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ON THE CONVERGENCE OF SPARSE MULTIPLE SERIES

Let W ⊂ Rn
+, where R+ = [0,∞). For a series σ =

∑
m∈Nn am by SW (σ)

denote its partial sum by the set W , i.e.,

SW (σ) =
∑

m∈W

am.

Note that the sum by empty set of indexes we assume to be 0.
The convergence of partial sums SrW (σ) as r → ∞ will be referred as

W -convergence of the series σ. Here rW denote the dilation of the set W
by a coefficient r > 0, i.e., rW = {rx : x ∈ W}.

For the case W = {x ∈ Rn
+ : x2

1 + · · ·+ x2
n ≤ 1}, W -convergence is called

the spherical convergence.
Recall that: a sequence (am)m∈Nn is called convergent if am tends to

the limit as min(m1, . . . ,mn) → ∞; and a series σ =
∑

m∈Nn am is called
convergent in Pringsheim sense if the sequence of its rectangular partial
sums Sm(σ) is convergent.

Saying that a sequence (am)m∈Nn strongly converges we mean the con-
vergence of (am) to the limit as max(m1, . . . ,mn) → ∞.

Let S ⊂ N and λ > 1. A set S is said to be λ-lacunar if for every
m,m∗ ∈ S with m < m∗ we have that m∗/m > λ.

A set S ⊂ Nn is called λ-lacunar if there are one-dimensional λ-lacunar
sets S1, . . . , Sn ⊂ N such that S ⊂ S1 × · · · × Sn. A set S ⊂ Nn is said to
be lacunar if S is λ-lacunar for some λ > 1.

A sequence (am)m∈Nn or a series
∑

m∈Nn am is said to be lacunar (λ-
lacunar) if the set S = {m ∈ Nn : am ̸= 0} is lacunar(λ-lacunar). Here
note that a Haar series is lacunar at every diadic-irrational point.

By I we denote the unit interval [0, 1].
We shall use the following notation:
Z0 is the set of all nonnegative integers;
∆i

k (k ∈ Z, i ∈ Z) is the diadic interval [ i−1
2k

, i
2k
];

∆̃i
k(k ∈ Z, i ∈ Z) is the open diadic interval ( i−1

2k
, i
2k
);

p, q (p, q ∈ N, p ≤ q) is the set {p, . . . , q};
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Id is the set of all diadic-irrational numbers of I.
Let us recall the definition of the Haar system (hm)m∈N: h1(x) = 1

(x ∈ I), and if m = 2k + i (k ∈ Z0, i ∈ 1, 2k), then: hm(x) = 2k/2 while

x ∈ ∆̃2i−1
k+1 ; hm(x) = −2k/2 while x ∈ ∆̃2i

k+1 and hm(x) = 0 while x /∈ ∆i
k.

At inner points of discontinuity hm is defined as mean value of the limits
from the right and from the left, and at the ends of I as the limits from
inside of the interval.

By H(x) (x ∈ In) denote the spectrum of the multiple Haar system at a
point x ∈ In, i.e., the set {m ∈ Nn : hm(x) ̸= 0};

From the definition of the Haar system it follows easily that: if x ∈ Id,
then H(x) is 3/2-lacunar set, consequently, taking into account thatH(x) =
H(x1)× · · · ×H(xn), we have: H(x) is 3/2-lacunar at every x ∈ Ind .

A point x ∈ In let us call diadic-irrational if each coordinate of x is a
diadic-irrational number.

In [1] for multiple Haar series it was established the following connection
between the convergence in Pringsheim sense and the spherical convergence.

Theorem A. Let σ =
∑

m∈Nn cmhm be a multiple Haar series. If σ is
convergent to a number s in Pringsheim sense at a diadic-irrational point
x ∈ In and its general term (cmhm(x)) is strongly convergent to 0, then σ
is spherically convergent to s at x.

Theorem A was obtained as a corollary of the following more general
result (see [1]).

Theorem B. Let σ =
∑

m∈Nn am be a lacunar numerical series. If σ
converges to a number s in Pringsheim sense and its general term (am)
strongly converges to 0, then σ is spherically convergent to s.

Two questions we study are:

1) Does Theorem A remain true for points x ∈ In that are not diadic-
irrational?

2) Is it possible Theorem B to be extended to a convergence of more
general type than the spherical one?

Below it will be given a generalization of Theorem B in which lacunar
series is changed by more general one and instead of the spherical conver-
gence there is considered convergence of a quite general type. As a corollary
of the generalization we obtain a positive answer to the first question.

Let k ∈ N and λ > 1. A set S ⊂ N let us call (k, λ)-sparse if there
are λ-lacunar sets S1, . . . , Sν ⊂ N such that S = S1 ∪ · · · ∪ Sk. A set
S ⊂ Nn let us call (k, λ)-sparse if there are (k, λ)-sparse one-dimensional
sets S1, . . . , Sn ⊂ N such that S ⊂ S1 × · · · × Sn.

A set S ⊂ Nn let us call sparse if it is (k, λ)-sparse for some k ∈ N and
λ > 1.



153

A sequence (am)m∈Nn or a series
∑

m∈Nn am we will call sparse((k, λ)-
sparse) if the set S = {m ∈ Nn : am ̸= 0} is sparse ((k, λ)-sparse).

It is easy to see that if x ∈ I \ Id, then H(x) is (2, 3/2)-sparse set.
Consequently, taking into account relation H(x) = H(x1)×· · ·×H(xn), we
have: H(x) is (2, 3/2)-sparse at every x ∈ In \ Ind .

Let α ≥ 1. By Wn(α) we denote the class of all sets W ⊂ Rn
+ for which

there is a number t > 0 such that [0, t]n ⊂ W ⊂ [0, αt]n; and by Wn(α) we
denote the class of all sets W ⊂ Rn

+ for which there is a number t > 0 such
that W ∩ [0, t]n = ∅ and W ⊂ [0, αt]n. The union of the classes Wn(α) and
Wn(α) will be denoted by W∗

n(α).
Let us introduce the following notation:

Wn =
∪
α≥1

Wn(α), Wn =
∪
α≥1

Wn(α), W∗
n =

∪
α≥1

W∗
n(α);

tW = sup{t > 0 : [0, t]n ⊂ W} (W ∈ Wn);

tW = sup{t > 0 : [0, t]n ∩W = ∅} (W ∈ Wn);

πi(x) = (x1, . . . , xi−1, xi+1, xn) (i ∈ 1, n, x ∈ Rn);

W (i, t) = πi({x ∈ W : xi = t}) (W ⊂ Rn, i ∈ 1, n, t ∈ R).

Let α ≥ 1. By V2(α) (V2(α)) we denote the class of all sets W ∈ W2(α)
(W ∈ W2(α)) such that W (i, t) consists of not more then α one-dimensional
segments for every i ∈ 1, n and t ≥ tW . The class V∗

2 (α) is defined as the
union of the classes V2(α) and V2(α). For arbitrary dimension n > 2, Vn(α)
(Vn(α)) we define as the class of all sets W ∈ Wn(α) (W ∈ Wn(α)) such
that for every i ∈ 1, n and t ≥ tW , W (i, t) is either empty set or belongs
to the class V∗

n−1(α). The class V∗
n(α) will be defined as the union of the

classes Vn(α) and Vn(α).
The union of the classes Vn(α) (α ≥ 1) let us denote by Vn.
We will say that a set W ⊂ Rn

+ has a bounded variation if W ∈ Vn.
It is easy to see that every ball Bn = {x ∈ Rn

+ : x2
1+ · · ·+x2

n ≤ 1} (n ≥ 2)
and every set of the type C ∩R2

+, where C is a two-dimensional convex set
having the origin as interior point, has a bounded variation.

Theorem 1. Let σ =
∑

m∈Nn am be a sparse numerical series. If σ
converges to a number s in Pringsheim sense and its general term (am)
strongly converges to 0, then σ is W -convergent to s for any set W with
bounded variation.

Since every Haar series is a sparse numerical series at any point x ∈ In
then from Theorem 1 we obtain the following corollary.

Corollary 1. Let σ =
∑

m∈Nn cmhm be a multiple Haar series. If σ is
convergent to a number s in Pringsheim sense at a point x ∈ In and its
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general term (cmhm(x)) is strongly convergent to 0, then σ is W -convergent
to s for any set W with bounded variation.

Remark 1. Theorem 1 for the case of lacunary series and spherical con-
vergence(instead of W -convergence) was proved in [1]; and for the case of
two-dimensional and lacunary series was proved in [2].

In [1] (see Corollary 3) it was proved that if f ∈ L(ln+ L)n−2(In), then
the general term (cmhm(x)) of Fourier-Haar series of f strongly converges
to zero almost everywhere. Consequently, from Corollary 1 we obtain the
next result.

Corollary 2. Let f ∈ L(ln+ L)n−2(In) and σ(f) be Fourier-Haar series
of f . If σ(f) converges to f(x) in Pringsheim sense at every point x from
a set E, then there is a set E∗ ⊂ E with |E∗| = |E| such that for every
point x from E∗, σ(f) is W -convergent to f(x) for any set W with bounded
variation.

Taking into account that(see [3] or [4]) Fourier-Haar series of every func-
tion f from L(ln+ L)n−1(In) converges almost everywhere, from Corollary
2 we deduce the following result.

Corollary 3. If f ∈ L(ln+ L)n−1(In) then there is a set E ⊂ In of full
measure such that for every point x from E, Fourier-Haar series of f is
W -convergent to f(x) for any set W with bounded variation.

Remark 2. Corollaries 2 and 3 for the case of spherical convergence (in-
stead ofW -convergence) was proved in [1]; and for two-dimensional case was
proved in [2]. Note also that an analogue of Corollary 3 for the case of tri-
angular convergence of two-dimensional Fourier-Haar series was established
in [5].
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