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A. Kharazishvili

ON INSCRIBED AND CIRCUMSCRIBED CONVEX
POLYHEDRA

This report contains several remarks about inscribed and circumscribed
polyhedra. Below, we will be dealing with convex (and, more generally, sim-
ple) polyhedra lying in the n–dimensional Euclidean spaceRn, where n ≥ 2.
Recall that a polyhedron P ⊂ Rn is called simple if P is homeomorphic to
the unit ball Bn of Rn.

As usual, we say that two simple polyhedra P and Q in Rn are com-
binatorially isomorphic (or combinatorially equivalent, or are of the same
combinatorial type) if the geometric complex canonically associated with P
is isomorphic to the geometric complex canonically associated with Q.

A combinatorial type of convex polyhedra is called inscribable (respec-
tively circumscribable) if there exists at least one representative of this
type which admits an inscribed sphere (respectively, admits a circumscribed
sphere).

It can easily be seen that every combinatorial type in R2 is simultane-
ously inscribable and circumscribable. On the other hand, there are many
examples of combinatorial types of convex polyhedra in R3 which are not
inscribable (respectively, are not circumscribable). For more detailed infor-
mation, we refer the reader to [3], [4] and references therein. Notice that in
[4] inscribable types of convex polyhedra in R3 are characterized in certain
purely combinatorial terms. This characterization does not hold for simple
polyhedra in R3 (cf. Example 5 below).

Example 1. According to the celebrated Steinitz theorem (see, e.g., [3]),
every combinatorial type of simple polyhedra in R3 has a convex represen-
tative P . Moreover, there exists a convex representative Q of the type,
which admits a midsphere, i.e., the sphere touching all the edges of Q. Such
a sphere is also called the Koebe sphere of Q and Q itself is called a Koebe
polyhedron. During many years, it was unknown whether any combina-
torial type of simple polyhedra in R3 possesses a convex representative T
such that there exists a point in the interior of T with the property that
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all perpendiculars dropped from this point to the facets of T intersect all
corresponding facets. Obviously, the existence of Q solves this problem in
a much stronger form.

For the sake of brevity, we shall say that a combinatorial type of con-
vex polyhedra is singular if it is non–inscribable and non–circumscribable
simultaneously.

Theorem 1. Equip the family of all nonempty compact subsets of Rn

with the standard Hausdorff metric ρ, and let P be an arbitrary convex
polyhedron in Rn, where n ≥ 3. Then, for each strictly positive real ε, there
exists a convex polyhedron Q in Rn such that:

(1) ρ(P,Q) < ε;
(2) the combinatorial type of Q is singular.

For our further purposes, we need the following three simple auxiliary
propositions.

Lemma 1. Let T be a triangle with the side lengths a, b, c and let T ′ be
a triangle with the side lengths a′, b′, c′. Let γ denote the angle of T between
a and b and let γ′ denote the angle of T ′ between a′ and b′. Suppose also
that

a ≤ a′, b ≤ b′, γ < γ′.

Then if γ′ is right or obtuse, the inequality c < c′ holds true.

The condition that γ′ is right or obtuse is essential in the statement of
Lemma 1.

Lemma 2. Let k > 0 be a natural number, and let

a1, a2, . . . , ak, b1, b2, . . . , bk, c

be any strictly positive real numbers. Consider the irrational equation

b1(x
2 − a21)

1/2 + b2(x
2 − a22)

1/2 + · · ·+ bk(x
2 − a2k)

1/2 = c.

Assuming a1 = max{ai : 1 ≤ i ≤ k}, this equation has a unique strictly
positive solution if and only if

b2(a
2
1 − a22)

1/2 + b3(a
2
1 − a23)

1/2 + · · ·+ bk(a
2
1 − a2k)

1/2 ≤ c.

There exists a nonzero polynomial χ(x2, a21, a
2
2, . . . , a

2
k, b

2
1, b

2
2, . . . , b

2
k, c

2)
of the variable x2 whose coefficients are some polynomials of

a21, a
2
2, . . . , a

2
k, b

2
1, b

2
2, . . . , b

2
k, c

2,

such that any root of the above equation is simultaneously a root of the
polynomial χ.

The proof can easily be done by induction on k.
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Lemma 3. Let n > 0 be a natural number. If n is odd, i.e., n = 2m+1,
then the following formula holds true for any reals θ1, θ2, . . . , θn:

tg(θ1 + θ2 + · · ·+ θn) =
σ1 − σ3 + · · · (−1)mσn

1− σ2 + σ4 − · · ·+ (−1)mσn−1
.

If n is even, i.e., n = 2m, then the following formula holds true for any
reals θ1, θ2, . . . , θn:

tg(θ1 + θ2 + · · ·+ θn) =
σ1 − σ3 + · · · (−1)m−1σn−1

1− σ2 + σ4 − · · ·+ (−1)mσn
.

Here σ1, σ2, . . . , σn stand for the basic symmetric functions of the variables
tg(θ1), tg(θ2), . . . , tg(θn).

The proof of this lemma is readily obtained by induction on n.

Example 2. If P is a convex k–gon in the planeR2 with given successive
side lengths a1, a2, . . . , ak, then the following two assertions are equivalent:

(a) the area of P is maximal;
(b) P is inscribed in a circle.

Moreover, it can be demonstrated by using Lemma 1 that, under (b),
the radius R of the circumscribed circle of P is uniquely determined. Con-
sequently, if P ′ is another convex k–gon inscribed in a circle and having
the same successive side lengths a1, a2, . . . , ak, then P and P ′ turn out to
be congruent. Recall also that, for the existence of P satisfying (b), it is
necessary and sufficient that

2max(a1, a2, . . . , ak) < a1 + a2 + · · ·+ ak.

In other words, a convex k–gon P inscribed in a circle with the given side
lengths a1, a2, . . . , ak exists if and only if there exists at least one simple
k–gon with the same side lengths. Actually, the circumradius R of P is an
algebraic function of the variables a21, a

2
2, . . . , a

2
k. Speaking explicitly, there

exists a nonzero polynomial f(x2, a21, a
2
2, . . . , a

2
k) of the variable x2, whose

coefficients are some polynomials of the variables a21, a
2
2, . . . , a

2
k, such that

f(R2, a21, a
2
2, . . . , a

2
k) = 0.

Analogously, assuming (b) and denoting the area of P by the symbol s, a
nonzero polynomial g(y2, a21, a

2
2, . . . , a

2
k) of the variable y2 can be written,

whose coefficients are also certain polynomials of the variables a21, a
2
2, . . . , a

2
k,

such that

g(s2, a21, a
2
2, . . . , a

2
k) = 0.

For nice proofs of these two results, see [1], [5], and references in [1]. In fact,
both results can be deduced from one well–known theorem of Sabitov (see
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[6], [7]). According to it, if U is a convex polyhedron in R3, which is of a
fixed combinatorial type and all facets of which are triangles, then

h(v2, l21, l
2
2, . . . , l

2
m) = 0,

where h(z2, l21, l
2
2, . . . , l

2
m) is a nonzero polynomial of the variable z2 (depend-

ing only on the combinatorial type of U), whose coefficients are some poly-
nomials of the variables l21, l

2
2, . . . , l

2
m (here l1, l2, . . . , lm denote the lengths

of all edges of U). Applying Sabitov’s this result to a bipyramid whose base
is a convex k–gon P inscribed in a circle and whose height passes through
the center of the circle and varies ranging over ]0,+∞[, one can obtain
the existence of the above–mentioned polynomials f and g for P . Further-
more, one can associate to the length d of an arbitrary diagonal of P the
corresponding equality

ϕ(d2, a21, a
2
2, . . . , a

2
k) = 0,

where ϕ(t2, a21, a
2
2, . . . , a

2
k) is a nonzero polynomial of the variable t2 (de-

pending only on P and the place of this diagonal in P with respect to
the sides of P ), whose coefficients are some polynomials of the side lengths
a21, a

2
2, . . . , a

2
k.

Theorem 2. Let Q be a convex polyhedron in Rn which is of a given
combinatorial type and is inscribed in a sphere. Then the family

(l1, l2, . . . , lm)

of the lengths of all edges of Q determines Q up to the congruence of poly-
hedra.

Moreover, the radius R of the circumscribed sphere of Q is uniquely de-
termined by l1, l2, . . . , lm and is an algebraic function of l21, l

2
2, . . . , l

2
m.

The first assertion in Theorem 2 may be interpreted as a strong form
of rigidity of inscribed convex polyhedra, because the combinatorial and
metric structures of the 1–skeleton of Q completely determine Q as a solid
body in Rn. The proof of Theorem 2 can be carried out by induction on
n, taking into account Lemma 2 and Gaifullin’s recent far–going extension
of Sabitov’s theorem to the case of all n–dimensional convex polyhedra
with simplicial facets (see [2]). Notice that, according to the statement of
Theorem 2, for the circumradius R of Q we have the equality

Φ(R2, l21, l
2
2, . . . , l

2
m) = 0,

where Φ(z2, l21, l
2
2, . . . , l

2
m) is a nonzero polynomial of the variable z2 (de-

pending only on the combinatorial type of Q), whose coefficients are some
polynomials of the variables l21, l

2
2, . . . , l

2
m. The latter equality is deducible

by induction on n, simultaneously with parallel establishing analogous facts
for the lengths of all diagonals of Q (cf. Example 2).
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Let P be a convex k–gon in R2 which admits an inscribed circle and
let, as earlier, a1, a2, . . . , ak denote the successive side lengths of P . Here
we have a situation radically different from the case of a k–gon with a
circumscribed circle. First of all, if k is even, i.e., k = 2m, then the relation

a1 + a3 + a5 + · · · = a2 + a4 + a6 + · · ·

should be true and the radius r of an inscribed circle is not uniquely deter-
mined in this case.

If k is odd, i.e., k = 2m+ 1, then we must have the relations

2τ1 = a1 − a2 + a3 − · · · > 0,

2τ2 = a2 − a3 + a4 − · · · > 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
2τk−1 = ak−1 − ak + a1 − · · · > 0,

2τk = ak − a1 + a2 − · · · > 0.

Denoting the radius of the inscribed circle of P by r, we can write

τ1/r = tg(α1), τ2/r = tg(α2), . . . , τk/r = tg(αk),

where for each natural index i ∈ [1, k], we have αi = π/2 − βi/2 and βi

stands for the measure of the interior angle of P at its i–th vertex. Since

α1 + α2 + · · ·+ αk = π, tg(α1 + α2 + · · ·+ αk) = 0,

we obtain by virtue of Lemma 3 that

σ1r
2m − σ3r

2m−2 + · · ·+ (−1)mσk = 0,

where σ1, σ3, . . . , σk are basic symmetric functions of τ1, τ2, · · · , τk. It is not
difficult to see that the equation

σ1x
m − σ3x

m−1 + (−1)mσk = 0

always has m strictly positive roots and the largest root of it is equal to r2.
Moreover, in this case r is uniquely determined by a1, a2, . . . ak.

Example 3. If the side lengths of a convex pentagon in the plane R2

are

a1 = a2 = 1, a3 = a4 = 2, a5,= 5,

then such a pentagon does not admit an inscribed circle, because in this
case τ4 < 0. Similarly, if the side lengths of a convex hexagon in R2 are

a1 = 1, a2 = 2, a3 = 6, a4 = 4, a5 = 5, a6 = 6,

then such a hexagon also does not admit an inscribed circle. On the other
hand, if all values τ1, τ2, τ3, τ4, τ5 corresponding to a convex pentagon P
with the side lengths a1, a2, a3, a4, a5 are strongly positive, then, as was
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stated above, there exists an inscribed circle for P . Its radius r coincides
with the largest root of the equation

σ1x
4 − σ3x

2 + σ5 = 0,

where σ1, σ3, and σ5 are basic symmetric functions of τ1, τ2, τ3, τ4, τ5. We
thus conclude that in this case the inradius r of P can be constructed with
the aid of compass and ruler. Notice also that the second (smaller) strictly
positive root of this equation coincides with the inradius of a pentagonal
star having the same side lengths.

Example 4. Let P be a cube in R3 whose all edges have length a > 0
and let Q be a parallelepiped in R3 any facet of which is a rhombus with
the side length also equal to a and with an acute angle equal to α > 0.
Then:

(1) P and Q are combinatorially equivalent;
(2) both P and Q admit inscribed spheres (whose radii differ from each

other);
(3) the 1–skeletons of P and Q are metrically isomorphic.

Thus, in contrast to Theorem 2, the combinatorial and metrical structure
of the 1–skeleton of a convex polyhedron in R3 does not determine uniquely
the radius of its inscribed sphere and, in general, this radius cannot be an
algebraic function of the edge lengths.

Example 5. Take in R3 a triangular prism P and at all vertices of P cut
off six sufficiently small pyramids so that all of them would be pairwise dis-
joint. The obtained convex polyhedron P ′ is of a non–circumscribable type,
so its dual convex polyhedron Q′ is of a non–inscribable type. However,
there are simple polyhedra of the same type as Q′ which are inscribed in a
sphere. More generally, it can be demonstrated that if a simple polyhedron
V ⊂ R3 with k facets is such that k − 1 of its facets are triangles, then
there always exists a simple polyhedron V ′ ⊂ R3 of the same combinatorial
type as V , which is inscribed in a sphere. We thus see that the duality
between inscribable and circumscribable types of convex polyhedra in the
space R3 fails to be true when one deals with inscribed simple polyhedra
and circumscribed convex polyhedra in R3.
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3. B. Grünbaum, Convex polytopes. Second edition. Prepared and with a preface by
Volker Kaibel, Victor Klee and Gnter M. Ziegler. Graduate Texts in Mathematics,
221. Springer-Verlag, New York, 2003.



129

4. C. D. Hodgson, I. Rivin and W. D. Smith, A characterization of convex hyperbolic

polyhedra and of convex polyhedra inscribed in the sphere. Bull. Amer. Math. Soc.
(N.S.) 27 (1992), No. 2, 246–251.

5. D. P. Robbins, Areas of polygons inscribed in a circle. Amer. Math. Monthly 102
(1995), No. 6, 523–530.

6. I. Kh. Sabitov, The volume of a polyhedron as a function of the lengths of its edges.
(Russian) Fundam. Prikl. Mat. 2 (1996), No. 1, 305–307.

7. I. Kh. Sabitov, The generalized Heron-Tartaglia formula and some of its conse-
quences. (Russian) Mat. Sb. 189 (1998), No. 10, 105–134; translation in Sb. Math.

189 (1998), No. 9-10, 1533–1561.

Author’s address:

A. Razmadze Mathematical Institute
Iv. Javakhishvili Tbilisi State University
6, Tamarashvili St., Tbilisi 0177, Georgia
E-mail: kharaz2@yahoo.com


