, d(e) = e′′ − e′ and is
extended as a derivation.

We want to define a sequence of cooperations

{∇i : I(∞) → I(∞) ⊗ I(∞), i = 0, 1, 2, . . .}

satisfying the conditions (10) and (11).
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Let’s define a sequence of cooperations {αi} on generators by

α0(e′) = e′ ⊗ e′, α0(e′′) = e′′ ⊗ e′′, α0(e) = e′ ⊗ e + e ⊗ e′′;
α1(e′) = 0, α1(e′′) = 0, α1(e) = e ⊗ e;

αi(e′) = 0, αi(e′′) = 0, αi(e) = 0 for i > 2,

(12)

thus the suitable data (3) {αp
q = T qαp} now looks as

0
0 0

· · · · · · · · · · · · · · ·
0 · · · · · · · · · 0

α1 Tα1 · · · T n−2α1 T n−1α1

α0 Tα0 · · · · · · · · · T n−1α0 T nα0.

(13)

It is not hard to check that the this data satisfies the condition (7). Extend-
ing (13) by the rule (4), according to Proposition 4, we obtain the sequence
{∇i} which forms on I(∞) a structure of DG-Hopf algebra with Steenrods
∇i products.

Here are the formulae of ∇n-s for the elements em = e · · · · · · e ∈ I(∞):

∇n(em) =
∑

p1+···+pn+1+n=m

(T nα0(e))pn+1 · · ·T n−1α1(e) · · · (T n−1α0(e))pn×

×T n−2α1(e) · · · (T 1α0(e))p2 · T 0α1(e) · (T 0α0(e))p1 =

=
∑

p1+···+pn+1+n=m

(T n(e′ ⊗ e + e ⊗ e′′))pn+1 · T n−1(e ⊗ e) ×

×(T n−1(e′ ⊗ e + e ⊗ e′′))pn · T n−2(e ⊗ e) · · · (T 1(e′ ⊗ e + e ⊗ e′′))p2 ×

×T 0(e ⊗ e) · (T 0(e′ ⊗ e + e ⊗ e′′))p1 (14)

here pi ≥ 0 and (e′ ⊗ e + e ⊗ e′′)0 means omitting of this factor.
Let us change the notation in order to make it closer to standard one. The

cube In we represent as (t, t, . . . , t) where t is variable from I = [0, 1]. For
example I2 is represented as (t, t) and it’s 1-faces as (0, t), (1, t), (t, 0), (t, 1).

Denote e′ = 0, e′′ = 1, e = t. For a word e1 · · · en ∈ I(∞) with ek = e′, e′′

or e we shall write (i1, . . . , in) with ik = 0, 1 or t.
The above formula (14) for ∇n(tm) now looks as

∇n(t, . . . , t) =
∑

p1+···+pn+1+n=m

(T n(0 ⊗ t + t ⊗ 1))pn+1 · T n−1(t ⊗ t) ·

(T n−1(0 ⊗ t + t ⊗ 1))pn · T n−2(t ⊗ t) ·

· · · (T 1(0 ⊗ t + t ⊗ 1))p2 · T 0(t ⊗ t) · (T 0(0 ⊗ t + t ⊗ 1))p1 . (15)

Particularly for ∇0 we have

∇0(t, . . . , t) = (0 ⊗ t + t ⊗ 1)m,
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this formula can be rewritten in another form. Let us introduce two maps
ϕ0, ϕ1 : {0, 1} → {0, 1, t} given by

ϕ0(0) = 0, ϕ0(1) = t; ϕ1(0) = t, ϕ1(1) = 1.

Then it is possible to show by induction, that

∇0(t, . . . , t) =
∑

(i1,...,in)

[ϕ0(i1), . . . , ϕ0(in)] ⊗ [ϕ1(i1), . . . , ϕ1(in)]

where the summation is taken over all vertexes (i1, . . . , in), ik = 0, 1, of In.
This coproduct coincides with one, given in [9] and [3].

For ∇1 we have

∇1(t, . . . , t) =
∑

p1+p2+1=m

(t ⊗ 0 + 1 ⊗ t))p1 · (t ⊗ t) · (0 ⊗ t + t ⊗ 1)p2 .

Using above terminology, this formula lookes as:

∇1(t, . . . , t) =
=

∑
(i1,...,ik−1,t,ik+1,...,in)(ϕ1(i1), . . . , ϕ1(ik−1), t, ϕ0(ik+1), . . . , ϕ0(in))⊗

(ϕ0(i1), . . . , ϕ0(ik−1), t, ϕ1(ik+1), . . . , ϕ1(in))

where the summation is taken over all 1-faces (i1, . . . , ik−1, t, ik+1, . . . , in),
ik = 0, 1, of In. This coproduct coincides with one given in [3].

Generally, the formula (15) lookes as:

∇s(t, . . . , t) =
∑

(ϕs(i1), . . . , ϕs(ik1−1), t, ϕs−1(ik1+1), . . . , ϕs−1(ik2−1), t,

ϕs−2(ik2+1), . . . , ϕ1(iks−1), t, ϕ0(iks+1), . . . , ϕ0(im)) ⊗

(ϕs+1(i1), . . . , ϕs+1(ik1−1), t, ϕs(ik1+1), . . . , ϕs(ik2−1), t,

ϕs−1(ik2+1), . . . , ϕ2(iks−1), t, ϕ1(iks+1), . . . , ϕ1(im)) (16)

where the summation is taken over all s−faces

(i1, . . . , ik1−1, t, ik1+1, . . . , ik2−1, t, ik2+1, . . . , iks−1, t, iks+1, . . . , im),

ik = 0, 1

of Im and ϕk = ϕkmod 2.

Suppose now that X is a topological space and CU∗(X) be it’s singular
cubical chain complex, i. e. CUm(X) is a free module, generated by singular
cubes σm : Im → X . Then the coproducts ∇s : I(∞) → I(∞) ⊗ I(∞),
given by (16) induce the coproducts ▽s : CU∗(X) → CU∗(X) ⊗ CU∗(X):
by formula (16) ∇s(t, . . . , t) = ∇(Im) is the sum of tensor products of some
faces of Im, define ▽sσ

n = (σn ⊗ σn)∇s.
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Remark. The formula (16) can be rewritten in terms of boundary oper-
ators dǫ

i , ǫ = 0, 1 of a cubical set Q:

▽s (σn) =
∑

d
ϕs(i1)
1 d

ϕs(i2)
2 · · ·d

ϕs(ik1−1)

ik1−1
dt

ik
d

ϕs−1(ik1+1)

ik1+1
· · ·

d
ϕs−1(ik2−1)

ik2−1
dt

ik2
d

ϕs−2(ik2+1)

ik2+1
· · ·d

ϕ1(iks−1)
iks−1

dt
iks

d
ϕ0(iks+1)
iks+1

· · ·

dϕ0(in)
n σn ⊗ d

ϕs+1(i1)
1 d

ϕs+1(i2)
2 · · ·d

ϕs+1(ik1−1)

ik1−1
dt

ik
d

ϕs(ik1+1)

ik1+1
· · ·

d
ϕs(ik2−1)

ik2−1
dt

ik2
d

ϕs−1(ik2+1)

ik2+1
· · · d

ϕ2(iks−1)
iks−1

dt
iks

d
ϕ1(iks+1)
iks+1

· · · dϕ1(in)
n σn, (17)

here we assume dt
k = id, and, as above the summation is taken over all

s−faces

(i1, . . . , ik1−1, t, ik1+1, . . . , ik2−1, t, ik2+1, . . . , iks−1, t, iks+1, . . . , in), ik = 0, 1

of In and ϕk = ϕkmod 2. This formula determines the coproducts ▽s not
only in CU∗(X) but in chain complex C∗(Q) of an arbitrary cubical set Q.

In [8] it is shown, that the cobar construction ΩC̄∗(X) of the singular
chain complex of an 1-connected space X coincides with the chain complex
of certain cubical set Q, thus there appear on the cobar construction the
coproducts ▽s given by (17). Moreover, there exists a map of cubical sets
Q → Q(ΩX), where Q(ΩX) is the cubical set of singular cubs of the loop
space ΩX . It is clear that it preserves boundary operators dǫ

i and, conse-
quently, coproducts ▽s, thus these coproducts are geometric. Note, that
▽0 and ▽1 of ΩC∗(X) coincide with coproducts, constructed by Baues in
[2] and [3].
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